Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Fernwärme stellt in Berlin einen bedeutenden Anteil an der Wohnraum- und Arbeitsstättenbeheizung. Es wird der prozentuale Anteil der Versorgung an der insgesamt beheizten Fläche auf Blockebene dargestellt. 08.01.1 Versorgungsbereiche Fernwärme Weitere Informationen Erdgas stellt neben der Fernwärme in Berlin den zweiten bedeutenden leitungsgebundenen Versorger für die Gebäudeheizung. Es wird der prozentuale Anteil der Versorgung an der insgesamt beheizten Fläche auf Blockebene dargestellt. 08.01.2 Versorgungsbereiche Gas Weitere Informationen Die Versorgung durch Heizöl stellt in den Außenbereichen der Stadt entsprechend des hohen Anteils an aufgelockerter Bebauung kontinuierlich einen hohen Anteil. Es wird der prozentuale Anteil der Versorgung an der insgesamt beheizten Fläche auf Blockebene dargestellt. 08.01.3 Versorgungsbereiche Heizöl Weitere Informationen Bei der Heizenergieversorgung durch Kohle (in Berlin zumeist Braunkohlebriketts) ist im Vergleich der einzelnen Jahrgänge der Datenerhebung ein radikaler Rückgang festzustellen, abzulesen an den jeweils dargestellten prozentualen Anteilen der Kohle an der Versorgung der insgesamt beheizten Fläche auf Blockebene. 08.01.4 Versorgungsbereiche Kohle Weitere Informationen Durch die Hervorhebung der blockbezogen dominierenden Energieträger zur Heizungsversorgung lassen sich über die Jahrgänge Entwicklungen, aber auch weitere Entwicklungspotenziale im Hinblick auf eine verbesserte Nachhaltigkeit der Energieversorgung erkennen. 08.02.1 Versorgungsanteile der einzelnen Energieträger Weitere Informationen Die leitungsbezogenen Energieträger Fernwärme und Erdgas werden durch Heizkraft- und Heizwerke versorgt. Die Kenntnis über die dort eingesetzten Brennstoffe liefert diese Karte. 08.02.2 Brennstoffeinsatz bedeutender Heiz- und Heizkraftwerke Weitere Informationen
Anlage zur Erzeugung von Strom, Dampf, Warmwasser, Prozesswärme oder erhitztem Abgas in einer Verbrennungseinrichtung (wie Kraftwerk, Heizkraftwerk, Heizwerk, Gasturbinenanlage, Verbrennungsmotoranlage, sonstige Feuerungsanlage) einschließlich zugehöriger Dampfkessel, durch den Einsatz von naturbelassenem Holz sowie in der eigenen Produktionsanlage anfallendem gestrichenem, lackiertem oder beschichtetem Holz oder Sperrholz, Spanplatten, Faserplatten oder sonst verleimtem Holz sowie daraus anfallenden Resten gemäß Ziffer 1.2.1 der 4. BImSchV
Zur Strom- und Wärmeerzeugung aus erneuerbaren Ressourcen wird in Zukunft mehr Energieholz notwendig sein. Als Hauptquellen kommen in Frage: Holz minderwertiger Qualitäten, Schlagrücklass sowie Holz aus Durchforstungen, aus Niederwäldern und von Kurzumtriebsflächen. Die Herausforderung besteht in einer effizienten Bereitstellung des Brennstoffes, wobei technische und logistische Verbesserungen bei Ernte, Hacken und Transport Schlüsselfaktoren sind. Basierend auf Arbeitsstudien (klassische Zeitstudien aber auch automatische Maschinen-aufzeichnungen) und statistischen Analysen sollen Produktivitätsmodelle entwickelt werden. Diese Modelle erlauben eine Analyse des Arbeitsablaufes, eine Prognose der Produktivität und können Eingang in Kostenkalkulationen liefern. Untersucht werden einzelne Maschinen (z.B. Moipu 300 ES, Silvatec u.a) aber auch gesamte Produktionssysteme. Als Ergebnis liegen Evaluierungen von Maschinen und gesamten Produktionssystemen vor. Über Kostenträgerrechnungen können unterschiedlichste Wertschöpfungsketten miteinander verglichen werden. Basierend auf Literaturstudien im Bereich der Energieholz- und Waldhackgutbereitstellung wird der Bedarf an notwendigen Feldstudien zur Verbesserung der Datengrundlage abgesteckt und der Test von neuen Verfahren bzw. Maschinen vorgeschlagen. Zur Dokumentation der Praxiseinsätze werden Zeitstudien durchgeführt. Für die wesentlichen Prozesse werden Produktivitätsmodelle erstellt. Der Evaluierung neuer Bereitstellungsketten in Praxisversuchen bzw. der Einsatz alternativer Transportsysteme unter österreichischen Verhältnissen wird bei den Versuchseinsätzen besondere Bedeutung beigemessen. Dabei soll sich zeigen, ob diese Verfahren geeignet bzw. welche Rahmenbedingungen für deren Einsatz notwendig sind. Die Ermittlung geeigneter Standorte für einen Biomassehof erfolgt mit Hilfe eines Geographischen Informationssystems und unter Berücksichtigung diverser Nebenbedingungen. Lage, Größe und Ausstattung sind im Hinblick auf das Energieholzpotenzial, der infrastrukturellen Voraussetzungen sowie Standort und Bedarf der Heizwerke zu optimieren. Erwartete Resultate sind eine bessere Optimierung verschiedener Bereitstellungssysteme, eine Minimierung der Transportkosten durch Reduktion von Wartezeiten und Ausnutzen der Transportkapazität sowie eine Reduktion des administrativen Aufwandes für die Steuerung und Abwicklung der Geschäftstätigkeiten. Weiters wird die Ermittlung der Kosten, der notwendigen infrastrukturellen Ausstattung sowie die logistische Optimierung der Lage von potenziellen Biomassehöfen erwartet. Die Ergebnisse werden in Verfahrenshandbüchern sowie in einem Pflichtenheft dargestellt.
Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Fernwärme stellt in Berlin einen bedeutenden Anteil an der Wohnraum- und Arbeitsstättenbeheizung. Es wird der prozentuale Anteil der Versorgung an der insgesamt beheizten Fläche auf Blockebene dargestellt. 08.01.1 Versorgungsbereiche Fernwärme Weitere Informationen Erdgas stellt neben der Fernwärme in Berlin den zweiten bedeutenden leitungsgebundenen Versorger für die Gebäudeheizung. Es wird der prozentuale Anteil der Versorgung an der insgesamt beheizten Fläche auf Blockebene dargestellt. 08.01.2 Versorgungsbereiche Gas Weitere Informationen Die Versorgung durch Heizöl stellt in den Außenbereichen der Stadt entsprechend des hohen Anteils an aufgelockerter Bebauung kontinuierlich einen hohen Anteil. Es wird der prozentuale Anteil der Versorgung an der insgesamt beheizten Fläche auf Blockebene dargestellt. 08.01.3 Versorgungsbereiche Heizöl Weitere Informationen Bei der Heizenergieversorgung durch Kohle (in Berlin zumeist Braunkohlebriketts) ist im Vergleich der einzelnen Jahrgänge der Datenerhebung ein radikaler Rückgang festzustellen, abzulesen an den jeweils dargestellten prozentualen Anteilen der Kohle an der Versorgung der insgesamt beheizten Fläche auf Blockebene. 08.01.4 Versorgungsbereiche Kohle Weitere Informationen Durch die Hervorhebung der blockbezogen dominierenden Energieträger zur Heizungsversorgung lassen sich über die Jahrgänge Entwicklungen, aber auch weitere Entwicklungspotenziale im Hinblick auf eine verbesserte Nachhaltigkeit der Energieversorgung erkennen. 08.02.1 Versorgungsanteile der einzelnen Energieträger Weitere Informationen Die leitungsbezogenen Energieträger Fernwärme und Erdgas werden durch Heizkraft- und Heizwerke versorgt. Die Kenntnis über die dort eingesetzten Brennstoffe liefert diese Karte. 08.02.2 Brennstoffeinsatz bedeutender Heiz- und Heizkraftwerke Weitere Informationen
In der Karte wird eine Auswahl bedeutender Heizkraft- und Heizwerke mit einer Wärmeleistung von je mehr als 20 MW dargestellt. Diese 34 Anlagen gehören nach der 4. Bundes-Immissionsschutz-Verordnung zur sogenannten Gruppe01 (Wärmeerzeugung, Bergbau, Energie), deren Anzahl seit 1989 von 954 auf 243 (Stand 2000) zurückgegangen ist. Dieser der Rückgang ist sehr deutlich. Hierbei handelt es sich aber oft nicht um Stillegung von Anlagen, sondern um Brennstoffumstellungen, beispielsweise von Kohle oder Erdöl auf Erdgas. Durch diese Umrüstung fallen die Anlagen wegen der geringeren Schadstoffemissionen oft aus der Genehmigungspflicht und werden nicht mehr der Verursachergruppe Industrie, sondern dem Hausbrand zugeordnet. Damit sind sie dann in der Karte überwiegende Hezungsarten (Umweltatlas Berlin) als nicht genehmigungsbedürtige Anlagen berücksichtigt. Die Karte verdeutlicht die auch im Kraftwerksbereich in den letzten Jahren vorgenommenen Angleichungen beim Energieträgereinsatz zwischen "westlichen" und "östlichen" Standorten. Lediglich das Heizkraftwerk Klingenberg fällt noch durch den überwiegenden Einsatz von Braunkohle auf. Das "Rückrat" des Energieträgereinsatzes in den Berliner Kraftwerken stellen Steinkohle und Erdgas. Größter Fernwärmeversorger in Berlin ist die BEWAG, die über ein Rohrleitungssystem von mehr als 1100 km Länge verfügt und ein Versorgungsgebiet von rund 100 km² abdeckt. Daneben existieren jedoch auch etliche dezentrale Inselnetze, wie etwa das seit den 20er Jahren bestehender Versorgungsgebiet des Fernheizwerkes Neukölln. Weitere dezentrale ältere Lösungen sind die Fernwärmenetze des Märkische Viertel in Reinickendorf und für die Gropiusstadt in Neukölln (HKW Rudow). Mit dem Einsetzen der klimaschutz- und energiesparbezogenen Diskussion seit etwa Mitte der achtziger Jahre nahm auch der Ausbau der verbrauchsnahen Kraftwärmekopplung durch Blockheizkraftwerke stark zu. Es entstanden und entstehen weiterhin zahlreiche weitere Nahwärmesysteme mit eigenen Heizwerken oder Blockheizkraftwerken unterschiedlicher Betreiber.
<p>Gegenüber den 1990er Jahren konnte die Feinstaubbelastung erheblich reduziert werden. Zukünftig ist zu erwarten, dass die Belastung eher langsam abnehmen wird. Großräumig treten heute PM10-Jahresmittelwerte unter 20 Mikrogramm pro Kubikmeter (µg/m³) auf.</p><p>Feinstaubkonzentrationen in Deutschland</p><p>Die Ländermessnetze führen seit dem Jahr 2000 flächendeckende Messungen von Feinstaub der Partikelgröße <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> (Partikel mit einem aerodynamischen Durchmesser von 10 Mikrometer oder kleiner) und seit 2008 auch der Partikelgröße <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> durch. Besonders hoch ist die Messnetzdichte in Ballungsräumen. Die hohe Zahl und Dichte an Emittenten – beispielsweise Hausfeuerungsanlagen, Gewerbebetriebe, industrielle Anlagen und der Straßenverkehr – führen zu einer erhöhten Feinstaubkonzentration in Ballungsräumen gegenüber dem Umland. Besonders hohe Feinstaubkonzentrationen werden unter anderem wegen der starken verkehrsbedingten Emissionen wie (Diesel-)Ruß, Reifenabrieb sowie aufgewirbeltem Staub an verkehrsnahen Messstationen registriert. Während zu Beginn der 1990er Jahre im Jahresmittel großräumig Werte um 50 Mikrogramm pro Kubikmeter (µg/m³) gemessen wurden, treten heute PM10-Jahresmittelwerte zwischen 10 und 20 µg/m³ auf. Die im ländlichen Raum gelegenen Stationen des <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-Messnetzes verzeichnen geringere Werte.</p><p>Die Feinstaub-Immissionsbelastung wird nicht nur durch direkte Emissionen von Feinstaub verursacht, sondern zu erheblichen Teilen auch durch die <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a> von gasförmigen Schadstoffen wie Ammoniak, Schwefeldioxid und Stickstoffoxiden. Diese reagieren in der Luft miteinander und bilden sogenannten „sekundären“ Feinstaub. Einhergehend mit einer starken Abnahme der Schwefeldioxid (SO2)-Emissionen und dem Rückgang der primären PM10-Emissionen im Zeitraum von 1995 bis 2000 sanken im gleichen Zeitraum auch die PM10-Konzentrationen deutlich (siehe Abb. „Trend der PM10-Jahresmittelwerte“). Der Trend der Konzentrationsabnahme setzt sich seitdem fort. Die zeitliche Entwicklung der PM10-Konzentrationen wird von witterungsbedingten Schwankungen zwischen den einzelnen Jahren – besonders deutlich in den Jahren 2003 und 2006 erkennbar – überlagert. Erhöhte Jahresmittelwerte wurden auch 2018 gemessen, die auf die besonders langanhaltende, zehnmonatige Trockenheit von Februar bis November zurückzuführen sind.</p><p>Überschreitungssituation</p><p>Lokal und ausschließlich an vom Verkehr beeinflussten Stationen in Ballungsräumen traten in der Vergangenheit gelegentlich Überschreitungen des für das Kalenderjahr festgelegten Grenzwerts von 40 µg/m³ auf. Seit 2012 wurden keine Überschreitungen dieses Grenzwertes mehr festgestellt.</p><p>Seit 2005 darf auch eine <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Konzentration von 50 Mikrogramm pro Kubikmeter (µg/m³) im Tagesmittel nur an höchstens 35 Tagen im Kalenderjahr überschritten werden. Überschreitungen des Tageswertes von 50 µg/m³ werden vor allem in Ballungsräumen an verkehrsnahen Stationen festgestellt. Die zulässige Zahl von 35 Überschreitungstagen im Kalenderjahr wurde hier in der Vergangenheit zum Teil deutlich überschritten (siehe Karten „Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 mg/m³“ und Abb. „Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes“). Vor allem das Jahr 2006 fiel durch erhebliche Überschreitungen der zulässigen Überschreitungstage auf, was auf lang anhaltende und intensive „Feinstaubepisoden“ zurückzuführen war. In den unmittelbar zurückliegenden Jahren traten nicht zuletzt durch umfangreiche Maßnahmen der mit Luftreinhaltung befassten Behörden keine Überschreitungen des Grenzwerts mehr auf. Auch 2024 wurde der Grenzwert somit an allen Messstationen in Deutschland eingehalten.</p><p>Witterungsabhängigkeit</p><p>Vor allem in trockenen Wintern, teils auch in heißen Sommern, können wiederholt hohe <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Konzentrationen in ganz Deutschland auftreten. Dann kann der Wert von 50 µg/m³ großflächig erheblich überschritten werden. Ein Beispiel für eine solche Belastungssituation zeigt die Karte „Tagesmittelwerte der Partikelkonzentration PM10“. Zum Belastungsschwerpunkt am 23. Januar 2017 wurden an etwa 56 % der in Deutschland vorhandenen PM10-Messstellen Tagesmittelwerte von über 50 µg/m³ gemessen. Die höchste festgestellte Konzentration betrug an diesem Tag 176 µg/m³ im Tagesmittel.</p><p>Wie stark die PM10-Belastung während solcher Witterungsverhältnisse ansteigt, hängt entscheidend davon ab, wie schnell ein Austausch mit der Umgebungsluft erfolgen kann. Winterliche Hochdruckwetterlagen mit geringen Windgeschwindigkeiten führen – wie früher auch beim Wintersmog – dazu, dass die Schadstoffe nicht abtransportiert werden können. Sie sammeln sich in den unteren Luftschichten (bis etwa 1.000 Meter) wie unter einer Glocke. Der Wechsel zu einer Wettersituation mit stärkerem Wind führt zu einer raschen Abnahme der PM10-Belastung. Auch wenn die letzten Jahre eher gering belastet waren, können auch zukünftig meteorologische Bedingungen auftreten, die zu einer deutlich erhöhten Feinstaubbelastung führen können.</p><p>Bürgerinnen und Bürger können laufend <a href="https://www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten">aktualisierte Feinstaubmessdaten und Informationen zu Überschreitungen der Feinstaubgrenzwerte</a> in Deutschland im Internet und mobil über die <a href="https://www.umweltbundesamt.de/themen/luft/luftqualitaet/app-luftqualitaet">UBA-App "Luftqualität"</a> erhalten.</p><p>Bestandteile des Feinstaubs</p><p>Die Feinstaubbestandteile <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> und <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> sind Mitte der 1990er Jahre wegen neuer Erkenntnisse über ihre Wirkungen auf die menschliche Gesundheit in den Vordergrund der Luftreinhaltepolitik getreten. Mit der <a href="https://eur-lex.europa.eu/eli/dir/2008/50/oj?locale=de">EU-Richtlinie 2008/50/EG</a> (in deutsches Recht umgesetzt mit der <a href="https://www.bmuv.de/gesetz/39-verordnung-zur-durchfuehrung-des-bundes-immissionsschutzgesetzes/">39. Bundes-Immissionsschutz-Verordnung</a> (39. <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a>)), welche die bereits seit 2005 geltenden Grenzwerte für PM10 bestätigt und neue Luftqualitätsstandards für PM2,5 festlegt (siehe Tab. „Grenzwerte für den Schadstoff Feinstaub“), wurde dem Rechnung getragen. Als PM10 beziehungsweise PM2,5 (PM = particulate matter) wird dabei die Massenkonzentration aller Schwebstaubpartikel mit aerodynamischen Durchmessern unter 10 Mikrometer (µm) beziehungsweise 2,5 µm bezeichnet.</p><p>Herkunft</p><p>Feinstaub kann natürlichen Ursprungs sein oder durch menschliches Handeln erzeugt werden. Stammen die Staubpartikel direkt aus der Quelle - zum Beispiel durch einen Verbrennungsprozess - nennt man sie primäre Feinstäube. Als sekundäre Feinstäube bezeichnet man hingegen Partikel, die durch komplexe chemische Reaktionen in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> erst aus gasförmigen Substanzen, wie Schwefel- und Stickstoffoxiden, Ammoniak oder Kohlenwasserstoffen, entstehen. Wichtige vom Menschen verursachte Feinstaubquellen sind Kraftfahrzeuge, Kraft- und Fernheizwerke, Abfallverbrennungsanlagen, Öfen und Heizungen in Wohnhäusern, der Schüttgutumschlag, die Tierhaltung sowie bestimmte Industrieprozesse. In Ballungsgebieten ist vor allem der Straßenverkehr eine bedeutende Feinstaubquelle. Dabei gelangt Feinstaub nicht nur aus Motoren in die Luft, sondern auch durch Bremsen- und Reifenabrieb sowie durch die Aufwirbelung des Staubes auf der Straßenoberfläche. Eine weitere wichtige Quelle ist die Landwirtschaft: Vor allem die Emissionen gasförmiger Vorläuferstoffe aus der Tierhaltung tragen zur Sekundärstaubbelastung bei. Als natürliche Quellen für Feinstaub sind Emissionen aus Vulkanen und Meeren, die Bodenerosion, Wald- und Buschfeuer sowie bestimmte biogene <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Aerosole#alphabar">Aerosole</a>, zum Beispiel Viren, Sporen von Bakterien und Pilzen zu nennen.</p><p>Während im letzten Jahrzehnt des 20. Jahrhunderts die Gesamt- und Feinstaubemissionen in Deutschland drastisch reduziert werden konnten, verlangsamte sich seither die Abnahme (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-von-feinstaub-der-partikelgroesse-pm10">„Emission von Feinstaub der Partikelgröße PM10“</a> und <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-von-feinstaub-der-partikelgroesse-pm25">„Emission von Feinstaub der Partikelgröße PM2,5“</a>). Für die nächsten Jahre ist zu erwarten, dass die Staubkonzentrationen in der Luft weiterhin nur noch langsam abnehmen werden. Zur Senkung der PM-Belastung sind deshalb weitere Maßnahmen erforderlich.</p><p>Gesundheitliche Wirkungen</p><p>Feinstaub der Partikelgröße <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> kann beim Menschen durch die Nasenhöhle in tiefere Bereiche der Bronchien eindringen. Die kleineren Partikel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> können bis in die Bronchiolen und Lungenbläschen vordringen und die ultrafeinen Partikel mit einem Durchmesser von weniger als 0,1 µm sogar bis in das Lungengewebe und den Blutkreislauf. Je nach Größe und Eindringtiefe der Teilchen sind die gesundheitlichen Wirkungen von Feinstaub verschieden. Sie reichen von Schleimhautreizungen und lokalen Entzündungen im Rachen, der Luftröhre und den Bronchien oder Schädigungen des Epithels der Lungenalveolen bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (zum Beispiel mit Auswirkungen auf die Herzfrequenzvariabilität). Eine langfristige Feinstaubbelastung kann zu Herz-Kreislauferkrankungen und Lungenkrebs führen, eine bestehende COPD (Chronisch Obstruktive Lungenerkrankung) verschlimmern, sowie das Sterblichkeitsrisiko erhöhen.</p><p>Messdaten</p><p>Mitte der 1990er Jahre wurde zunächst in einzelnen Ländermessnetzen mit der Messung von <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> begonnen. Seit dem Jahr 2000 wird PM10 deutschlandweit gemessen. Für die Jahre, in denen noch nicht ausreichend Messergebnisse für die Darstellung der bundesweiten PM10-Belastung vorlagen, wurden PM10-Konzentrationen näherungsweise aus den Daten der Gesamtschwebstaubkonzentration (TSP) berechnet. Seit dem Jahr 2001 basieren alle Auswertungen ausschließlich auf gemessenen PM10-Daten. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> wird seit dem Jahr 2008 deutschlandweit an rund 200 Messstationen überwacht.</p>
Die Bioenergie Friedland GmbH & Co. KG, Industriering 10a, 49393 Lohne, beabsichtigt die Errichtung und den Betrieb einer Satelliten-BHKW-Anlage und hat hierfür die immissionsschutzrechtliche Genehmigung nach § 4 Bundes-Immissionsschutzgesetz (BImSchG) beantragt. Der Standort des „Flex-BHKW Heizwerk Friedland“ befindet sich in 17098 Friedland, Bresewitzer Straße 7h, Gemarkung Friedland, Flur 9, Flurstück 40/6, Landkreis Mecklenburgische Seenplatte. Die geplante BHKW-Anlage verfügt über ein BHKW (Verbrennungsmotoranlage) für Biogas mit einer Feuerungswärmeleistung von 4,803 MW (elektrische Leistung 2.151 kW, thermische Leistung 2.188 kW) sowie dazugehörige technische Aggregate im bzw. auf dem BHKW-Gebäude (Zuluft-/ Abluftanlage, Kühler, Schmierölstation, Aktivkohlefilter, Abgasleitungen, SCR-Oxidationskatalysator, Abgaskamin, Lagerbehälter für Harnstofflösung etc.) und eine freistehende Trafostation.
In der Industrie werden Hochtemperaturprozesse (800 - 2000°C) zur Produktion von Zementklinker, Kalk oder anderen Produkten eingesetzt. In diesen Prozessen wird meist Erdgas oder Kohle für die Erzeugung von Hochtemperaturprozesswärme eingesetzt. Ziel dieses Vorhabens ist die Entwicklung eines einsatzfähigen Systems für die Konversion von Klärschlamm und anderen biogenen Rest- und Abfallstoffen in ein Brenngas zur direkten Substitution von fossilen Brennstoffen in Hochtemperaturindustrieprozessen. Im Rahmen von NaBI werden folgende Innovationen erforscht und erprobt, um die spezifischen Anforderungen der Hochtemperaturindustrieprozesse zu erfüllen: (1) Flexibilisierung des Gasifizierungsverfahrens bezüglich der Brennstoffqualität durch Optimierung der Wirbelschichtfluidisierung und damit Ermöglichung der Gasifizierung von Klärschlamm wechselnder Qualität sowie von weiteren Rest- und Abfallstoffen für einen breiten Einsatz des NaBI-Ansatzes. (2) Steigerung des Heizwerts des Brenngases durch Einsatz von Sauerstoff: Dadurch wird in gängigen Hochtemperaturprozessen eine weitaus höhere Substitutionsrate von Primärenergie ermöglicht. (3) Optimierung der Qualität der Klärschlammasche als Rohstoff für die Phosphorrückgewinnung durch Einsatz von Additiven. Damit wird die Attraktivität der Asche für Phosphorrückgewinnung erhöht. (4) Untersuchung und Nachweis des Einsatzes von Infrarot-Kamerasystemen für die Prozessüberwachung und -regelung. Bis 2026 wird die Marktreife für die optimierte Brenngasbereitstellung für Industrieprozesse durch Klärschlammgasifizierung erreicht, sodass die erste kommerzielle Anlage bis 2027 realisiert werden kann.
In der Industrie werden Hochtemperaturprozesse (800 - 2000°C) zur Produktion von Zementklinker, Kalk oder anderen Produkten eingesetzt. In diesen Prozessen wird meist Erdgas oder Kohle für die Erzeugung von Hochtemperaturprozesswärme eingesetzt. Ziel dieses Vorhabens ist die Entwicklung eines einsatzfähigen Systems für die Konversion von Klärschlamm und anderen biogenen Rest- und Abfallstoffen in ein Brenngas zur direkten Substitution von fossilen Brennstoffen in Hochtemperaturindustrieprozessen. Im Rahmen von NaBI werden folgende Innovationen erforscht und erprobt, um die spezifischen Anforderungen der Hochtemperaturindustrieprozesse zu erfüllen: (1) Flexibilisierung des Gasifizierungsverfahrens bezüglich der Brennstoffqualität durch Optimierung der Wirbelschichtfluidisierung und damit Ermöglichung der Gasifizierung von Klärschlamm wechselnder Qualität sowie von weiteren Rest- und Abfallstoffen für einen breiten Einsatz des NaBI-Ansatzes. (2) Steigerung des Heizwerts des Brenngases durch Einsatz von Sauerstoff: Dadurch wird in gängigen Hochtemperaturprozessen eine weitaus höhere Substitutionsrate von Primärenergie ermöglicht. (3) Optimierung der Qualität der Klärschlammasche als Rohstoff für die Phosphorrückgewinnung durch Einsatz von Additiven. Damit wird die Attraktivität der Asche für Phosphorrückgewinnung erhöht. (4) Untersuchung und Nachweis des Einsatzes von Infrarot-Kamerasystemen für die Prozessüberwachung und -regelung. Bis 2026 wird die Marktreife für die optimierte Brenngasbereitstellung für Industrieprozesse durch Klärschlammgasifizierung erreicht, sodass die erste kommerzielle Anlage bis 2027 realisiert werden kann.
| Origin | Count |
|---|---|
| Bund | 566 |
| Kommune | 1 |
| Land | 120 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 4 |
| Ereignis | 1 |
| Förderprogramm | 276 |
| Gesetzestext | 1 |
| Hochwertiger Datensatz | 1 |
| Text | 303 |
| Umweltprüfung | 85 |
| unbekannt | 14 |
| License | Count |
|---|---|
| geschlossen | 127 |
| offen | 336 |
| unbekannt | 221 |
| Language | Count |
|---|---|
| Deutsch | 655 |
| Englisch | 105 |
| Resource type | Count |
|---|---|
| Archiv | 218 |
| Bild | 2 |
| Datei | 222 |
| Dokument | 313 |
| Keine | 264 |
| Webdienst | 6 |
| Webseite | 119 |
| Topic | Count |
|---|---|
| Boden | 537 |
| Lebewesen und Lebensräume | 561 |
| Luft | 406 |
| Mensch und Umwelt | 684 |
| Wasser | 401 |
| Weitere | 629 |