<p>Im Bedarfsfeld „Wohnen“ fallen direkte und indirekte Kohlendioxid-Emissionen infolge des Energieverbrauchs an. Direkte Emissionen entstehen durch den unmittelbaren Einsatz von Energie für Heizen und Warmwasserbereitung, indirekte Emissionen bei der Energiebereitstellung für die privaten Haushalte, zum Beispiel für Stromverbrauch bei der Nutzung von Haushaltsgeräten (2020: letzte verfügbare Daten).</p><p>Direkte und indirekte Kohlendioxid-Emissionen</p><p>Die <strong>direkten Kohlendioxid-Emissionen</strong> privater Haushalte im Bedarfsfeld „Wohnen“ fallen unter anderem bei der Verbrennung von Energieträgern für Anwendungsbereiche wie Raumwärme, Warmwasser an. Im Jahr 2005 betrugen sie nach Berechnungen des Statistischen Bundesamtes insgesamt 125,3 Millionen Tonnen (Mio. t). Im Jahr 2020 waren es rund 123,4 Mio. t, das sind 1,5 % weniger. Während es durch effizientere Heizungen und die stärkere Nutzung erneuerbarer Energien zu Energieeinsparungen kommt, bewirkt zum Beispiel der Trend zu höheren Wohnflächen pro Person einen gegenteiligen Effekt. Auch der Trend zu einem erhöhten <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Ausstattungsgrad#alphabar">Ausstattungsgrad</a> der privaten Haushalte macht die Effizienzgewinne weitgehend wieder zunichte.</p><p><strong>Indirekte Emissionen</strong> entstehen bei der Energiebereitstellung für die privaten Haushalte, vor allem bei der Erzeugung von Elektrizität in den Kraftwerken und bei der Erzeugung von Fernwärme in den Heizkraftwerken. Diese Emissionen können anteilig — das heißt entsprechend der Höhe des Energieverbrauchs – den privaten Haushalten zugerechnet werden. 2005 verursachte das Bedarfsfeld „Wohnen“ der privaten Haushalte rund 101 Mio. t indirekte Kohlendioxid-Emissionen. 2020 waren es 75,2 Mio. t und damit 25,5 % weniger als 2005.</p><p>In der Summe ergibt sich ein Rückgang der Kohlendioxid -Emissionen der privaten Haushalte im Bedarfsfeld „Wohnen“ von 2005 bis 2020 um rund 12 % (siehe Abb. „Direkte und indirekte Kohlendioxid-Emissionen im Bedarfsfeld "Wohnen").</p><p> </p><p>„Raumwärme“ dominiert im Bedarfsfeld „Wohnen“ die Kohlendioxid-Emissionen</p><p>Die Emissionen der privaten Haushalte können den einzelnen Anwendungsbereichen wie Raumwärme, Warmwasser und sonstiger <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> sowie mechanischer Energie und Beleuchtung zugeteilt werden.</p><p>Besonders die Energiebereitstellung für die Nutzung von Raumwärme verursacht hohe Kohlendioxid-Emissionen. Im Bereich „Raumwärme – temperaturbereinigt“ fielen im Jahr 2020 insgesamt 144 Millionen Tonnen (Mio. t) <strong>direkte und indirekte Kohlendioxid-Emissionen</strong> an. Im Jahr 2005 waren es 150 Mio. t Kohlendioxid-Emissionen. Dabei verursachte die Erzeugung von Raumwärme im Jahr 2020 mit rund 73 % fast drei Viertel der Kohlendioxid-Emissionen im Bereich Wohnen. An zweiter Stelle folgte mit rund 12 % die Warmwasserbereitung. Der Betrieb von Elektrogeräten, Informations- und Kommunikationstechnologie machte 8 % der Kohlendioxid-Emissionen aus (siehe Abb. „Kohlendioxid-Emissionen nach Anwendungsbereichen im Bedarfsfeld „Wohnen“ 2018“). Private Haushalte haben wie schon beim Energieverbrauch auch erheblichen Einfluss auf den Kohlendioxid-Ausstoß durch:</p>
Der Rummelsburger See ist ein 45 Hektar großer seenartiger Seitenarm der Spree in den Bezirken Friedrichshain-Kreuzberg und Lichtenberg. Am nordwestlichen Ende des Sees befindet sich die etwa drei Hektar große Schadensanierungsfläche (Wasserfläche). Bereits Ende des 19. Jahrhunderts war das Umfeld des Rummelsburger Sees durch eine industrielle Nutzung geprägt. So wurde dort u.a. Palmöl, Anilinfarben und Schwefelkohlenstoff hergestellt. Einige Fabriken wie die sogenannte Glashütte Stralau produzierten dort noch bis in die 1990er Jahre. Darüber hinaus wurde dort auch Strom und Wärme für die umliegenden Gebiete im Heizkraftwerk Klingenberg erzeugt. Bereits im Jahr 1950 musste das Flussbad Klingenberg aufgrund der schlechten Wasserqualität, ausgelöst durch die einfließenden Fabrikgewässer, geschlossen werden. Die Sedimente der Schadensanierungsfläche sind mit Schadstoffen, insbesondere Mineralölkohlenwasserstoffen, Polyzyklischen Aromatischen Kohlenwasserstoffen und Schwermetallen der industriellen Nutzung des Umfeldes aus dem 19. und 20. Jahrhundert belastet. Die Sanierung soll durch das Entfernen der stark belasteten Sedimente und das Abdecken der verbleibenden, aber nur schwach oder unbelasteten Sedimente auf der Schadensanierungsfläche erfolgen.
Flächenbezogene Informationen zu KWK-Anlagen in Bezug auf ihren Standort, Leistung und Stromeinspeisung.
Heizkraftwerke, Heizwerke und sonstige Feuerungsanlagen, die mit fossilen Energieträgern Kohle, Gas oder Heizöl betrieben werden.
Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindliche Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.
Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindende Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.
Zur Erreichung der Klimaziele 2045 der Bundesregierung und der damit verbundenen weitreichenden Dekarbonisierung der Wärmeversorgung spielt die Fernwärmeversorgung eine Schlüsselrolle. Vor dem Hintergrund der Emissionsvermeidung und der gleichzeitigen Steigerung der Versorgungssicherheit der Wärmeversorgung sollen im Forschungsvorhaben HeatSHIFT effiziente Einbindungsmöglichkeiten von Hochtemperaturwärmepumpen in Fernwärmenetze untersucht werden. Der Fokus der Analysen liegt dabei auf Bestandsfernwärmenetzen mit hohen Vorlauftemperaturen von 120 Grad Celsius und höher. Kernziel des Projektes ist die systematische Untersuchung und technische sowie wirtschaftliche Bewertung des Einsatzes der Hochtemperaturwärmepumpen mittels Prozesssimulation unter Berücksichtigung unterschiedlicher Wärmequellen und verschiedener Hochtemperaturwärmepumpentechnologien. Dazu werden auf Basis der Daten der beteiligten Partner realitätsnahe Prozesssimulationsmodelle von Hochtemperaturwärmepumpen sowie von KWK-Kraftwerken (insbesondere Biomasse- und Müllheizkraftwerke) erstellt und kombiniert. Auf Basis der validierten Prozesssimulationsmodelle erfolgt eine Optimierung der Einbindung der Hochtemperaturwärmepumpen sowie eine Bewertung der Wirtschaftlichkeit. Zudem soll ein vereinfachtes Tool zur Erstauslegung des Hochtemperaturwärmepumpeneinsatzes für Fernwärmeversorger erstellt werden.
| Origin | Count |
|---|---|
| Bund | 660 |
| Land | 203 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Chemische Verbindung | 26 |
| Daten und Messstellen | 26 |
| Ereignis | 3 |
| Förderprogramm | 415 |
| Kartendienst | 1 |
| Text | 278 |
| Umweltprüfung | 147 |
| unbekannt | 17 |
| License | Count |
|---|---|
| geschlossen | 184 |
| offen | 514 |
| unbekannt | 163 |
| Language | Count |
|---|---|
| Deutsch | 854 |
| Englisch | 121 |
| Resource type | Count |
|---|---|
| Archiv | 164 |
| Datei | 166 |
| Dokument | 312 |
| Keine | 342 |
| Webdienst | 7 |
| Webseite | 225 |
| Topic | Count |
|---|---|
| Boden | 595 |
| Lebewesen und Lebensräume | 421 |
| Luft | 354 |
| Mensch und Umwelt | 861 |
| Wasser | 328 |
| Weitere | 672 |