API src

Found 342 results.

Chem-Org\PVC(Masse)-DE-2005

PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Masseverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Beim Masseverfahren wird reines VCM polymerisiert. Der Prozeß ist verfahrenstechnisch sehr einfach, da im Unterschied zum Suspensions- und Emulsionsverfahren keine wässrige Phase existiert. Es werden keine Emulgatoren oder Suspendierungsmittel verwendet, wodurch ein sehr reines Produkt entsteht. Die Polymerisation wird in einem Rührkessel durchgeführt. Nach Beendigung der Reaktion wird nicht umgesetztes VCM zurückgewonnen. Die Polymerpartikel werden gemahlen, gesiebt und verpackt. Der große Nachteil des Verfahrens ist seine geringe Flexibilität. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern bei GEMIS wurden Daten aus #1 bzw #22 verwendet. Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1015 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden 0,4 kg an Betriebsstoffen (Katalysator) benötigt. Die Verluste bei der Massenbilanz werden bei (Tötsch 1990) mit "PVC-Verluste" 4,9 kg und "VCM-Verluste" 10,1 kg beziffert. Weiterhin fallen 0,4 kg Katalysator und desssen Abbauprodukte an. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 1,18 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet (#1). Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/t PVC. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Produktionsabfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von PVC nach dem Masseverfahren werden insgesamt 66,61 t Wasser/t PVC benötigt. 66 t werden davon als Kühlwasser, 0,23 t als Hochdruck-, 0,06 t als Mitteldruck- und 0,14 t als Niederdruckdampf verwendet. Weitere 0,18 t werden unter der Bezeichnung "Prozeßwasser" aufgeführt (#1). Quantitative Angaben zu Abwasserfrachten beim Masserverfahren liegen nicht vor. Da bei der chemischen Umsetzung selbst keine wässrige Phase vorliegt, sollten die Abwasserfrachten gering sein. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe

Chem-Anorg\Chlor(Diaphragma)-DE-2030

Chlorherstellung (Diaphragmaverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Diaphragmaverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl) oder direkt die Sole aus dem Bergbau. Verunreinigungen des Rohstoffs werden durch Fällung mit Natronlauge oder Soda entfernt. Bei diesem Verfahren trennt ein Diaphragma (Asbest) Anoden- und Kathodenraum. Der Elektrolyt (NaCl in Wasser) wird beim Diaphragmaverfahren im direkten Durchlauf geführt. Die Kochsalzlösung wird zuerst in den Anodenraum gepumpt. Hier entwickelt sich an der Anode (Titan) Chlor, das gekühlt, mit Schwefelsäure getrocknet und komprimiert wird. Der Elektrolyt fließt nun durch das Diaphragma zur Kathode (Stahl). An der Kathode scheidet sich Wasserstoff ab, und es bildet sich Natronlauge. Die resultierende Natronlauge ist jedoch mit NaCl verunreinigt und muß von 12 auf 50 % eingeengt werden, was den Gesamtenergieverbrauch stark erhöht. Während des Eindampfens und Abkühlens der Lösung fällt Natriumchlorid aus, das in den Prozess zurückgeführt wird. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieses Prozesses beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, dass der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozeßeinheit: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für den hier betrachteten Prozess (Diaphragmaverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1438 + 451 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3050 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1525 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Die Chloremissionen in die Luft werden bei (BUWAL 1991) für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,001 g pro kg Produkt (1 kg NaOH 100 % + 0,887 kg Cl2) beziffert. Umgerechnet auf die Chlorherstellung ergibt sich ein Gesamtemissionswert von 0,0011 g Cl2/kg Produkt (1 kg Cl2 + 1,128 kg NaOH 100 %). Für die Bildung der Kennziffern bei GEMIS wurden die obigen Gesamtemissionen je zur Hälfe der Chlor- und der Natronlaugenherstellung zugeordnet. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (2800 kg), dem Prozeßwasser (4300 kg) und dem Kühlwasser (290000 kg) zusammen (Tötsch 1990). Abwasser: BUWAL (1991) gibt für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,002 g BSB5, 0,005 g CSB und 0,006 g Blei pro kg Produkt (1 kg NaOH 100 % + 0,887 Cl2) an. Umgerechnet auf die Chlorherstellung ergeben sich Werte von 0,0023 g BSB5, 0,0056 g CSB und 0,0068 g Blei für 1kg Cl2 + 1,128 kg NaOH 100%ig. Die oben aufgeführten Gesamtwassermengen und Abwasserfrachten wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Org\CF4 (hochrein)

Herstellung von hochreinem CF4 nach der Reaktionsgleichung CH4 + 2Cl2 + 2F2 -> CF4 + 4HCl (grobe Schätzung von Wolfgang Jenseit, Öko-Institut, zum Ablauf) Hauptinput: Erdgas (nach Wolfgang Jenseit 1:1 angesetzt für Methan (CH4)) Ausbeute: 100% (Schätzung von Wolfgang Jenseit) Nutzungsgrad = MG(CF4)/MG(CH4) = 550% Chlorbedarf = 2MG(Cl2)/MG(CF4) = 1,61 t/t output. Fluorbedarf = 2MG(F2)/MG(CF4) = 0,86 t/t output. Nähere Daten zur Erzielung der hohen Reinheit nicht verfügbar, Datensatz muss vervollständigt werden. MG = Molares Gewicht Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 550% Produkt: Grundstoffe-Chemie

Kunststoff\EPS-DE-2000

Produktion von EPS durch Aufschäumen mit Wasserdampf. Zuschneiden und Verpacken. Es werden 1t/t Polystyrol und 57kg/t Pentan eingesetzt. Der Energiebedarf wird von #2, Empa übernommen. Bezugsquelle ist dann ein Wärmebedarf von 2562 MJ/t aus Industriewärme. Besondere Emissionen wird nach #2 47,9kg/t Pentan und 4,1kg/t Styrol als 52kg/t NMVOC eingestellt. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Kunststoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99,6% Produkt: Kunststoffe

Chem-Org\R290 (Propan)-DE-2000

Produkt des Prozesses ist das Kühlmittel R290 (Propan), welches aus der Flüssiggasfraktion der Raffinerie gewonnen wird. Die Aufwendungen für die Feindestillation (Trennung von Propan, n-Butan und iso-Butan sind nicht berücksichtigt; daher sind die Daten vorläufig. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 100% Produkt: Grundstoffe-Chemie

Chem-Org\Ethylen-DE-2020

Herstellung von Ethylen (=Ethen) durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt, um die Zersetzung der gebildeten Produkte (außer Ethylen entstehen weitere wertvolle Produkte: Propylen, C4-Fraktion, Benzol) zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Zur Trennung der Produkte in verschiedene Fraktionen wird das Gasgemisch komprimiert und auf tiefe Temperaturen abgekühlt. Zur Reingewinnung der Produkte (Ethylen, Propylen und Benzol) aus den unterschiedlichen Fraktionen sind jeweils weitere spezielle Aufarbeitungsschritte notwendig. Weltweit werden 97 % der Ethylenproduktion durch die Dampfpyrolyse (Steamcracking) von Kohlenwasserstoffen hergestellt. Als wichtigster Rohstoff dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa und Japan wird überwiegend (über 80 %) von Naphtha ausgegangen. Der Weltjahresverbrauch an Ethylen betrug 1983 33,7 Mio. t (USA 13,1 Mio. t, Westeuropa 11,9 Mio. t). In der BRD wurden 1987 ca. 2,8 Mio. t Ethylen produziert (siehe #2). Für die Betrachtung der Herstellung von Ethylen wurden die Literaturquellen #1-3 ausgewertet. Bei der hier betrachteten Ethylenherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 1 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 1, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 1, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4- Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 1). Für die Reststoffe wird eine Gutschrift für den Ersatz von Rohöl gegeben. In #1 wird der beim Cracken anfallende 3-bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Dies entspricht einer Dampfgutschrift von 10,37 GJ/t Ethylen. Im Unterschied dazu werden bei #2 die Einsparungsmöglichkeiten nur mit ca. 2 GJ beziffert. In GEMIS werden die Bilanzdaten aus #1 übernommen. Tabelle 1 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Ethylenherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Ethylen [kg] Edukt Naphtha 1000 Edukt Naphtha 2766,7 1482,2 Produkte Produkt Ethylen 300 Ethylen 1000 1000 Propylen 150 Propylen 500 60 % C4-Frakt. 60 60 % C4 200 Benzol 50 Benzol 166,7 Reststoffe 268 Reststoffe 893,3 478,6 Heizgas 170 Verluste 2 Verluste 6,7 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 1 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 1) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Ethylen nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 300 kg auf 1000 kg Ethylen. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (53,6 %) ergebenden Anteile für die Ethylenherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird in #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Ethylen ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t). In GEMIS ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Ethylen (53,6 % der Energie des Gesamtcrackingprozesses) und eine Dampfgutschrift von 10,37 GJ/t . In #3 wird der Energiebedarf zur Herstellung von Ethylen (Input Naphtha) mit 5,415 btu/lb (Anteil für Ethylen, Tellus wertet den gesamten Output, 100 %, als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Ethylen. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Ethylen angegeben. (Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2 GJ/t Ethylen möglich). Für GEMIS werden entsprechend der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzol ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - wurde für Benzol ein Emissionswert von 0,151 kg/t Ethylen berechnet. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Ethylen wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Ethylenherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Ethylen berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Xtra-generisch\N2 (flüssig)

Gewinnung von flüssigem Stickstoff durch Lutzerlegung nach dem Lindeverfahren. In dieser Prozeßeinheit wird die Stickstoffherstellung durch Luftzerlegung nach dem Niederdruckverfahren (Lindeverfahren) bilanziert. Bei diesem Verfahren werden aus der atmosphärischen Luft gleichzeitig deren drei wesentlichen Komponenten gewonnen: Stickstoff (N2, 75,5 Massen-%), Sauerstoff (O2, 23,1 Massen-%) und Argon (1,3 Massen-%). Nach der Abtrennung von Staubpartikeln wird die Luft auf ungefähr 6 bis 7 bar verdichtet und gleichzeitig abgekühlt. Dadurch werden Wasser, Kohlendioxid und hochsiedende Kohlenwasserstoffe abgetrennt. Danach wird die abgekühlte Luft in eine Doppelrektifikationssäule geführt, wo eine Zerlegung in Stickstoff und mittelreinen Sauerstoff erfolgt. In der zweiten Säule geschieht dann die Feintrennung in Stickstoff und Sauerstoff. Die Flüchtigkeit des Argons liegt etwa zwischen derjenigen von Stickstoff und Sauerstoff. Es reichert sich deshalb in der Zwischenzone an, wo es entnommen und in einer speziellen Rektifikationskolonne gereinigt wird. Der Trennung der Komponenten schließen sich Verflüssigungs- und Verdichtungsschritte an. Derzeit werden ungefähr 90 % der gesamten Produktion über das hier bilanzierte Niederdruckverfahren hergestellt (Sauerstoff 1996). Andere Verfahren wie PSA (pressure swing adsorption) oder das Membranverfahren werden hier nicht betrachtet. Die Jahresproduktion an Stickstoff (alle Verfahren) betrug 1989 in den USA ca. 27 Mio. t, in der BRD ca. 2,5 Mio. t und in Japan ca. 6,9 Mio. t. Im Durchschnitt werden 1,5 % des Stickstoffs in Stahlflaschen, 50,5 % in flüssiger Form und 48 % über Gasleitungen bereitgestellt (siehe #2). Nach den Angaben in (Produktion 1992) wurden in Deutschland 1991 3,9 Mio. t und 1992 3,2 Mio. t Stickstoff hergestellt. Die Kennziffern in GEMIS stehen für die Produktion in Westeuropa in den 90er Jahren. Allokation: Bei dem Prozeß der Luftzerlegung fallen Stickstoff und Sauerstoff als Produkte an. Für die Herstellung von einer Tonne an Produkten (765 kg Stickstoff und 235 kg Sauerstoff) wird ein Input von 1014 kg atmosphärischer Luft benötigt. Der Prozeß liefert außerdem 13 kg Argon (dieses wird wegen seines geringen Massenanteils bei GEMIS nicht als Produkt gewertet) und ungefähr 0,5 kg CO2. Die den Prozeß der Luftzerlegung beschreibenden Gesamtdaten werden entsprechend dem Massenanteil der beiden Produkte N2 und O2 zu 3,264:1 aufgeteilt. Genese der Kennziffern Massenbilanz: Die Massenbilanz bei der Stickstoffherstellung wurde unter der Annahme eines Wirkungsgrades von 100 % bei der Luftzerlegung berechnet. Entsprechend der Zusammensetzung der Luft (in Massenanteilen) wird für die Herstellung von 1 t N2 eine Menge von 1324 kg Luft benötigt. Dabei fällt als weiteres Produkt 306 kg Sauerstoff (außerdem 17 kg Argon) an (siehe #1). Als nicht verwerteter Bestandteil der atmosphärischen Luft verbleiben 0,61 kg Kohlendioxid. Für GEMIS ergibt sich nach der Allokationsregel ein Wirkungsgrad von 98,66 % (Bedarf an Luft: 1014kg/t N2). Argon und Kohlendioxid werden nicht bilanziert. Energiebedarf: Nach #2 wird für die Luftzerlegung (Anlagenkapazität 10000 m3/h) eine Energiemenge von 0,15 kWh/m3 gasförmigen N2 benötigt. Bei einer kleineren Anlagenkapazität (1500 m3/h) ergibt sich ein Wert von 0,30 kWh/m3. Für die Verflüssigung des gewonnenen Stickstoffs wird zusätzliche Energie benötigt. Es wird ein Wert von 0,5 bis 0,6 kWh/m3 N2 angegeben. Rechnet man diese Werte über die Molmasse von N2 (28,014 g/mol) und das Molvolumen (22,4 l/mol) um, ergeben sich Werte von 0,4 GJ/t (Luftzerlegung, Anlagenkapazität 10000 m3/h) und 1,6 GJ/t N2 (Verflüssigung, Mittelwert aus den beiden Werten: 0,55 kWh/m3 N2). Diese Werte zeigen eine gute Übereinstimmung mit den Daten aus #3, 2 MJ/kg N2, und #1, 1,75 MJ/kg N2 (Werte für Luftzerlegung und Verflüssigung). Bei (DOE 1985) wird nur die Luftzerlegung ohne Verflüssigung bilanziert. Es ergibt sich ein Bedarf an 687,2 btu elektrischer Energie für die Zerlegung von 4,322 lb atmosphärischer Luft. Umgerechnet auf die Herstellung von einer Tonne Stickstoff ergibt sich nach der Allokation (siehe oben) ein Wert von 0,37 GJ/t N2. Die Quellen #1 und #2 geben keine Energiegesamtwerte für die Zerlegung des gesamten Luftinputs, sondern bereits anteilige auf Stickstoff [bzw. #1 bilanziert für 1 kg O2] bezogene Werte an. Da die Angaben aus #2 am besten nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen bei der Luftzerlegung sind nicht bekannt. Da das beim Prozeß anfallende CO2 aus der eingesetzten Luft stammt, wird es nicht als Emission gewertet. Wasser: Der Wasserbedarf bei der Sauerstoffherstellung beschränkt sich auf die Verwendung von Kühlwasser. Quantitative Angaben hierüber liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1000000t/h Nutzungsgrad: 98,7% Produkt: Grundstoffe-Chemie

Xtra-generisch\O2 (flüssig)

Gewinnung von flüssigem Sauerstoff durch Luftzerlegung nach dem Lindeverfahren und anschließender Verflüssigung. In dieser Prozeßeinheit wird die Sauerstoffherstellung durch Luftzerlegung nach dem Niederdruckverfahren (Lindeverfahren) bilanziert. Bei diesem Verfahren werden aus der atmosphärischen Luft gleichzeitig deren drei wesentlichen Komponenten gewonnen: Stickstoff (75,5 Massen-%), Sauerstoff (23,1 Massen-%) und Argon (1,3 Massen-%). Nach der Abtrennung von Staubpartikeln wird die Luft auf ungefähr 6 bis 7 bar verdichtet und gleichzeitig abgekühlt. Dadurch werden Wasser, Kohlendioxid und hochsiedende Kohlenwasserstoffe abgetrennt. Danach wird die abgekühlte Luft in eine Doppelrektifikationssäule geführt, wo eine Zerlegung in Stickstoff und mittelreinen Sauerstoff erfolgt. In der zweiten Säule geschieht dann die Feintrennung in Stickstoff und Sauerstoff. Die Flüchtigkeit des Argons liegt etwa zwischen derjenigen von Stickstoff und Sauerstoff. Es reichert sich deshalb in der Zwischenzone an, wo es entnommen und in einer speziellen Rektifikationskolonne gereinigt wird. Der Trennung der Komponenten schließen sich Verflüssigungs- und Verdichtungsschritte an. Derzeit werden ungefähr 90 % der gesamten Sauerstoffproduktion über das hier bilanzierte Niederdruckverfahren hergestellt (Sauerstoff 1996). Andere Verfahren wie PSA (pressure-swing adsorption) oder das Membranverfahren werden hier nicht betrachtet. Die Kennziffern in GEMIS stehen für die Produktion in Westeuropa in den 90er Jahren. In Deutschland wurden 1991 ca. 7,3 Mio. und 1992 ca. 6,7 Mio. Tonnen Sauerstoff produziert [berechnet aus den Volumenangaben in (Produktion 1992)]. Der weltweite Jahresverbrauch an Sauerstoff im Zeitraum 1990/91 belief sich auf ca. 21,2 Mio. t in Westeuropa, ca. 22,0 Mio. t in den USA und ca. 12,9 Mio. t in Japan (Sauerstoff 1996). Allokation: Bei dem Prozeß der Luftzerlegung fallen Stickstoff und Sauerstoff als Produkte an. Für die Herstellung von einer Tonne an Produkten (765 kg Stickstoff und 235 kg Sauerstoff) wird ein Input von 1014 kg atmosphärischer Luft benötigt. Der Prozeß liefert außerdem 13 kg Argon (dieses wird wegen seines geringen Massenanteils bei GEMIS nicht als Produkt gewertet) und ungefähr 0,5 kg CO2. Die den Prozeß der Luftzerlegung beschreibenden Gesamtdaten werden entsprechend dem Massenanteil der beiden Produkte N2 und O2 zu 3,264:1 aufgeteilt. Genese der Kennziffern Massenbilanz: Die Massenbilanz bei der Sauerstoffherstellung wurde unter der Annahme eines Wirkungsgrades von 100 % bei der Luftzerlegung berechnet. Entsprechend der Zusammensetzung der Luft (in Massenanteilen) wird für die Herstellung von 1 t O2 eine Menge von 4322 kg Luft benötigt. Dabei fällt als weiteres Produkt 3264 kg Stickstoff (außerdem 55 kg Argon) an (siehe #1). Als nicht verwerteter Bestandteil der atmosphärischen Luft verbleiben 2,0 kg Kohlendioxid. Für GEMIS ergibt sich nach der Allokationsregel ein Wirkungsgrad von 98,66 % (Bedarf an Luft: 1014kg/t O2). Argon und Kohlendioxid werden nicht bilanziert. Energiebedarf: Nach #2 wird für die Luftzerlegung (Anlagenkapazität 10000 m3/h) eine Strommenge von 0,15 kWh/m3 gasförmigen N2 benötigt. Bei einer kleineren Anlagenkapazität (1500 m3/h) ergibt sich ein Wert von 0,30 kWh/m3. Für die Verflüssigung des gewonnenen Stickstoffs wird zusätzliche Energie benötigt. Es wird ein Wert von 0,5 bis 0,6 kWh/m3 N2 angegeben. Da für die Bilanzierung von Stickstoff und Sauerstoff eine Luftzerlegungsanlage betrachtet wird bei der gleichzeitig beide genannten Gase entstehen, werden die obigen Energiedaten für die Sauerstoffherstellung übernommen. Man erhält für die Luftzerlegung einen Wert von 0,4 GJ/t O2 und für die Verflüssigung 1,6 GJ/t O2 (vgl. Prozeßeinheit zur Stickstoffherstellung). Diese Werte zeigen eine gute Übereinstimmung mit den Daten aus #3, 2 MJ/kg O2, und #1, 1,75 MJ/kg O2 (Werte für Luftzerlegung und Verflüssigung). Bei (DOE 1985) wird nur die Luftzerlegung ohne Verflüssigung bilanziert. Es ergibt sich ein Bedarf an 687,2 btu elektrischer Energie für die Zerlegung von 4,322 lb atmosphärischer Luft. Umgerechnet auf die Herstellung von einer Tonne Sauerstoff ergibt sich nach der Allokation in Kapitel 0.1.3 ein Wert von 0,37 GJ/t O2. Die Quellen #2 und #1 (DSD 1995) geben im Unterschied zu (DOE 1985) keine Energiegesamtwerte für die Zerlegung des gesamten Luftinput, sondern bereits anteilige auf Stickstoff [bzw. #1 bilanziert für 1 kg O2] bezogene Werte an. Da die Angaben aus #2 am besten nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen bei der Luftzerlegung sind nicht bekannt. Da das beim Prozeß anfallende CO2 aus der eingesetzten Luft stammt, wird es nicht als Emission gewertet. Wasser: Der Wasserbedarf bei der Sauerstoffherstellung beschränkt sich auf die Verwendung von Kühlwasser. Quantitative Angaben hierüber liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1000000t/h Nutzungsgrad: 98,7% Produkt: Grundstoffe-Chemie

Chem-Org\Benzol-DE-2030

Herstellung von Benzol durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Benzol fällt dabei in der Fraktion des Pyrolysebenzins als Koppelprodukt von Ethylen an. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt (gequencht) um die Zersetzung der gebildeten Produkte [neben Pyrolysebenzin (Benzol) entstehen Ethylen, Propylen, Butadien und andere Kohlenwasserstoffe] zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Wobei die Abtrennung des Pyrolysebenzins von den restlichen Produkten bereits im Rahmen des Waschvorgangs erfolgt. Zur Auftrennung der restlichen Produktfraktionen wird das Gasgemisch komprimiert, auf tiefe Temperaturen abgekühlt und fraktioniert destilliert. Bei der Aufarbeitung des Pyrolysebenzins ist eine zweistufige katalytische Hydrierung (Entfernung von Doppelbindungen und S-, N- und O-haltigen Verbindungen) notwendig. Darauf folgt die eigentliche Isolierung von Benzol aus dem Pyrolysebenzin, die im wesentlichen aus den Teilschritten der Nichtaromaten-Abtrennung und der anschließenden Auftrennung des Aromatengemisches in die Einzelkomponenten besteht. In USA, Westeuropa, Japan, UdSSR und der Bundesrepublik Deutschland wurden in den Jahren 1985 und 1991 die folgenden Mengen (in Mio. t) an Benzol produziert (Weissermel 1994): Tabelle 1 Produktionsmengen an Benzol nach verschiedenen Ländern. Land 1985 [Mio. t] 1992 [Mio. t] USA 4,49 5,45 Westeuropa 4,95 6,42 Japan 2,08 3,31 GUS 1,96 (1984) 1,99 (1991) BRD 1,58 1,61 Für die technische Synthese von Benzol stehen im wesentlichen vier verschiedene Quellen zur Verfügung: 1. Isolierung aus Produkten der Steinkohlen-Verkokung 2. Isolierung aus dem Reformatbenzin der Rohbenzin-Verarbeitung 3. Isolierung aus dem Pyrolysebenzin des Steamcrackers 4. Hydrodealkylierung (Abbau der aromatischen Seitenkette von (im allgemeinen) Toluol, wobei die Toluolsynthese prinzipiell analog der von Benzol verläuft). Der Anteil der verschiedenen Quellen (in Gew.-%) an der Benzolerzeugung kann der nachfolgenden Tabelle entnommen werden (Weissermel 1994). Tabelle 2 Anteil verschiedener Quellen an der Benzolerzeugung in Gew.-%. Quelle USA Westeuropa Japan 1985 1991 1986 1992 1984 1991 Steamcracker 20 22 59 64 59 35 Reformatbenzin 47 48 15 17 23 52 Hydrodealkylierung 28 23 18 9 9 --- Kohle und andere 5 7 8 10 9 13 In dieser Prozeßeinheit wird nur die Benzolsynthese nach dem Steamcracking-Verfahren (Westeuropa, 1992, 64 % der Benzolerzeugung) bilanziert. Beim Steamcracking entsteht Benzol als Koppelprodukt von Etyhlen, so daß für die Bilanzierung von Benzol die Daten aus der Ethylenherstellung (vgl. Prozeßeinheit „Chem-Org\Ethylen“) verwendet werden. Da für die Aufarbeitung des Pryrolysebenzins und die anschließende Isolierung von Benzol keine Daten zur Verfügung stehen, wurden diese Teilschritte nicht separat bilanziert. Näherungsweise wird davon ausgegangen, daß die Isolierung von Benzol vergleichbar ist mit der Reindarstellung von Ethylen bei der Ethylenherstellung. Als wichtigster Rohstoff für das Steamcracking dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa wird überwiegend (über 80 %) von Naphtha ausgegangen (#2). 47 % des gesamten in der chemischen Industrie Westeuropas verbrauchten Benzols (5,81 Mio. t) wurden 1992 für die Herstellung von Styrol (Polystyrolherstellung) verwendet (Weissermel 1994). Bei der hier betrachteten Benzolherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 3 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 3, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 3, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4-Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 3). Neben dem Heizgas (siehe oben) bleiben auch die Reststoffe bei der Allokation unberücksichtigt. Die Reststoffe werden ohne Gutschrift/Belastung z.B. zur Raffinerie abgegeben, da ihr weiterer Verwendungszweck unbekannt ist. In #1 wird der beim Cracken anfallende 3 bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Eine Gutschrift für 3 bar-Dampf bei einer derart komplexen Verflechtung der Dampfnutzung, wie sie in der chemischen Industrie vorliegt, ist fragwürdig. Einerseits ist die genaue Weiterverwendung des Dampfes unbekannt. Andererseits ist die tatsächliche Energieeinsparung durch die Weiterverwendung des Dampfes wesentlich geringer als der Heizwert es vorgibt . Im Unterschied zu der Dampfgutschrift von 10,37 GJ/t Ethylen nach BUWAL werden bei #2 die Einsparungsmöglichkeiten auch nur mit ca. 2 GJ beziffert. Dieser Wert von 2 GJ liegt aber ohnehin innerhalb der Schwankungsbreite des Energiebedarfs bei der Propylenherstellung nach den verschiedenen hier betrachteten Literaturquellen (siehe „Energiebedarf“ weiter unten). Aufgrund der obigen Überlegungen wird daher bei GEMIS keine Gutschrift für den anfallenden 3 bar-Dampf erteilt. Da die verschiedenen Produkte (Ethylen, Propylen, 60 % C4 und Benzol) gleichwertig sind und bei der Bilanzierung die Allokation nach Massen erfolgt, ergeben sich bei der Nachfrage von 1 t Produkt immer dieselben Werte für Energie, Emissionen etc. unabhängig davon welches der Produkte nachgefragt wird. Tabelle 3 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Benzolherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Benzol [kg] Edukt Naphtha 1000 Edukt Naphtha 20000 1482,2 Produkte Produkt Ethylen 300 Ethylen 6000 Propylen 150 Propylen 3000 60 % C4-Frakt. 60 60 % C4 1200 Benzol 50 Benzol 1000 1000 Reststoffe 268 Reststoffe 5360 478,6 Heizgas 170 Verluste 2 Verluste 40 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 3 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 3) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Benzol nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 50 kg auf 1000 kg Benzol. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (26,8 %) ergebenden Anteile für die Benzolherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird bei #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Benzol ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t, der Wert wurde von der Ethylenherstellung übernommen). Da bei GEMIS keine Energiegutschrift für den Dampf erteilt wird (siehe Allokationsregeln), ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Benzol (Wert ohne Dampfgutschrift; 26,8 % der Energie des Gesamtcrackingprozesses). In #3 wird der Gesamtenergiebedarf des Steamcrackers mit 17600 btu/lb Input (#3 wertet den gesamten Output -dieser ist mengenmäßig gleich dem Input- als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Benzol. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Benzol angegeben. (Der Wert wurde von der Ethylenherstellung übernommen. Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2GJ/t Ethylen bzw. Benzol möglich). Die Energieangaben der beschriebenen Literaturquellen zeigen eine befriedigende Übereinstimmung. Für GEMIS werden wie auch bei der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzolemissionen ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - ergibt sich für Benzol ein Emissionswert von 0,151 kg/t Benzol. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Benzol wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Benzolherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Benzol berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Org\Benzol-DE-2010

Herstellung von Benzol durch Dampfpyrolyse von Naphtha nach dem Steamcracking-Verfahren. Benzol fällt dabei in der Fraktion des Pyrolysebenzins als Koppelprodukt von Ethylen an. Zum Cracken (Spalten) wird der Kohlenwasserstoff mit Dampf gemischt und auf 500 bis 650 C vorgeheizt. Im eigentlichen Reaktor wird dann das Gemisch bei Temperaturen zwischen 700 und 900 C gecrackt. Die Verweilzeit im Reaktor beträgt weniger als eine Sekunde. Nach dem Reaktor wird das heiße Gasgemisch schockartig abgekühlt (gequencht) um die Zersetzung der gebildeten Produkte [neben Pyrolysebenzin (Benzol) entstehen Ethylen, Propylen, Butadien und andere Kohlenwasserstoffe] zu vermeiden. Schließlich wird der Produktstrom gewaschen, getrocknet und fraktioniert. Wobei die Abtrennung des Pyrolysebenzins von den restlichen Produkten bereits im Rahmen des Waschvorgangs erfolgt. Zur Auftrennung der restlichen Produktfraktionen wird das Gasgemisch komprimiert, auf tiefe Temperaturen abgekühlt und fraktioniert destilliert. Bei der Aufarbeitung des Pyrolysebenzins ist eine zweistufige katalytische Hydrierung (Entfernung von Doppelbindungen und S-, N- und O-haltigen Verbindungen) notwendig. Darauf folgt die eigentliche Isolierung von Benzol aus dem Pyrolysebenzin, die im wesentlichen aus den Teilschritten der Nichtaromaten-Abtrennung und der anschließenden Auftrennung des Aromatengemisches in die Einzelkomponenten besteht. In USA, Westeuropa, Japan, UdSSR und der Bundesrepublik Deutschland wurden in den Jahren 1985 und 1991 die folgenden Mengen (in Mio. t) an Benzol produziert (Weissermel 1994): Tabelle 1 Produktionsmengen an Benzol nach verschiedenen Ländern. Land 1985 [Mio. t] 1992 [Mio. t] USA 4,49 5,45 Westeuropa 4,95 6,42 Japan 2,08 3,31 GUS 1,96 (1984) 1,99 (1991) BRD 1,58 1,61 Für die technische Synthese von Benzol stehen im wesentlichen vier verschiedene Quellen zur Verfügung: 1. Isolierung aus Produkten der Steinkohlen-Verkokung 2. Isolierung aus dem Reformatbenzin der Rohbenzin-Verarbeitung 3. Isolierung aus dem Pyrolysebenzin des Steamcrackers 4. Hydrodealkylierung (Abbau der aromatischen Seitenkette von (im allgemeinen) Toluol, wobei die Toluolsynthese prinzipiell analog der von Benzol verläuft). Der Anteil der verschiedenen Quellen (in Gew.-%) an der Benzolerzeugung kann der nachfolgenden Tabelle entnommen werden (Weissermel 1994). Tabelle 2 Anteil verschiedener Quellen an der Benzolerzeugung in Gew.-%. Quelle USA Westeuropa Japan 1985 1991 1986 1992 1984 1991 Steamcracker 20 22 59 64 59 35 Reformatbenzin 47 48 15 17 23 52 Hydrodealkylierung 28 23 18 9 9 --- Kohle und andere 5 7 8 10 9 13 In dieser Prozeßeinheit wird nur die Benzolsynthese nach dem Steamcracking-Verfahren (Westeuropa, 1992, 64 % der Benzolerzeugung) bilanziert. Beim Steamcracking entsteht Benzol als Koppelprodukt von Etyhlen, so daß für die Bilanzierung von Benzol die Daten aus der Ethylenherstellung (vgl. Prozeßeinheit „Chem-Org\Ethylen“) verwendet werden. Da für die Aufarbeitung des Pryrolysebenzins und die anschließende Isolierung von Benzol keine Daten zur Verfügung stehen, wurden diese Teilschritte nicht separat bilanziert. Näherungsweise wird davon ausgegangen, daß die Isolierung von Benzol vergleichbar ist mit der Reindarstellung von Ethylen bei der Ethylenherstellung. Als wichtigster Rohstoff für das Steamcracking dient in den USA Ethan aus Erdgas (ca. 50 %), in Westeuropa wird überwiegend (über 80 %) von Naphtha ausgegangen (#2). 47 % des gesamten in der chemischen Industrie Westeuropas verbrauchten Benzols (5,81 Mio. t) wurden 1992 für die Herstellung von Styrol (Polystyrolherstellung) verwendet (Weissermel 1994). Bei der hier betrachteten Benzolherstellung wird nur das Steamcracking von Naphtha bilanziert. Die Daten geben den Stand der Technik der 80er Jahre in Westeuropa bzw. den USA (Emissionen) wieder. Da die Kennziffern vom eingesetzten Rohstoff und der Produktverteilung abhängig sind, ist eine Übertragung der Daten auf andere Herstellungsländer nur bedingt möglich. Allokation: Beim Cracken von Naphtha entsteht eine Vielzahl an Stoffen. Dieser Output des Crackers wurde nach den Angaben von #1 berechnet und ist in Tabelle 3 wiedergegeben. Als Produkte werden Ethylen, Propylen, 60 % der C4-Fraktion und Benzol betrachtet. Im Unterschied zu den Angaben aus #1 wurde Acetylen durch Benzol als Produkt ersetzt. Als Reststoffe werden 40 % der C4-Fraktion, Wasserstoff, Benzine, Rückstände und Acetylen gewertet. Während nach #1 (siehe Tabelle 3, Spalten 1 und 2) das Heizgas (Methan) mitbilanziert wird, entfällt dieses bei der Bilanzierung für GEMIS (siehe Tabelle 3, Spalten 3 bis 5). Das Heizgas wird bei GEMIS nicht stofflich berücksichtigt (wird bei Input und Output des Crackers herausgerechnet), da es wieder direkt im Prozeß zur Energieerzeugung (Erzeugung von Prozeßwärme durch Verbrennung) eingesetzt wird. Der Rohstoffbedarf an Naphtha, der Energie- und Wasserbedarf sowie die anfallenden Emissionen und Abfälle werden unter den Produkten (Ethylen, Propylen, 60 % der C4-Fraktion und Benzol) aufgeteilt. Die Allokation erfolgt nach Massen. So entfällt auf Ethylen ein Anteil von 53,6 %, auf Propylen 26,8 %, auf die 60 % C4 10,7 % und auf Benzol die restlichen 8,9 % (vgl. Produktmengen in Tabelle 3). Neben dem Heizgas (siehe oben) bleiben auch die Reststoffe bei der Allokation unberücksichtigt. Die Reststoffe werden ohne Gutschrift/Belastung z.B. zur Raffinerie abgegeben, da ihr weiterer Verwendungszweck unbekannt ist. In #1 wird der beim Cracken anfallende 3 bar-Dampf mit einer Energiegutschrift von 3150 MJ (Heizwert) pro Tonne Dampf bedacht. Eine Gutschrift für 3 bar-Dampf bei einer derart komplexen Verflechtung der Dampfnutzung, wie sie in der chemischen Industrie vorliegt, ist fragwürdig. Einerseits ist die genaue Weiterverwendung des Dampfes unbekannt. Andererseits ist die tatsächliche Energieeinsparung durch die Weiterverwendung des Dampfes wesentlich geringer als der Heizwert es vorgibt . Im Unterschied zu der Dampfgutschrift von 10,37 GJ/t Ethylen nach BUWAL werden bei #2 die Einsparungsmöglichkeiten auch nur mit ca. 2 GJ beziffert. Dieser Wert von 2 GJ liegt aber ohnehin innerhalb der Schwankungsbreite des Energiebedarfs bei der Propylenherstellung nach den verschiedenen hier betrachteten Literaturquellen (siehe „Energiebedarf“ weiter unten). Aufgrund der obigen Überlegungen wird daher bei GEMIS keine Gutschrift für den anfallenden 3 bar-Dampf erteilt. Da die verschiedenen Produkte (Ethylen, Propylen, 60 % C4 und Benzol) gleichwertig sind und bei der Bilanzierung die Allokation nach Massen erfolgt, ergeben sich bei der Nachfrage von 1 t Produkt immer dieselben Werte für Energie, Emissionen etc. unabhängig davon welches der Produkte nachgefragt wird. Tabelle 3 Stoffbilanzen beim Steamcracking in kg (Gesamtprozeß und nach Allokation für die Benzolherstellung) BUWAL gesamt [kg] GEMIS gesamt [kg] allokiert für gesamt Benzol [kg] Edukt Naphtha 1000 Edukt Naphtha 20000 1482,2 Produkte Produkt Ethylen 300 Ethylen 6000 Propylen 150 Propylen 3000 60 % C4-Frakt. 60 60 % C4 1200 Benzol 50 Benzol 1000 1000 Reststoffe 268 Reststoffe 5360 478,6 Heizgas 170 Verluste 2 Verluste 40 3,6 Genese der Kennziffern Massenbilanz: Die Massenbilanz des Crackers kann der Tabelle 3 entnommen werden. Ausgehend von den Angaben aus #1 (Spalten 2 der Tabelle 3) ergibt sich der Stoffstrom des Crackers bezogen auf die Herstellung von 1 Tonne Benzol nach GEMIS (Spalte 4) durch das Herausrechnen des Heizgases und anschließendes Umrechnen der Werte von 50 kg auf 1000 kg Benzol. Die sich aus dem Gesamtcrackingprozeß (Spalte 4) nach der Allokationsregel (26,8 %) ergebenden Anteile für die Benzolherstellung sind in der Spalte 5 wiedergegeben. Energiebedarf: Der Energiebedarf beim Steamcracking wird bei #1 mit ca. 7,78 GJ (inkl. Dampfgutschrift) pro Tonne Input angegeben. Umgerechnet auf einen Output von 1 t Benzol ergibt sich entsprechend der o.g. Allokationsregel ein Energiebedarf von 13,89 GJ (inkl. Dampfgutschirft von 10,37 GJ/t, der Wert wurde von der Ethylenherstellung übernommen). Da bei GEMIS keine Energiegutschrift für den Dampf erteilt wird (siehe Allokationsregeln), ergibt sich daraus für den Energiebedarf ein Wert von 24,26 GJ/t Benzol (Wert ohne Dampfgutschrift; 26,8 % der Energie des Gesamtcrackingprozesses). In #3 wird der Gesamtenergiebedarf des Steamcrackers mit 17600 btu/lb Input (#3 wertet den gesamten Output -dieser ist mengenmäßig gleich dem Input- als Produkt) angegeben. Nach der hier angewandten Allokationsregel ergibt sich daraus ein Wert von 22,5 GJ/t Benzol. Im Vergleich dazu wird bei #2 ein Wert von 20,9 GJ/t Benzol angegeben. (Der Wert wurde von der Ethylenherstellung übernommen. Über Produktdefinition und Allokation liegen keine Angaben vor, die Werte werden jedoch als repräsentativ bezeichnet. Durch Nutzung der Abwärme sind Einsparungen von ca. 2GJ/t Ethylen bzw. Benzol möglich). Die Energieangaben der beschriebenen Literaturquellen zeigen eine befriedigende Übereinstimmung. Für GEMIS werden wie auch bei der Massenbilanz die Daten von #1 verwendet. Prozeßbedingte Luftemissionen: An prozeßbedingten Luftemissionen sind beim Steamcracking-Prozeß vor allem flüchtige organische Verbindungen (VOC) von Bedeutung. Aus der Literatur konnte nur für Benzolemissionen ein Wert ermittelt werden. Mit Hilfe der Angaben aus #3 - dort wird aus US EPA, Locating and Estimating Air Emissions from Sources of Benzene,1988 ein Wert von 0,169 lbs/ton Ethylen aufgeführt - ergibt sich für Benzol ein Emissionswert von 0,151 kg/t Benzol. Wasser: Der Kühlwasserbedarf zur Herstellung von 1 t Benzol wurde aus den Angaben aus #2 berechnet. Er beträgt 1,26 m3 Wasser. Weiter Angaben zum Wasserbedarf bei der Benzolherstellung liegen nicht vor. Abwasser entsteht beim Steamcracken beim Ausschleusen des kondensierten Prozeßdampfes und der verbrauchten Lauge mit der die Spaltgase schwefelfrei gewaschen werden. Abwasserinhaltsstoffe sind hauptsächlich Kohlenwasserstoffe, begleitet von Phenolen und Schwefelverbindungen (UBA 1995a). Für Phenol wurde mit den Angaben aus #3 - dort wird ein Wert von 0,00238 lbs/ton Ethylen aus US EPA, Contractors Engineering Report: Analysis of Organic Chemicals and Plastics/Synthetic Fibers Industries, Appendix S: Production Processes, 1981 aufgeführt - ein Wert von 0,00213 kg/t Benzol berechnet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 67,5% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

1 2 3 4 533 34 35