<p>Schwefeldioxid-Emissionen </p><p>Schwefeldioxid entsteht hauptsächlich bei der Verbrennung schwefelhaltiger Brennstoffe. Seit 1990 sind die Emissionen um 96 Prozent gesunken, vor allem durch technische Maßnahmen sowie den Einsatz schwefelarmer Brennstoffe. Die Reduktionsziele sind damit alle erreicht worden.</p><p>Entwicklung seit 1990</p><p>Von 1990 bis 2023 ist ein Rückgang der Schwefeldioxid-Emissionen (SO2) von 5,5 auf nur 0,22 Millionen Tonnen (Mio. t) oder gut 96 % zu verzeichnen (siehe Abb. „Schwefeldioxid-Emissionen nach Quellkategorien“). Die Gründe hierfür liegen vor allem in der Stilllegung bzw. technischen Nachrüstung von Betrieben in den neuen Bundesländern sowie der Einsatz von Brennstoffen mit geringerem Schwefelgehalt. Ab dem Jahr 2016 sanken die Schwefeldioxid-Emissionen nochmals deutlich. Grund dafür war die Verschärfung der Anforderungen an die Abgasreinigung bei Großfeuerungsanlagen durch die Neufassung der 13. <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a> vom 02.05.2013. Die Jahre ab 2020 sind von Sondereffekten geprägt, der stetig fallende Trend ist erst einmal unterbrochen.</p><p>Hauptverursacher der Schwefeldioxid-Emissionen im Jahr 2023 waren die stationären Feuerungsanlagen der Kraft- und Fernheizwerke der Energiewirtschaft und die Industriefeuerungen des Verarbeitenden Gewerbes mit einem Anteil an den Gesamtemissionen von zusammen 64 %. Seit 1990 senkten diese Bereiche ihren Schwefeldioxid-Ausstoß um 3,9 Mio. t (-97 %).</p><p>Eine vergleichbare Entwicklung zeigt sich in den Bereichen Haushalte sowie Gewerbe, Handel und Dienstleistung (Rückgang um insgesamt ca. 1 Mio. t oder fast -99 %, Anteil im Jahr 2023: 6,1 %).</p><p>Die Emissionen der mengenmäßig weniger bedeutsamen Industrieprozesse sanken zwischen 1990 und 2023 um 0,1 Mio. t und verminderten sich dadurch um ca. 69 %. Ihr Anteil an den gesamten Schwefeldioxid-Emissionen stieg durch die überproportionalen Minderungen in den anderen Bereichen im gleichen Zeitraum von 3 % auf 26 % (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“).</p><p>Erfüllungsstand der Emissionsminderungsbeschlüsse</p><p>Im <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> zur <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>-Luftreinhaltekonvention und in der <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a> (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) der EU wird festgelegt, dass die jährlichen SO2-Emissionen ab 2020 um 21 % niedriger sein müssen als 2005. Dieses Ziel wird seit 2021 eingehalten. </p><p>Auf EU-Ebene legt die NEC-Richtlinie (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) auch fest, dass ab 2030 die jährlichen Emissionen 58 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.</p><p>Entstehung von Schwefeldioxid-Emissionen</p><p>Schwefeldioxid entsteht überwiegend bei Verbrennungsvorgängen durch Oxidation des im Brennstoff enthaltenen Schwefels. Die nahezu konstanten, jedoch relativ unbedeutenden prozessbedingten Emissionen treten vornehmlich in den Bereichen der industriellen Produktionsprozesse in der Chemischen Industrie, der Metallerzeugung und dem Sektor Steine und Erden sowie der Erdöl- und Erdgasaufbereitung auf.</p>
In der Industrie werden Hochtemperaturprozesse (800 - 2000°C) zur Produktion von Zementklinker, Kalk oder anderen Produkten eingesetzt. In diesen Prozessen wird meist Erdgas oder Kohle für die Erzeugung von Hochtemperaturprozesswärme eingesetzt. Ziel dieses Vorhabens ist die Entwicklung eines einsatzfähigen Systems für die Konversion von Klärschlamm und anderen biogenen Rest- und Abfallstoffen in ein Brenngas zur direkten Substitution von fossilen Brennstoffen in Hochtemperaturindustrieprozessen. Im Rahmen von NaBI werden folgende Innovationen erforscht und erprobt, um die spezifischen Anforderungen der Hochtemperaturindustrieprozesse zu erfüllen: (1) Flexibilisierung des Gasifizierungsverfahrens bezüglich der Brennstoffqualität durch Optimierung der Wirbelschichtfluidisierung und damit Ermöglichung der Gasifizierung von Klärschlamm wechselnder Qualität sowie von weiteren Rest- und Abfallstoffen für einen breiten Einsatz des NaBI-Ansatzes. (2) Steigerung des Heizwerts des Brenngases durch Einsatz von Sauerstoff: Dadurch wird in gängigen Hochtemperaturprozessen eine weitaus höhere Substitutionsrate von Primärenergie ermöglicht. (3) Optimierung der Qualität der Klärschlammasche als Rohstoff für die Phosphorrückgewinnung durch Einsatz von Additiven. Damit wird die Attraktivität der Asche für Phosphorrückgewinnung erhöht. (4) Untersuchung und Nachweis des Einsatzes von Infrarot-Kamerasystemen für die Prozessüberwachung und -regelung. Bis 2026 wird die Marktreife für die optimierte Brenngasbereitstellung für Industrieprozesse durch Klärschlammgasifizierung erreicht, sodass die erste kommerzielle Anlage bis 2027 realisiert werden kann.
Vattenfall Allianz Umweltstiftung Berlin Hyp AG Berliner Verkehrsbetriebe meetyoo conferencing BTB Blockheizkraftwerks- Träger- und Betreibergesellschaft mbH Berlin Rüdi Net e.V. Feuersozietät Berlin Brandenburg Versicherung AG Grieneisen Bestattungen Klaus-Eberhard Kießling, Bauingenieur S-Bahn Berlin / Bio Company / Marktzeit-Ökomärkte Haus in Ordnung Verwaltungsgesellschaft mbH Hans-Joachim Hoster Stiftung Uniper SE Initiative Berliner Eichentor IKEA Berlin-Lichtenberg Team Europe Ventures GROTH-Gruppe degewo Rechtsanwalt Roland Exner Imkerverein Zehlendorf TIB Molbiol Berliner Stadtgüter Cargill GmbH Deutsche Gesellschaft für Orthopädie und Unfallchirurgie Fernheizwerk Neukölln AG Deka Bank Deutsche Girozentrale Siemens Energy Global GmbH & Co. KG Deutsche Bahn Stiftung Baugenossenschaft IDEAL ES EnviroSustain GmbH Visual Meta GmbH NBB Netzgesellschaft Berlin-Brandenburg mbH & Co. KG Ing. Büro für Tragwerksplanung, Dr.-Ing Christian Müller Berliner Stadtwerke GmbH DIE SCHULKÖCHE Industrie und Handelskammer zu Berlin – IHK Berlin Lignum-Stiftung Imkerverband Berlin e. V. radioBerlin 88,8 Dr. Arend Oetker Siemens AG Deutscher Franchise-Verband e.V. (DFV) BSH Hausgeräte GmbH Losito Kressmann-Zschach Foundation HEJ Holding GmbH Primus Immobilien AG DSK Die Schulköche GmbH milaa gGmbH SC Falco Subbuteo e. V STADT UND LAND Berliner Volksbank Architektenkammer Berlin Berliner Wasserbetriebe atene KOM GmbH Ingenieurbüro für Tragwerksplanung WISTA Management GmbH UMI Urban Mobility International GmbH Bürgerverein Friedrichshagen e.V. Soroptimist International of Europe Berliner Sparkasse Investa Ahmadiyya Muslim Jamaat COMPLEVO GmbH Archigon Bouchéstraße 39 GmbH & Co. KG Zimmermann Holding AG IKEA Berlin-Spandau GESOBAU AG Gurdwara Sri Guru Singh Sabha Berlin e. V. Deutsche Stadt- und Grundstücksentwicklungsgesellschaft mbH & Co. KG (DSK) Bundesinnungsverband für Orthopädie.Technik Interessengemeinschaft Heerstraße Bundesdruckerei GmbH LaWa Landschafts- und Wasserbau GmbH DAHM Architekten + Ingenieure Mafilm Martens Film- und Fernsehproduktions GmbH Carl-Gotthard-Langhans-Gesellschaft Berlin e.V. bito aktiengesellschaft Investitionsbank Berlin (IBB) Coca-Cola Deutschland AVM Computersysteme Vertriebs GmbH Sparda Bank Porsche NL Berlin GmbH Gewerbesiedlungs-Gesellschaft mbH (GSG) Bürger für das Quartier Meyerinckplatz e.V. B. & S. U. Beratungs-und Service Gesellschaft Umwelt mbH Quentic GmbH HOWOGE Wohnungsbaugesellschaft mbH Promos Consult Berliner Energieagentur GmbH AUGUST STORCK KG LAT Fernmelde-Montagen und Tiefbau GmbH Leben in Wilhelmsruh e.V.
Projektförderung Das Vorhaben “Umsetzung einer klimaverträglichen Biomasseverwertung” wird im Berliner Programm für Nachhaltige Entwicklung (BENE) gefördert aus Mitteln des Europäischen Fonds für Regionale Entwicklung und des Landes Berlin (Förderkennzeichen 1161-B5-0). Die aktuelle einfache Kompostierung von Grünabfällen aus Berlin (maßgeblich Straßenlaub der BSR und Mähgut der Grünflächenpflege) weist trotz Nutzen des Kompostes deutliche Emissionen an Treibhausgasen auf, rd. 7.600 Mg CO 2 -Äq. pro Jahr, zudem geht der Energieinhalt dieser Abfälle verloren. In dem vom Berliner Abgeordnetenhaus beschlossenen Abfallwirtschaftskonzept 2020 bis 2030 werden diese Treibhausgas-Emissionen aus der bisherigen Einfachkompostierung angesprochen und zum Fazit geführt: „Die Behandlung von Berliner Grasschnitt- und Laubabfällen in solchen Einfachkompostierungsanlagen ist daher bis Ende 2022 zu beenden.” Auch das Berliner Energie- und Klimaschutzprogramm des Landes Berlin fordert, diese Abfälle vollständig einer höherwertigen Verwertung zuzuführen. In den vorhergehenden Jahren wurden von der Senatsumweltverwaltung verschiedene technische Möglichkeiten dieser höherwertigen Verwertung untersucht. Für die höherwertige, klimaentlastende Verwertung der genannten Grünabfälle wurden die Vergärung, die direkte Verbrennung, die Aufbereitung in Hausmüll-Behandlungsanlagen und die Hydrothermale Karbonisierung (HTC) untersucht. Teils aus verfahrenstechnischen, teils aus Kostengründen konnte sich bislang keines dieser Verfahren durchsetzen. Im vorliegenden Forschungsvorhaben wurde der Weg untersucht, die Grünreste über ein mechanisches Pressverfahren zu Brennstoff aufzubereiten und diesen dann in bestehenden Kraftwerken als Kohleersatz einzusetzen. Dazu wurden in einer bereits bestehenden Aufbereitungsanlage der Firma florafuel AG für Laub und Gras in der Nähe von München große Mengen an Brennstoff produziert und für großtechnische Verbrennungsversuche in Berlin eingesetzt. In dieser Aufbereitung werden die Grünreste zunächst zerkleinert und dann gewaschen, um Inertstoffe und verbrennungsschädliches Chlor und Kalium auszutragen. Danach wird der Faserschlamm mechanisch entwässert, nachfolgend getrocknet und zu Pellets oder Briketts verpresst. Dieser Brennstoff ist in seinen physikalisch/chemischen Eigenschaften regulären Holzbrennstoffen sehr ähnlich. Die Aufbereitung selbst arbeitet nach langjähriger Betriebserfahrung weitgehend sicher. Daher soll in Berlin eine erste Demonstrationsanlage von rd. 12.000 Mg/a Durchsatz errichtet werden. Im Projekt war die sehr wichtige Frage zu klären, ob der erzeugte Brennstoff in bestehenden Berliner Kraftwerken verarbeitbar ist und dabei klimabelastende Kohle ersetzen kann. Dazu wurden in den Kohle-Kraftwerken der BTB, von Vattenfall und im Fernheizwerk Neukölln insgesamt über 150 Mg aufbereiteten Brennstoffs testweise verbrannt, in verschiedenen Feuerungsverfahren (Wanderrost und Wirbelschicht). Die Ergebnisse der Verbrennungs-Großversuche zeigen, dass sich die Grünrest-Brennstoffe zwar nicht allein, aber in Mischung mit anderen Brennstoffen in beiden Feuerungsverfahren gut verbrennen lassen. Das in den Versuchen begleitend aufgezeichnete Emissionsverhalten einer solchen Mischung erwies sich als unproblematisch. Allerdings neigt der Brennstoff bei mehrfachen Umlade- und Abwurfvorgängen zu relevanten Staubentwicklungen. Dies konnte durch die geänderte Brennstoff-Konfektionierung zwar deutlich reduziert werden, bildet aber eine noch weiter zu lösende Aufgabe. Die weitere Prüfung – eben auch über möglichst bald durchzuführende weitere Versuche – als Grundlage einer zugesagten Dauerabnahme der Bio-Brennstoffe wird durch die EVU, gerade auch im Hinblick auf zukünftige Standortkonzepte im Kontext Kohleausstieg fortgesetzt. Die Abnahme des Brennstoffs zunächst aus der Demonstrationsanlage ist die zentrale Voraussetzung für die erzielbare hohe Treibhausgas-Entlastung: Durch die Umlenkung aus der Kompostierung in diese energetische Verwertung kann eine spezifische THG-Reduzierung von rd. -460 kg CO 2 -Äq/Mg erreicht werden. Für die Gesamtmenge von rd. 102.000 Mg/a an Laub und Mähgut wäre damit eine jährliche THG-Entlastung von rd. -47.000 Mg CO 2 -Äq erzielbar. Das ist einerseits im Bereich der Abfallwirtschaft Berlins eine im Vergleich sehr hohe absolute Klima-Entlastung, andererseits liegt der spezifische Preis für die THG-Minderung im Bereich von 40 €/Mg CO 2 -Äq und damit im unteren Bereich alternativer Reduktionsmaßnahmen. Im Verlauf des Projektes ergab sich im Austausch mit dem CarboTip-Projekt (FU Berlin) eine ergänzende vorteilhafte Verwertungsmethode: Aufbereitete Mengen aus Laub und Mähgut werden zur pyrolytischen Erzeugung von Pflanzenkohle (langfristige Bindung des Kohlenstoffes im Boden) und Pyrolysegas als Erdgasersatz verwendet. Der Klimaeffekt ist ähnlich positiv wie beim Ersatz von Kohle im Kraftwerk, die CO 2 -Reduktionskosten sind ähnlich günstig.
<p>Der Primärenergieverbrauch ist seit Beginn der 1990er Jahre rückläufig. Bis auf Erdgas ist der Einsatz aller konventionellen Primärenergieträger seither zurückgegangen. Dagegen hat die Nutzung erneuerbarer Energien zugenommen. Ihr Anteil ist kontinuierlich angestiegen, besonders seit dem Jahr 2000.</p><p>Definition und Einflussfaktoren</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> (PEV) bezeichnet den Energiegehalt aller im Inland eingesetzten Energieträger. Der Begriff umfasst sogenannte Primärenergieträger, wie zum Beispiel Braun- und Steinkohle, Mineralöl oder Erdgas, die entweder direkt genutzt oder in sogenannte Sekundärenergieträger wie zum Beispiel Kohlebriketts, Benzin und Diesel, Strom oder Fernwärme umgewandelt werden. Berechnet wird er als Summe aller im Inland gewonnenen Energieträger zuzüglich des Saldos der importierten und exportierten Mengen sowie der Lagerbestandsveränderungen abzüglich der auf Hochsee gebunkerten Vorräte.</p><p>Statistisch wird der Primärenergieverbrauch über das Wirkungsgradprinzip ermittelt. Dabei werden die Einsatzmengen der in Feuerungsanlagen verbrannten Energieträger mit ihrem Heizwert multipliziert. Für Strom aus Wind, Wasserkraft oder Photovoltaik wird dabei ein Wirkungsgrad von 100 %, für die Geothermie von 10 % und für die Kernenergie von 33 % angenommen. Im Ergebnis wird durch diese internationale Festlegung für die erneuerbaren Energien ein erheblich niedrigerer PEV errechnet als für fossil-nukleare Brennstoffe. Dies hat in Zeiten der Energiewende methodenbedingte Verzerrungen bei der Trendbetrachtung zur Folge: Der Primärenergieverbrauch sinkt bei fortschreitender Substitution von fossil-nuklearen Brennstoffen durch erneuerbare Energien, selbst wenn die gleiche Menge an Strom zur Nutzung bereitgestellt wird. Dieser rein statistische Effekt überzeichnet den tatsächlichen Verbrauchsrückgang, wie die Entwicklung des <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-erneuerbare-energien">Bruttoendenergieverbrauchs</a> zeigt.</p><p>Der Anteil erneuerbarer Energien am gesamten Primärenergieverbrauch steigt dagegen unterproportional (siehe Abb. „Primärenergieverbrauch“). Es wird – rechnerisch bedingt – ein langsamerer Anstieg des Erneuerbaren-Anteils am PEV wahrgenommen. Dies kann einen geringeren Ausbaueffekt suggerieren. Diese Effekte werden umso größer, je mehr Stromproduktion aus beispielsweise Kohlekraftwerken durch erneuerbare Energien und/oder Stromimporte (ebenfalls mit Wirkungsgrad von 100 % bewertet) ersetzt werden, weil immer weniger Umwandlungsverluste in die Primärenergiebilanzierung einfließen.</p><p>Der Primärenergieverbrauch wird in erheblichem Maße durch die wirtschaftliche Konjunktur und Struktur, Preise für Rohstoffe und technische Entwicklungen beeinflusst. Auch die Witterungsverhältnisse und damit verbunden der Bedarf an Raumwärme spielen eine wichtige Rolle.</p><p>Entwicklung und Ziele</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in Deutschland ist seit Beginn der 1990er Jahre rückläufig (siehe Abb. „Primärenergieverbrauch“). Das ergibt sich zum einen aus methodischen Gründen beim Umstieg auf erneuerbare Energien (siehe Abschnitt „Primärenergieverbrauch erklärt“). Zum anderen konnten aber auch Effizienzsteigerungen beobachtet werden, zum Beispiel durch bessere Ausnutzung der in Energieträgern gespeicherten Energie (Brennstoffnutzungsgrad) in <a href="https://www.umweltbundesamt.de/daten/energie/kraftwerke-konventionelle-erneuerbare">Kraftwerken</a>, Motoren oder Heizkesseln.</p><p>Im Energieeffizienzgesetz 2023 (EnEfG) hat der Gesetzgeber festgelegt, dass der Primärenergieverbrauch bis zum Jahr 2030 um 39,3 % unter dem Wert des Jahres 2008 liegen soll. In den „<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-fuer-die-klimaschutz-energiepolitik/integrierte-energie-treibhausgasprojektionen">Treibhausgas-Projektionen 2025</a>“ wurde auf der Basis von Szenarioanalysen untersucht, ob Deutschland seine Klimaziele im Jahr 2030 erreichen kann. Wichtig ist dabei auch die Frage nach der zu erwartenden Entwicklung des Primärenergieverbrauchs. Das Ergebnis der Untersuchung: Wenn alle von der Regierungskoalition geplanten Maßnahmen umgesetzt werden, ist im Jahr 2030 mit einem PEV von etwa 9.800 Petajoule (PJ) zu rechnen (Mit-Maßnahmen-<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Szenario#alphabar">Szenario</a>). Das wäre gegenüber dem Jahr 2008 ein Rückgang von lediglich etwa 32 %. Weitere Maßnahmen zur Senkung des PEV sind also erforderlich, um die Ziele des EnEfG zu erreichen.</p><p>Primärenergieverbrauch nach Energieträgern</p><p>Seit 1990 hat sich der Energieträgermix stark verändert. Der Verbrauch von <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> auf Basis von Braunkohle lag im Jahr 2023 um 72 %, der von Steinkohle um etwa 63 % unter dem des Jahres 1990. Der Energieverbrauch auf Basis von Erdgas stieg an: Noch im Jahr 2021 lag das Plus gegenüber dem Jahr 1990 bei 44 %. In der Folge des Krieges in der Ukraine und den daraus erwachsenden Versorgungsengpässen und der wirtschaftlichen Rezession sank der Gasverbrauch in den Jahren 2022 und 2023 gegenüber dem Jahr 2021 jedoch deutlich. Im Jahr 2023 lag der Energieverbrauch für Erdgas 14 % über dem des Jahres 1990. Der Einsatz erneuerbarer Energieträger hat sich seit 1990 mehr als verzehnfacht (siehe Abb. „Primärenergieverbrauch nach Energieträgern“).</p>
<p>Die wichtigsten Fakten</p><p><ul><li>Der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> (PEV) in Deutschland ist seit Ende der 2000er Jahre deutlich rückläufig. Er ist von 2008 bis 2023 um 26 % zurückgegangen.</li><li>Gemäß dem Energieeffizienzgesetz von 2023 soll der PEV bis 2030 gegenüber 2008 um 39 % sinken. Auf Basis der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Projektionen 2025 des Umweltbundesamtes ist davon auszugehen, dass die bislang dafür ergriffenen Maßnahmen aller Voraussicht nach nicht ausreichen werden, um dieses Ziel zu erreichen.</li><li>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Primärenergieverbrauch“ wird methodisch durch die steigenden Anteile erneuerbarer Energien verzerrt: Steigt der Anteil der Erneuerbaren, sinkt der Primärenergieverbrauch, auch wenn der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> konstant bleibt</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Mit dem Einsatz und der Erzeugung von Energie sind eine Vielzahl an Umweltbelastungen verbunden: Durch den Abbau von Rohstoffen wie Kohle oder Erdöl werden Ökosysteme teilweise deutlich geschädigt. Beim Transport der Rohstoffe wird Energie verbraucht, Treibhausgase und gesundheitsgefährdende Luftschadstoffe werden ausgestoßen. Auch bei der Umwandlung und Bereitstellung von Energie kommt es zu Umweltbelastungen. Die Senkung des PEV ist neben dem Umstieg auf alternative und <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-erneuerbare-energien">erneuerbare Energien</a> daher ein wichtiger Baustein der Energiewende.</p><p>Allerdings unterliegt der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Primärenergieverbrauch“ methodenbedingten Verzerrungen: Steigt der Anteil der Erneuerbaren, sinkt der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>, auch wenn der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> konstant bleibt (siehe Abschnitt „Wie wird der Indikator berechnet?“ am Ende des Artikels sowie die Ausführungen im Artikel „<a href="https://www.umweltbundesamt.de/daten/energie/primaerenergieverbrauch#definition-und-einflussfaktoren">Primärenergieverbrauch</a>“). Die Kenngröße „<a href="https://www.umweltbundesamt.de/indikator-endenergieverbrauch">Endenergieverbrauch</a>“ ist hinsichtlich des Energieverbrauchs einer Volkswirtschaft aussagekräftiger.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>2023 wurde in Deutschland etwa 29 % weniger <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> verbraucht als 1990. Noch 2006 lag der Verbrauch fast so hoch wie 1990. Seitdem ist er deutlich gesunken. Das liegt zum Teil am sinkenden <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>, ist zum Teil aber auch methodenbedingt, da die Umstellung auf erneuerbare Energieträger wie beschrieben mit einem überproportional sinkenden PEV einhergeht. Auch sinkende Netto-Stromexporte bzw. seit 2023 gestiegene Netto-Stromimporte unterliegen gleichermaßen diesem statistischen Effekt. Davon abgesehen, führten insbesondere die hohen Energiepreise im Zuge der Energiekrise 2022 nicht zuletzt zu einer deutlich reduzierten Produktion energieintensiver Güter in Deutschland. Dies trug im Jahr 2023 zum niedrigsten Energieverbrauch seit 1990 bei.</p><p>Im 2023 verabschiedeten <a href="https://www.gesetze-im-internet.de/enefg/BJNR1350B0023.html">Energieeffizienzgesetz</a> (EnEfG) ist das Ziel festgeschrieben, dass der PEV bis 2030 um 39 % unter den PEV des Jahres 2008 sinken soll. In den <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-fuer-die-klimaschutz-energiepolitik/integrierte-energie-treibhausgasprojektionen">Treibhausgas-Projektionen 2025</a> wurde auf der Basis von Szenarioanalysen untersucht, ob Deutschland seine Energie- und Klimaziele im Jahr 2030 erreichen kann: Wenn alle von der Regierungskoalition geplanten Maßnahmen umgesetzt werden, ist im Jahr 2030 mit einem Rückgang des PEV von etwa 32 % gegenüber dem Jahr 2008 zu rechnen (Mit-Maßnahmen-Szenario). Damit wäre das Ziel des EnEfG eines Rückgangs um 39 % bis 2030 deutlich verfehlt. Weitere Maßnahmen zur Senkung des PEV sind also erforderlich, um die Ziele des EnEfG zu erreichen.</p><p>Wie wird der Indikator berechnet?</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> wird von der Arbeitsgemeinschaft Energiebilanzen (AGEB) über das Wirkungsgradprinzip ermittelt. Die in Kraftwerken und anderen Feuerungsanlagen verbrannten Energieträger werden mit ihrem Heizwert multipliziert. Wird Strom aus Wind, Wasserkraft oder Photovoltaik erzeugt, so ist der Wirkungsgrad vereinbarungsgemäß 100 %. Bei der Geothermie beträgt er 10 % und bei der Kernenergie 33 %. Methodische Hinweise zur Berechnung veröffentlicht die AGEB in den <a href="https://ag-energiebilanzen.de/wp-content/uploads/2021/11/vorwort.pdf">Erläuterungen zu den Energiebilanzen</a>.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergieverbrauch">„Primärenergieverbrauch“</a>.</strong></p>
| Origin | Count |
|---|---|
| Bund | 556 |
| Land | 113 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Ereignis | 1 |
| Förderprogramm | 273 |
| Gesetzestext | 1 |
| Text | 299 |
| Umweltprüfung | 81 |
| unbekannt | 10 |
| License | Count |
|---|---|
| geschlossen | 126 |
| offen | 323 |
| unbekannt | 220 |
| Language | Count |
|---|---|
| Deutsch | 640 |
| Englisch | 98 |
| Resource type | Count |
|---|---|
| Archiv | 218 |
| Bild | 2 |
| Datei | 224 |
| Dokument | 311 |
| Keine | 264 |
| Unbekannt | 1 |
| Webdienst | 3 |
| Webseite | 112 |
| Topic | Count |
|---|---|
| Boden | 525 |
| Lebewesen und Lebensräume | 502 |
| Luft | 407 |
| Mensch und Umwelt | 669 |
| Wasser | 394 |
| Weitere | 591 |