Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.
Bei vielen historisch ueberlieferten Experimenten in der Chemie-Ausbildung liegt ein beachtliches Potential der Schadstoffbildung von z.T. erheblicher toxikologischer Relevanz. Wie wir erstmalig feststellen konnten, werden z.B. bei dem Beilstein-Test zum einfachen qualitativen Nachweis von organischen Halogenverbindungen erhebliche Mengen an hochtoxischen Dioxinen und Furanen gebildet. Hierdurch koennen Studierende wie auch Laborraeume signifikant kontaminiert werden. Dies zum Anlass nehmend, haben wir gemeinsam mit dem Institut fuer Organische Chemie (Prof. Dr. H. Hopf) eine systematische experimentelle Untersuchungsreihe ins Leben gerufen, in der gaengige Ausbildungsversuche aus Standardlehrbuechern auf ihre Umwelt- und Arbeitsplatzrelevanz untersucht werden. Hieraus sind inzwischen mehrere gemeinsame Publikationen entstanden, die bei uns wie auch an anderen Hochschulen zu einer allmaehlichen Anpassung der Ausbildung in der Chemie an die Erfordernisse des Umweltschutzes und der Arbeitshygiene beitragen werden.
Direkte Transportwege von der Troposphäre in die untere Stratosphäre von Wasserdampf und troposphärischen Spurengasen(z.B. ozonzerstörender Substanzen, wie beispielsweise sehr kurzlebige halogenierte Spurenstoffe)beeinflussen die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre außerhalb der Tropen (ExUTLS). Sogar relativ kleine Änderungen in Ozon und Wasserdampf in dieser Region, haben große Auswirkungen auf das Klima an der Erdoberfläche. Verschiedene direkte Transportwege werden derzeit diskutiert, wie z. B. quasi-horizontaler Transport aus der tropischen Tropopausen Region, horizontaler Transport aus dem Gebieten des asiatischen Monsuns und durch Konvektion induzierte Einträge. Jedoch ist unser derzeitiges Verständnis für diese Transportprozesse und ihre relativen Beiträge unvollständig. Im Rahmen unseres Projekts AMOS, möchten wir die zugrunde liegenden Transportprozesse für verschiedene vergangene (TACTS/ESMVal) und zukünftige HALO-Kampagnen (PGS, WISE) identifizieren und quantifizieren unter Berücksichtigung ihrer jahreszeitlichen und jährlichen Variabilität. Der Schwerpunkt unseres Projekts ist die WISE-Kampagne, die Transportvorgänge, die die chemische Zusammensetzung in der ExUTLS bestimmen, untersuchen wird. Im Rahmen unseres Projekts werden HALO Messungen mit mehrere (Kurz- und Langzeit-) Simulationen mit dem Lagrangen Modell CLaMS kombiniert. Die Implementierung von künstlichen Markern in CLaMS, mit denen man die Herkunft der Luftmassen bestimmen kann, zusammen mit hochaufgelösten HALO-Messungen von verschiedenen Kampagnen ist ein einzigartiges Werkzeug, um die verschiedenen Transportwege und Mischungsprozesse zu identifizieren. Im Rahmen von AMOS können deshalb die Auswirkungen dieser verschiedenen Transportprozesse auf die chemischen Zusammensetzung der unteren Stratosphäre quantifiziert werden.
Die rasante Urbanisierung und Industrialisierung in den vergangenen Jahrzehnten hat zu einer Vielzahl von Umweltkontaminationen mit halogenierten organischen Verbindungen (HOCs) sowohl in China als auch Europa geführt. Ziel des vorgeschlagenen Projektes ist es, neue Erkenntnisse und ein vertieftes Prozessverständnis für die Synthese von biobasierten nFe(0)/Pd/C-Kompositen und deren Reaktionen mit HOCs in der Grundwasserreinigung zu gewinnen. Dies beinhaltet die Identifizierung von Synthese-optionen für Partikel mit maßgeschneiderten und verbesserten Eigenschaften mithilfe der Hydrothermalen Karbonisierung (HTC). Ein tiefgreifendes mechanistisches Verständnis der beteiligten Prozesse, d.h. Sorption, Reaktion und Transport reaktiver Spezies so-wie Katalyse sowie deren Synergien dient einer zielgerichteten Optimierung der Partikel und der Erkundung ihrer Anwendungsgebiete. Die nFe(0)/Pd/C-Komposite sollen speziell für die in-situ Grundwasserreinigung geeignet sein und verbesserte Eigenschaften insbesondere für solche Anwendungsfälle besitzen, bei denen bekannte Konzepte der in-situ-Sanierung mit Nanopartikeln (Nanoremediation) nicht greifen. Die synergistische Kombination verschiedener Wirkprinzipien erlaubt Multikatalyse-Prozesse sowie die sequentielle Behandlung von verschiedenen Kontaminanten. Zunächst werden verschiedene Optionen für die Einbettung von Metallen in oder auf die Kohlepartikel untersucht, die erhaltenen Produkte detailliert durch physikalisch-chemische Methoden charakterisiert und auf ihre Reaktivität getestet. Danach werden Reaktionen in Batch-Ansätzen für die Aufklärung der zugrundeliegenden Mechanismen, wie das Zusammenspiel von Pd, Kohleoberfläche und Fe-Spezies, der beteiligten Reaktionswege und reaktiven Spezies, durchgeführt. Weiterhin werden Optionen für Multikatalyse und sequentielle Reduktions-/Oxidationsprozesse untersucht. Abschließend werden die entwickelten Materialien und Prozesse im Labor für die Behandlung von Wasser von kontaminierten Standorten in Deutschland und China erprobt. Dieses kooperative Forschungsvorhaben von chinesischen und deutschen Partnern wird zu einem signifikanten Fortschritt in der Sanierungsforschung für industriell kontaminierte Standorte, insbesondere auch in China, führen.
Die stratosphärische Ozonschicht bietet der Erde einen wirkungsvollen Schutzschild gegen den ultravioletten, schädigenden Anteil der solaren Strahlung. Der anthropogene Ozonabbau, verursacht durch Emissionen von langlebigen Fluorchlorkohlenwasserstoffen (FCKWs), war eines der größten Umweltprobleme der letzten Jahrzehnte. Emissionen von FCKWs wurden infolge des Montrealer Abkommens von 1987 stark reduziert und eine langsame Erholung der Ozonschicht wird im Laufe der nächsten Jahrzehnte erwartet. Im Gegensatz dazu werden die Emissionen von sehr kurzlebigen Halogenverbindungen (Very Short-Lived Halocarbons, VSLH), welche auch stratosphärisches Ozon zerstören, aufgrund von neuen Technologien ansteigen. Chemische Oxidationsprozesse in der marinen Umwelt, insbesondere die neuartigen Behandlungsverfahren von Ballastwasser, und anwachsende tropische Makroalgenkulturen beeinflussen biogeochemische Kreisläufe und können zu einem starken Anstieg der VSLH Produktion und Emission führen. Zusätzlich zu ihrem schädlichen Effekt auf die Ozonschicht, beeinflussen VSLH den atmosphärischen Strahlungsantrieb und das Vermögen der Atmosphäre viele natürliche und anthropogene Spurenstoffe zu entfernen (atmosphärische Oxidationspotential). Momentan ist nur sehr wenig über die zukünftig zu erwartenden anthropogenen VSLH Emissionen aus dem Ozean sowie ihre bedrohliche Wirkung auf die atmosphärische Chemie bekannt und fundierte wissenschaftliche Untersuchungen sind dringend erforderlich. Das Ziel dieses Antrages ist es, momentane und zukünftige Emissionen anthropogener VSLH und ihren Einfluss auf atmosphärische Zusammensetzung und Chemie zu quantifizieren. Ein besonderer Fokus liegt auf der Untersuchung einer möglichen neuen Bedrohung der stratosphärischen Ozonschicht. In einem ersten Schritt werden globale Karten der ozeanischen Emissionen von anthropogenen VSLH erstellt. Im zweiten Schritt wird, basierend auf atmosphärischer Chemie-Transport Modellierung, die Entwicklung der anthropogenen VSLH in der Atmosphäre quantifiziert. Zu diesem Zweck werden Küsten-auflösende Modellsysteme entwickelt, welche später dazu beitragen Parametrisierungen anthropogener VSLH Prozesse für globale Klima-Chemie Modelle zu erstellen. In einem dritten Schritt wird der globale Einfluss der anthropogenen VSLH auf Ozonabbau, Strahlungsantrieb und atmosphärisches Oxidationspotential bestimmt und mögliche Rückkopplungsmechanismen werden identifiziert. Der interdisziplinäre Forschungsplan umfasst die Synthese existierender Daten, Messungen, sowie Ozean-Zirkulation-, Biogeochemie- und atmosphärische Klima-Chemie Modellierung. Das Forschungsvorhaben wird die Frage beantworten, ob anthropogene Aktivitäten in der marinen Umwelt eine Bedrohung für die stratosphärische Ozonschicht darstellen. Solch eine Risikoabschätzung ist von großer gesellschaftlicher Bedeutung und liefert entscheidende Information für politische Entscheidungsträger bezüglich der Planung zukünftiger menschlicher Aktivitäten.
Entwicklung eines Frueherkennungssystems, anhand dessen das Risikopotential bei Vermeidung, Verminderung, Verwertung und Beseitigung von Abfaellen ermittelt werden kann. Identifizierung von Schwelgasen, getrennte Erfassung von halogenierten Kohlenwasserstoffen. Multisensorkopf zur Erfassung von krebserregenden Loesungsmitteln (Benzol etc.) in geringen Konzentrationen in Gemischen mit Ketonen, Alkoholen, Aldehyden etc. (Schnelltest, Verwendung neuronaler Netze).
Die Methode gekreuzter Molekularstrahlen wird zur Untersuchung von ionischen Primaerstossprozessen im ueberthermischen Energiebereich (0.5-50 EV) angewendet. Diese Untersuchungen sind relevant fuer das Verstaendnis von atomaren und molekularen Stossvorgaengen in der oberen Atmosphaere. Aus den gemessenen Wirkungsquerschnitten lassen sich durch geeignete Mittelung Geschwindigkeitskonstanten fuer verschiedene Stossprozesse (Reaktion, Ladungsaustausch, Anregung) ermitteln. Bisher wurden Reaktionen von Kohlenwasserstoffionen sowie von Sauerstoff- und Stickstoffverbindungen - in letzter Zeit insbesondere Protonenuebertragung von Fluorverbindungen BF+, F+ und Wasserfragmenten (H2O+, OH+ sowie deren Isotope) untersucht.
| Origin | Count |
|---|---|
| Bund | 245 |
| Land | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 9 |
| Förderprogramm | 232 |
| Gesetzestext | 1 |
| Text | 4 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 5 |
| offen | 242 |
| Language | Count |
|---|---|
| Deutsch | 218 |
| Englisch | 55 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 10 |
| Dokument | 3 |
| Keine | 188 |
| Webseite | 59 |
| Topic | Count |
|---|---|
| Boden | 216 |
| Lebewesen und Lebensräume | 228 |
| Luft | 221 |
| Mensch und Umwelt | 247 |
| Wasser | 210 |
| Weitere | 243 |