Der Beschlussempfehlung des Ausschusses für Verkehr des Deutschen Bundestages folgend soll die Beurteilung von Fluglärm analog anderer Verkehrslärmquellen vorgenommen werden. Grundlage des hier vorgestellten Beurteilungsverfahrens ist der zwischen Tag und Nacht differenzierende Mittelungspegel (Leq(3)). Bei der Formulierung der Schutzziele wird auch dem Umstand, dass Fluglärm eine größere Stör- und Belästigungswirkung als vergleichbarer Straßenverkehrslärm entfaltet, durch schärfere Anforderungen Rechnung getragen. Unter dem Aspekt des Schutzes vor Gefahren und vor erheblichen Belästigungen sowie der Vorsorge wurden die Ergebnisse nationaler und ausländischer Lärmwirkungsstudien analysiert, wobei die Wirkungsbereiche - 'Beeinträchtigung der Gesundheit' inkl. 'Beeinträchtigung des Nachtschlafes' durch Fluglärm und vor allem der Wirkungsbereich - 'Belästigung' durch Fluglärm im Vordergrund stehen. Zusammengefasst ergeben sich folgende Belastungsbereiche, die aus Sicht der Lärmwirkungsforschung besonders beachtet werden müssen. Bei einer Umsetzung in rechtliche Regelungen ist im Falle von neuen oder wesentlich geänderten Flughäfen oder Flugplätzen zu bedenken, dass sich die hier genannten Bereiche nach unten verschieben können. - Bei Fluglärmbelastungen von 55 dB(A) tags und 45 dB(A) nachts wird die Grenze zu erheblichen Belästigungen erreicht. - Bei Fluglärmbelastungen von 60 dB(A) tags und 50 dB(A) nachts sind aus präventivmedizinischer Sicht Gesundheitsbeeinträchtigungen zu befürchten. - Bei Fluglärmbelastungen oberhalb von 65 dB(A) tags und 55 dB(A) nachts sind Gesundheitsbeeinträchtigungen in Form von Herz-Kreislauf-Erkrankungen zu erwarten.
Projektziel ist die Entwicklung eines neuen tierversuchsfreien Ansatzes für die Behandlung von Herz-Kreislauf-Erkrankungen. Als Alternative zum Tierversuch sollen humane Zellen des Gefäßsystems und moderne Methoden der molekularen Toxikologie eingesetzt werden. Humane Zellen des Gefäßsystems sollen unterschiedlichen krankmachenden Reizen ausgesetzt werden, um Bedingungen zu simulieren, unter denen Herzkreislauferkrankungen wie Bluthochdruck, Diabetes oder Gefäßveränderungen vorkommen.
Hintergrund: Die Gesundheit urbaner Bevölkerung ist von globalem Interesse, da schon jetzt die Mehrheit der Menschen in Städten wohnt. Große Gesundheits- und Umweltdisparitäten sind dabei in den Innenstädten anzutreffen. Jedoch gibt es nur wenige Studien, die die Gesundheit urbaner Bevölkerung mit jenen multidisziplinären und integrativen Ansätzen und Methoden untersuchen, die nötig wären, um die Komplexität von sozio-ökologischer Umwelt und deren Verteilung in der Stadt zu erfassen. Hinzu kommt, dass räumliche und raum-zeitliche Herangehensweisen zu gesundheitsbezogenen Fragestellungen im urbanen Kontext eher selten vorkommen. Daher sind wissenschaftliche Ansätze gefragt, welche die Ursachen vorhandener Gesundheits- und Umweltdisparitäten auf den verschiedenen geographischen Skalen untersuchen, um unter anderem die Gesundheitspolitik besser zu informieren. Forschungsziele: Mein übergreifendes Forschungsziel ist es, ein konzeptionelles Modell zu entwickeln, um die Erforschung komplexer Interaktionen zwischen städtischer Umwelt und Gesundheit voranzubringen. Um dies zu bewerkstelligen, werde ich die räumliche Verteilung von Unterschieden in der Gesundheit städtischer Bevölkerung (Gesundheitsdisparitäten) und der sozio-ökologischen Umwelt (Umweltdisparitäten) erfassen und quantifizieren. Ferner werde ich untersuchen, wie Umweltdisparitäten in der städtischen Nachbarschaft die Gesundheit der Bevölkerung beeinflussen. Methoden: Um gesundheitsrelevante Fragestellungen zu untersuchen, schlage ich einen integrativen und räumlich-expliziten Ansatz vor, welcher methodische Ansätze der Epidemiologie und der Geographie kombiniert. Dieser gesundheits-geographischen Ansatz konzentriert sich auf das komplexe Verhältnis von sozio-ökologischer Umwelt und urbaner Gesundheit auf verschiedenen geographischen Skalen. Der Ansatz beinhaltet Krankheitskartierung, Expositionskartierung und räumlich-epidemiologische Modellierung. Fünf Datensätze werden verwendet um urbane Nachbarschaftscharakteristiken und die damit assoziierte Gesundheit der Stadtbevölkerung zu untersuchen. Im Hinblick auf ein Stadt-Land Gefälle wird Über- und Untergewicht der Bevölkerung in afrikanischen Staaten südlich der Sahara untersucht. Im Hinblick auf die individuelle städtische Nachbarschaft werden mentale Gesundheit und Herzkreislauferkrankungen in New York Stadt und Framingham, MA untersucht. Die Ergebnisse werden anschließend in einem konzeptionellen Modell für Umwelt und Gesundheit synthetisiert. Relevanz des Projekts: Die angestrebten Studien werden geographische Ansätze für gesundheitsbezogene Fragestellungen konsolidieren. Die Ergebnisse werden ferner dazu beitragen, Strategien zu entwickeln, um innerstädtische Disparitäten zu reduzieren und die Gesundheitspolitik zu informieren. Aus dem Projekt werden mindestens sechs Publikationen in internationalen Fachzeitschriften und Buchkapiteln mit wissenschaftlicher Qualitätssicherung hervorgehen.
Feinstäube in der Außenluft stellen eine gesundheitliche Belastung dar und sind daher im Rahmen der 39. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes in Form von Grenzwerten reglementiert. Es gibt Grenzwerte für Feinstäube mit einem Durchmesser von 10 und 2,5 Mikrometer, jedoch keine für ultrafeine Partikel (UFP) mit einer Größe kleiner als 0,1 Mikrometer. Aufgrund ihrer geringen Größe können UFP tief bis in die Lungenbläschen und von dort aus in das Herz-Kreislaufsystem gelangen. Im Herz-Kreislaufsystem sowie in anderen Organen können UFP Entzündungsreaktionen hervorrufen. Es wird angenommen, dass durch anhaltende Entzündungen Organschädigungen und chronische Erkrankungen wie zum Beispiel chronische Lungenerkrankungen, Herz-Kreislauferkrankungen oder eine Schwächung des Immunsystems begünstigt werden. Zu diesen gesundheitlichen Wirkungen insbesondere nach langfristiger Exposition gegenüber UFP gibt es derzeit kaum epidemiologische Studien. Dieses Vorhaben soll diesem Mangel begegnen, indem eine epidemiologische Studie konzipiert und pilotiert wird. Hierbei sollen die gesundheitlichen Auswirkungen einer langfristigen Exposition gegenüber UFP untersucht werden unter Berücksichtigung von Confoundern und anderen Luftschadstoffen. Die Pilotierung bezieht sich auf verschiedene UFP-Messungen und Metriken, um deren zeitliche und räumliche Variabilität abdecken zu können, denn Durchschnittswerte, welche in epidemiologischen Studien meist verwendet werden und repräsentativ für eine bestimmte Umgebung und einen Zeitraum sind, können für UFP nicht verwendet werden. Es sollen konkrete Vorschläge für eine umfassende epidemiologische Studie inklusive Expositionsschätzung, UFP Metrik, Fallzahl, möglicher zu untersuchender Gesundheitsendpunkte sowie deren Erfassung gemacht werden. Das Projekt wird von einem Konsortium bearbeitet, welches aus den folgenden Institutionen besteht: Institut für Energie- und Umwelttechnik e.V., TNO - Netherlands Organisation for Applied Scientific Research, Institut für Arbeits- Sozial- und Umweltmedizin, Heinrich-Heine-Universität, Hochschule Düsseldorf, Labor für Physik und Umweltmesstechnik, IVU Umwelt GmbH, Ing.-Büro Janicke.
<p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten.</p><p>Informationen zur interaktiven Karte</p><p>Quellen: <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> 2000-2024 – <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>/Climate Data Center, <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2000-2024 – DWD/Climate Data Center; Daten für 2024 – Persönliche Mitteilung des DWD vom 15.05.2025.</p><p>Bearbeitung: Umweltbundesamt, FG I 1.6/FG I 1.7</p><p>Gesundheitsrisiko Hitze</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich. </p><p><em>Tipps zum Weiterlesen: </em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. & Mücke, H.-G. (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>
Fein- und Ultrafeinstäube und ihr Bezug zu Atemwegs- und Herz-Kreislauferkrankungen sind wichtiges Thema der öffentlichen Gesundheitsvorsorge. Diese Studie stellt umfangreiche Messdaten für die Innenraumluft im privaten Wohnbereich vor. Die Untersuchungen erfassen Wohnungen in städtischen wie ländlichen Bereichen und geben Aufschluss über jahreszeitliche Schwankungen. Die größenaufgelöste Charakterisierung der Fein- und Ultrafeinstäube ermöglicht eine Abschätzung der durch die Tätigkeiten der Wohnungsnutzenden freigesetzten Partikel. Die Ergebnisse sind von hoher Bedeutung für die Bestimmung der auf den Menschen einwirkenden Belastung an Fein- und Ultrafeinstäuben und mögliche Maßnahmen zur Verbesserung der Innenraumluft.
Abschätzung des Gesundheitsrisikos durch ionisierende Strahlung Erkrankungen ( z.B. Krebs) und Schäden, die von ionisierender Strahlung ausgelöst wurden, lassen sich vom Krankheitsbild her nicht von Erkrankungen unterscheiden, die spontan oder durch andere Ursachen entstanden sind. Eine mögliche Verursachung durch Strahlung kann daher nur festgestellt werden, wenn die Erkrankungen bei strahlenexponierten Personengruppen statistisch signifikant häufiger auftreten als bei nicht exponierten Kontrollgruppen. Zur Bestimmung des strahlenbedingten Krebsrisikos wurden epidemiologische Studien bei strahlenexponierten Personengruppen durchgeführt. Die Abschätzungen des genetischen Strahlenrisikos für den Menschen stammen aus tierexperimentellen Untersuchungen, da es für genetische Strahlenschäden keine gesicherten, am Menschen gewonnenen Erkenntnisse gibt. Wenn ionisierende Strahlung auf den menschlichen Körper trifft, können Schäden in einzelnen Zellen oder Geweben entstehen. Bei den Strahlenschäden unterscheidet man grundsätzlich zwischen deterministischen und stochastischen Schäden. Deterministische Strahlenschäden ( z. B. Hautrötungen oder Haarausfall) treten auf, wenn jemand eine Strahlendosis von mehr als ca. 500 Millisievert ( mSv ) erhalten hat. Bereits unterhalb dieses Schwellenwertes können stochastische Strahlenschäden auftreten. Dabei handelt es sich um Erkrankungen (z.B Krebs) und Schäden, die nur mit einer bestimmten Wahrscheinlichkeit entstehen. Im Folgenden wird beschrieben, wie man solche Wahrscheinlichkeiten – in der Epidemiologie auch "Risiken" genannt – schätzen kann. Eine große Herausforderung besteht darin, dass sich solche strahlenbedingten Erkrankungen ( z.B. Krebs) vom Krankheitsbild her nicht von Erkrankungen unterscheiden, die spontan oder durch andere Ursachen entstanden sind. Eine mögliche Verursachung durch Strahlung kann daher nur festgestellt werden, wenn die Erkrankungen bei strahlenexponierten Personengruppen statistisch signifikant und über verschiedene Personengruppen hinweg konsistent häufiger auftreten als bei nicht exponierten Kontrollgruppen und sich ein Zusammenhang zwischen der Dosis und der Höhe des Erkrankungsrisikos ( Dosis -Wirkungs-Beziehung) nachweisen lässt. Abschätzung des Krebsrisikos Zur Bestimmung des strahlenbedingten Krebsrisikos wurden wichtige epidemiologische Studien vor allem bei folgenden Personengruppen durchgeführt: Überlebende der Atombombenexplosionen von Hiroshima und Nagasaki , Patienten, die zur Diagnostik und Therapie bestrahlt wurden ( z.B. die kanadische Fluoroskopie- Kohorte ), beruflich strahlenexponierte Personen ( z.B. die Wismut Uranbergarbeiter- Kohorte ), Bewohner in der Umgebung kerntechnischer Anlagen ( z.B. Hanford ( USA ), Mayak (Russland)), Bewohner aus der Umgebung havarierter Kernkraftwerke (Tschornobyl ( russ. : Tschernobyl) und Fukushima) und Personen, die bei den Aufräumarbeiten eingesetzt wurden oder werden, Personen, die von oberirdischen Atombombentests betroffen waren ( z.B. Bewohner in der Nähe des ehem. Atomwaffentestgeländes Semipalatinsk (Kasachstan)). Die wichtigsten Daten für die Abschätzungen des strahlenbedingten Krebsrisikos sind die Daten der japanischen Atombombenüberlebenden. Diese Gruppe war mit einer hohen Dosisrate exponiert (die gesamte Dosis im Bruchteil einer Sekunde), die Dosis war aber nur bei einem kleinen Prozentsatz der Betroffenen hoch. Das Krebsrisiko lässt sich anhand der oben genannten Studienpopulationen schätzen. Es setzt sich aus zwei Komponenten zusammen: dem "spontanen" Krebsrisiko in einer Population, also dem allgemeinen Risiko ohne Strahlenexposition an Krebs zu erkranken, und dem strahleninduzierten Krebsrisiko. Letzteres beschreibt Krebsfälle, die ohne Strahlenexposition nicht entstanden wären. Für beide Komponenten werden Modelle angenommen und geschätzt. Für die Schätzung der Dosis-Wirkungs-Beziehung wird typischerweise ein lineares Modell ohne Schwellenwert angenommen. D. h. man nimmt an, dass mit einer Erhöhung der Strahlendosis sich auch das Krebsrisiko proportional erhöht und dass es keinen Schwellenwert gibt, unterhalb dessen Strahlung nicht schädlich ist. Oft will man Aussagen zum Strahlenrisiko nicht nur für eine Studienpopulation ( z.B. die Atombombenüberlebenden), sondern auch für andere Populationen ( z.B. die deutsche Bevölkerung) treffen. Dann muss das in einer Studienpopulation ermittelte Strahlenrisiko auf das Strahlenrisiko der Zielpopulation übertragen werden. Für die relativ niedrigen Strahlenbelastungen, wie sie heute in der Umwelt und am Arbeitsplatz auftreten, ist eine weitere Extrapolation von den Befunden bei den japanischen Atombombenüberlebenden notwendig: Die epidemiologischen Befunde, die hauptsächlich für hohe Dosisraten vorliegen, werden auf die Expositionssituationen bei niedrigen Dosen und chronischer Exposition übertragen. Hierzu gibt es verschiedene Ansätze: Die ICRP empfiehlt im Bereich niedriger Dosen und chronischer Belastungen die Risikokoeffizienten durch den Faktor 2 zu teilen. Die ICRP geht nämlich davon aus, dass eine über einen längeren Zeitraum verteilte Dosis weniger wirksam ist als eine gleich hohe Dosis , die aus kurzzeitiger Belastung resultiert. Damit soll insbesondere die Reparatur- und Erholungskapazität von bestrahlten Zellen bei niedrigen Werten der Dosis und der Dosisleistung berücksichtigt werden. Die Reduktion ergibt sich nicht unmittelbar aus den Beobachtungsdaten für Krebserkrankungen bei Menschen und beruht auf Modellannahmen, aufbauend auf laborexperimentellen Erkenntnissen. Das BfS sieht die wissenschaftliche Begründung für diese Reduktion der Risikokoeffizienten für niedrige Dosen und chronische Expositionen als nicht ausreichend an. Risikoschätzungen sind grundsätzlich mit Unsicherheiten behaftet. Dies hat mehrere Gründe: Zum einen handelt es sich bei einer Studienpopulation nur um einen begrenzten Personenkreis, der nicht zwangsläufig repräsentativ für die interessierende Zielpopulation sein muss. Zum anderen werden für die Modelle und die Risikoübertragungen viele Annahmen getroffen. Des Weiteren ist die Erfassung der Strahlendosis häufig mit großen Unsicherheiten verbunden. Mehr Informationen zu strahleninduzierten Krebserkrankungen und deren Risiken finden Sie im Artikel " Krebserkrankungen ". Abschätzung des Risikos für andere Krankheiten als Krebs Eine Abschätzung des Risikos, nach Strahlenbelastung an anderen Krankheiten als Krebs zu erkranken, ist zurzeit nicht zuverlässig möglich. Auswertungen bei den Überlebenden der Atombombenabwürfe in Japan , bei exponierten Bevölkerungsgruppen in der ehemaligen Sowjetunion und bei Strahlentherapie-Patienten weisen darauf hin, dass auch Herz-Kreislauf-Erkrankungen nicht wie lange angenommen erst ab 0,5 Gray als späte deterministische Strahlenschäden auftreten können, sondern bereits bei niedrigeren Dosen. Die Annahme, dass Katarakte (Linsentrübungen des Auges) zu den deterministischen Strahlenschäden zählen, wird zurzeit ebenfalls in Frage gestellt. Auch hier gibt es neue Erkenntnisse, die darauf hinweisen, dass Katarakte bereits bei zehnfach niedrigerer Dosis auftreten als bis vor kurzem noch angenommen (0,5 Gray gegenüber fünf Gray ). Es wird diskutiert, dass für diese Erkrankungen möglicherweise keine Schwellendosis existiert, sie also wie bösartige Neubildungen als stochastische Strahlenschäden anzusehen sind. Abschätzung des Risikos für genetische Schäden Für genetische Strahlenschäden gibt es keine gesicherten, am Menschen gewonnenen Erkenntnisse. In Hiroshima und Nagasaki konnte bisher bei Nachkommen der bestrahlten Atombomben-Überlebenden keine erhöhte Rate von vererbbaren Strahlenschäden im Vergleich zur übrigen japanischen Bevölkerung festgestellt werden. Aus experimentellen Untersuchungen an Tieren ist aber bekannt, dass Strahlung genetische Veränderungen, sogenannte Mutationen, in Keimzellen auslösen kann. Daher stammen die Abschätzungen des genetischen Strahlenrisikos für den Menschen aus diesen tierexperimentellen Untersuchungen. Mehr Informationen zu strahleninduzierten genetischen Schäden und deren Risiken können Sie im Artikel " Vererbbare Strahlenschäden " nachlesen. Risikobewertung Die obigen Ausführungen zeigen, wie für einzelne Erkrankungen auf Basis einzelner Studien Strahlenrisiken ermittelt werden können. Eine fundierte Risikobewertung auf Basis eines einzigen Tierexperiments oder einer einzelnen epidemiologischen Studie am Menschen ist allerdings kaum möglich. Für die Bewertung gesundheitsbezogener Risiken durch Strahlung ist es erforderlich, die Ergebnisse aus mehreren Studien heranzuziehen und in einer zusammenfassenden Gesamtschau zu bewerten. Ein StrahlenschutzStandpunkt des Bundesamtes für Strahlenschutz thematisiert die Bewertung gesundheitsbezogener Risiken im Detail. Stand: 20.05.2025
| Origin | Count |
|---|---|
| Bund | 109 |
| Europa | 1 |
| Land | 34 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 39 |
| Text | 58 |
| unbekannt | 46 |
| License | Count |
|---|---|
| geschlossen | 90 |
| offen | 53 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 127 |
| Englisch | 37 |
| Resource type | Count |
|---|---|
| Bild | 3 |
| Datei | 6 |
| Dokument | 34 |
| Keine | 68 |
| Unbekannt | 1 |
| Webdienst | 1 |
| Webseite | 67 |
| Topic | Count |
|---|---|
| Boden | 108 |
| Lebewesen und Lebensräume | 130 |
| Luft | 118 |
| Mensch und Umwelt | 144 |
| Wasser | 109 |
| Weitere | 134 |