In diesem Vorhaben werden Technologien und Maßnahmen untersucht, die einen Beitrag zur Reduzierung der Treibhausgasemissionen leisten. Folgende Themen werden bearbeitet: - Optimierung eines Gasmotors für den transienten Betrieb mit gleichzeitig schwankendem Wasserstoffanteil im Brenngas - Reduzierung der CO2-Emissionen durch Substitution von Schweröl durch LNG / LPG inkl. innermotorischer Maßnahmen zur Minimierung des Methanschlupfes - Darstellung eines defossilisierten Marinemotors (Dual-Fuel-Motor mit Hauptenergieträger Methan und mit OME als Zündkraftstoff - beides kann in Zukunft aus regenerativen Quellen stammen) - Aufbau eines hochdruck-seitig verbauten Methankatalysators vor Turbine an einem Kraftwerksmotor - Entwicklung von Simulationswerkzeugen, Aufbau von repräsentativen Modellen und Erfassung typischer Lastprofile zur Auslegung und Optimierung von hybriden Antriebsarchitekturen (lokale Emissionen bis hin zur Null-Emission) - Aufbau eines Demonstrators 'Future Fuel Engine', der für die Nutzung von synthetischen strombasierten Kraftstoffen optimiert ist.
Motivation: Gewässer vor versehentlicher und vorsätzlicher Verschmutzung zu schützen ist extrem schwierig. Da es mit heutigen Mitteln technisch kaum möglich ist, Ursachen von Kontaminationen zu lokalisieren, ist insbesondere die Hemmschwelle für die Verklappung von giftigen Substanzen in Flüsse und Meere gering. Alleine in der Ostsee werden jährlich 500 bis 700 illegale Öleinleitungen von Schiffen festgestellt. Durch Probennahmen am Ufer, von Booten und durch Taucher kann eine effektive großflächige Überwachung jedoch nicht realisiert werden. Ziele und Vorgehen: Kleine, kostengünstige autonome Unterwasserfahrzeuge sind in der Lage, automatisierte Messungen durchzuführen. Sie können selbstständig große Flächen überwachen und Ursachen von Verschmutzungen lokalisieren. Ziel des Projekts MoSAIk ist es, ein Unterwasser-Überwachungssystem zu konzeptionieren, das mit flexibler Sensorik, z. B. zur Detektion von Schweröl oder giftigen Chemikalien, ausgestattet ist. Als Plattform für das Messsystem dienen dabei unbemannte Unterwasserfahrzeuge. Durch die Kombination von neuartigen Miniatursensoren, innovativer Unterwasserkommunikation und intelligenten Planungsalgorithmen sollen diese Messsysteme in die Lage versetzt werden, zielgerichtet und effektiv als Schwarm zu arbeiten. Innovationen und Perspektiven: Eine dauerhafte Überwachung der Wasserqualität, beispielsweise in Hafengebieten, kann verhindern, dass Chemikalien illegal entsorgt werden, da das Risiko der Aufdeckung der Straftat groß ist. Das autonome System bietet darüber hinaus die Möglichkeit, auch unbeabsichtigte Verschmutzung im Frühstadium zu erkennen und damit gegebenenfalls größere Umweltkatastrophen zu verhindern.
Motivation: Gewässer vor versehentlicher und vorsätzlicher Verschmutzung zu schützen ist extrem schwierig. Da es mit heutigen Mitteln technisch kaum möglich ist, Ursachen von Kontaminationen zu lokalisieren, ist insbesondere die Hemmschwelle für die Verklappung von giftigen Substanzen in Flüsse und Meere gering. Alleine in der Ostsee werden jährlich 500 bis 700 illegale Öleinleitungen von Schiffen festgestellt. Durch Probennahmen am Ufer, von Booten und durch Taucher kann eine effektive großflächige Überwachung jedoch nicht realisiert werden. Ziele und Vorgehen: Kleine, kostengünstige autonome Unterwasserfahrzeuge sind in der Lage, automatisierte Messungen durchzuführen. Sie können selbstständig große Flächen überwachen und Ursachen von Verschmutzungen lokalisieren. Ziel des Projekts MoSAIk ist es, ein Unterwasser-Überwachungssystem zu konzeptionieren, das mit flexibler Sensorik, z. B. zur Detektion von Schweröl oder giftigen Chemikalien, ausgestattet ist. Als Plattform für das Messsystem dienen dabei unbemannte Unterwasserfahrzeuge. Durch die Kombination von neuartigen Miniatursensoren, innovativer Unterwasserkommunikation und intelligenten Planungsalgorithmen sollen diese Messsysteme in die Lage versetzt werden, zielgerichtet und effektiv als Schwarm zu arbeiten. Innovationen und Perspektiven: Eine dauerhafte Überwachung der Wasserqualität, beispielsweise in Hafengebieten, kann verhindern, dass Chemikalien illegal entsorgt werden, da das Risiko der Aufdeckung der Straftat groß ist. Das autonome System bietet darüber hinaus die Möglichkeit, auch unbeabsichtigte Verschmutzung im Frühstadium zu erkennen und damit gegebenenfalls größere Umweltkatastrophen zu verhindern.
Motivation: Gewässer vor versehentlicher und vorsätzlicher Verschmutzung zu schützen ist extrem schwierig. Da es mit heutigen Mitteln technisch kaum möglich ist, Ursachen von Kontaminationen zu lokalisieren, ist insbesondere die Hemmschwelle für die Verklappung von giftigen Substanzen in Flüsse und Meere gering. Alleine in der Ostsee werden jährlich 500 bis 700 illegale Öleinleitungen von Schiffen festgestellt. Durch Probennahmen am Ufer, von Booten und durch Taucher kann eine effektive großflächige Überwachung jedoch nicht realisiert werden. Ziele und Vorgehen: Kleine, kostengünstige autonome Unterwasserfahrzeuge sind in der Lage, automatisierte Messungen durchzuführen. Sie können selbstständig große Flächen überwachen und Ursachen von Verschmutzungen lokalisieren. Ziel des Projekts MoSAIk ist es, ein Unterwasser-Überwachungssystem zu konzeptionieren, das mit flexibler Sensorik, z. B. zur Detektion von Schweröl oder giftigen Chemikalien, ausgestattet ist. Als Plattform für das Messsystem dienen dabei unbemannte Unterwasserfahrzeuge. Durch die Kombination von neuartigen Miniatursensoren, innovativer Unterwasserkommunikation und intelligenten Planungsalgorithmen sollen diese Messsysteme in die Lage versetzt werden, zielgerichtet und effektiv als Schwarm zu arbeiten. Innovationen und Perspektiven: Eine dauerhafte Überwachung der Wasserqualität, beispielsweise in Hafengebieten, kann verhindern, dass Chemikalien illegal entsorgt werden, da das Risiko der Aufdeckung der Straftat groß ist. Das autonome System bietet darüber hinaus die Möglichkeit, auch unbeabsichtigte Verschmutzung im Frühstadium zu erkennen und damit gegebenenfalls größere Umweltkatastrophen zu verhindern.
Die Puralube GmbH betreibt mehrere Raffinerien zur Aufbereitung von Altöl zu hochwertigem Basisöl. Bei diesem Prozess fallen anteilig Rückstände an, die zu großen Teilen in Form von Schweröl als Schifffahrtsbrennstoff eingesetzt werden. Dieser Verwertungsweg ist seit dem 01.01.2020 eingeschränkt, da seitdem strengere Grenzwerte für den Schwefelgehalt in Schiffsbrennstoffen gelten. Mit dem Vorhaben plant das Unternehmen, Schweröl zukünftig am unternehmenseigenen Standort zu verwerten und gleichzeitig höherwertige Komponenten (Naphtha, Leichtes Heizöl, Basisöl) zu erzeugen. Die technische Umsetzung des Projekts basiert auf einer Pyrolyse des Schweröls. Dabei werden in einem beheizten Drehrohrofen langkettige Bestandteile des Schweröls zu kurzkettigen, flüssigen und gasförmigen Bestandteile gespalten. Die flüssigen Bestandteile werden abgezogen und zu Naphtha, Leichtes Heizöl und Basisöl weiterverarbeitet. Aus dem Basisöl werden Schmierstoffe (z.B. Motorenöle) hergestellt, Naphtha an die chemische Industrie verkauft und Leichtes Heizöl als Brennstoff abgegeben. Die gasförmigen Bestandteile aus dem Spaltprozess werden aufgefangen, aufbereitet und zur Erwärmung des Rohrofens genutzt. Eine parallele Anordnung von zwei miteinander verbundenen Öfen gewährleistet dabei einen quasi kontinuierlichen Betrieb. Auch ist die Anlage so konzipiert, dass sie an einen anderen Standort transportiert werden kann. Insgesamt können mit dem Vorhaben aus der Aufbereitung von 20.000 Tonnen Schweröl jährlich ca. 3.300 Tonnen Basisöl und Naphtha, 5.200 Tonnen Leichtes Heizöl, 2.000 Tonnen Petrolkoks sowie 5.000 Tonnen Gas gewonnen werden. Durch die stoffliche Nutzung des Schweröls ergibt sich eine Minderung der CO2-Äquivalenten von ca. 38.000 Tonnen pro Jahr.
Als erstes Unternehmen in der Branche ist es der PURALUBE GmbH gelungen, umweltschädliches Schweröl in nahezu schwefelfreies Basisöl, Leichtes Heizöl und Petrolkoks im sogenannten HyRes TM-Verfahren aufzubereiten. Diese Technologie ermöglicht es, Schweröl mit hohen Schwefelgehalten nicht mehr thermisch verwerten zu müssen, sondern dieses recyceln zu können, wodurch sich kumuliert jährlich nahezu 27.000 Tonnen CO2-Äquivalente pro Anlage einsparen lassen. Zudem wird durch dieses Verfahren ein wesentlicher Beitrag zum Abbau der immensen Überbestände von Schweröl geleistet, nachdem dieses im Zuge der Verschärfung der Emissionsrichtlinien in der Schifffahrt aufgrund dessen hohen Schwefelgehalts als Brennstoff nicht mehr uneingeschränkt verwendet werden darf. Quelle: Forschungsbericht
Projektziel ist die Entwicklung eines innovativen Verfahrens zur hydrierenden Entschwefelung von Schweröl als Schiffstreibstoff. Durch Verwendung von Schweröl emittiert die Schifffahrt heute bereits mehr als zwölf Millionen Tonnen Schwefeldioxid (SO2). Durch Einführung weltweit bindender Schwefelgrenzwerte wird der Ausstoß des klimaschädlichen SO2 erheblich gemindert, gleichzeitig kann Schweröl aufgrund seines Schwefelgehalts nicht mehr verwendet werden. Klimaschädlich sind insbesondere die in der Atmosphäre aus SO2 entstehenden Sulfatpartikel, welche zur Belastung mit Feinstaub (PM10) beitragen. Zukünftig müsste das unvermeidlich in den Raffinerien anfallende Schweröl entsorgt oder zu leichteren Produkten umgewandelt werden. Bei der Umwandlung zielt man heute auf die möglichst vollständige Umwandlung des Schweröls durch teure, energieintensive Verfahren mit hohen Wasserstoffverbräuchen. Ziel dieses Projektes ist es, ein Verfahren zu entwickeln, bei dem das Schweröl in einem Slurry Reaktor direkt entschwefelt werden soll, um es weiterhin als Rohstoff nutzbar zu halten und seine Entsorgung zu vermeiden. Der abgetrennte Schwefel wird dem Markt zugeführt. Der bereits heute sehr große Bedarf an Schwefel zeigt, dass eine solche Verwendung des Schwefels aus diesem Verfahren keine Schwierigkeiten bereiten wird. Aufgrund der milderen Bedingungen wird dieses Verfahren ökologisch als auch wirtschaftlich den bisherigen überlegen sein.
Wood burning and shipping emissions represent two poorly understood sources of primary and secondary organic aerosol (POA and SOA) that have potentially serious health and environmental effects. Emissions from deep sea transport vessels are a serious environmental problem due to high heavy metal and condensed aromatic hydrocarbon content. Neither the detailed POA composition nor the SOA-forming potential have yet been investigated in enough detail. Although the direct emissions from wood combustion are well studied, investigation of SOA formation has only recently begun and the current knowledge is still rather fragmentary and poor. A clear deficiency is the need to study the ageing of the exhaust, including the SOA production, at temperatures relevant for the winter time conditions when such domestic emissions are particularly important. A comprehensive and unprecedented combination of instruments, some recently developed, will be used in this study to analyze the carbonaceous particles.. The aim of the ship emissions component of the study is the consideration of the total aerosol produced by ship diesel motors operated with HFO (Heavy Fuel Oil) in comparison e.g. MGO (Marine Gas Oil), including both directly emitted aerosol and aerosol produced via plume ageing. This requires detailed chemical characterization of directly emitted substances and also those substance produced by direct ageing of emitted particles, gas-phase reactions, and the interaction of the gaseous and liquid/solid phase at the particle surface. This last process includes SOA formation, a potentially major and poorly characterized source of OA mass from ship emissions. Therefore these gas-particle-interactions will be studied under controlled conditions in a recently-developed mobile smogchamber. This novel approach enables combining the direct sampling of real ship emissions with the controlled aging conditions achievable in conventional (stationary) smogchambers. As research on emissions form deep-sea navigation are only just beginning, measurement of the physicochemical properties of the direct particle emissions are valuable of themselves, while the controlled aging experiments in the mobile smogchamber are completely new. The utility of these experiments will be enhanced by studying the effects of different fuels on the produced POA and SOA. For the wood burning experiments, the purpose is the quantitative characterization of the total aerosol produced under conditions relevant for wintertime domestic wood burning. While much effort has been devoted to studying wood burning POA, wood burning SOA is not well understood.(...)
| Origin | Count |
|---|---|
| Bund | 94 |
| Type | Count |
|---|---|
| Förderprogramm | 93 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 93 |
| Language | Count |
|---|---|
| Deutsch | 86 |
| Englisch | 10 |
| Resource type | Count |
|---|---|
| Keine | 83 |
| Webseite | 11 |
| Topic | Count |
|---|---|
| Boden | 80 |
| Lebewesen und Lebensräume | 74 |
| Luft | 76 |
| Mensch und Umwelt | 94 |
| Wasser | 74 |
| Weitere | 94 |