API src

Found 121 results.

Related terms

Steine-Erden\Steinwolle-DE-2010

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Wärme-Prozess-CaO-Erdgas-DE-2050 (Endenergie)

Bereitstellung von Prozesswärme für die Kalkherstellung, Daten nach #1. Achtung: Die Abbildung erfolgt endenergiebezogen, d.h. der Nutzungsgrad wurde definitionsgemäß mit 100% angesetzt. Daher kann dieser Prozess als Hilfsenergielieferant entsprechend dem Brennstoffbedarfs des nachfragenden Prozesses verwendet werden. Auslastung: 7000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase Flächeninanspruchnahme: 100000m² gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1000MW Nutzungsgrad: 100% Produkt: Wärme - Prozess

Zement

Systemraum: von Rohstoffen bis Mischen und Mahlen Geographischer Bezug: Deutschland Zeitlicher Bezug: 2000 - 2004 Weitere Informationen: Mischung aus verschiedenen Zementtypen Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Produktion: Produktion: 2215000000 t im Jahr 2005 Anteile Länder: VR China 46,1% Indien 6,4% USA 4,7% Japan 3,1% Spanien 2,3% Russland 2,1% Zusammensetzung : Kalkstein/Kreide und Ton oder ihr natürliches Gemisch Kalksteinmergel; 95-100 Klinkenanteil für Portlandzement und entsprechend Hüttensand, Puzzolane, Flugasche, Silicastaub; zum Mahlgut dann noch Zusatz Gips-/Anhydrit-Gemisch Anteile Länder an Stückzahlen: k.A. Anteile Länder an Tonnen: Luxemburg 9,7% Niederlande 14,9% Tschechische Republik 17,5% Belgien 21,9% Frankreich 22,9% Import: 1726789t

Steine-Erden\Glas-flach-DE-2020

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2030

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2010

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2050

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2000

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2015

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2014 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2005

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

1 2 3 4 511 12 13