API src

Found 124 results.

Related terms

DESERTEC - Wüstenstrom

Das Projekt "DESERTEC - Wüstenstrom" wird/wurde ausgeführt durch: DESERTEC Foundation, Office Hamburg.Dieses Projekt ist vorerst nur geplant. Auf einer Veranstaltung am 13. Juli 2009 in München haben zwölf europäische Unternehmen zusammen mit der DESERTEC Foundation ein Memorandum of Understanding zur Gründung einer Desertec Industrial Initiative Planungsgesellschaft (DII) unterzeichnet. Die DII Planungsgesellschaft soll bis zum 31. Oktober 2009 als GmbH nach deutschem Recht gegründet werden. Ziel dieser Initiative ist die Analyse und Entwicklung von technischen, ökonomischen, politischen, gesellschaftlichen und ökologischen Rahmenbedingungen zur CO2-freien Energieerzeugung in den Wüsten Nordafrikas. Dieses von der TREC-Initiative des Club of Rome entwickelte DESERTEC-Konzept beschreibt die Perspektiven einer nachhaltigen Stromversorgung für alle Regionen der Welt mit Zugang zum Energiepotenzial von Wüsten. Die Gründungsunternehmen der DII, deren regionaler Fokus auf Europa, dem Nahen Osten und Nordafrika (MENA) liegt, werden sein: ABB, ABENGOA Solar, Cevital, Deutsche Bank, E.ON, HSH Nordbank, MAN Solar Millennium, Münchener Rück, M+W Zander, RWE, SCHOTT Solar, SIEMENS. Zu den wesentlichen Zielen der DII gehören auch die Erarbeitung konkreter Geschäftspläne und darauf aufbauender Finanzierungskonzepte sowie der Anstoß zu industriellen Vorbereitungen zum Bau einer Vielzahl vernetzter und über die MENA-Region verteilter solarthermischer Kraftwerke. Diese Energiequellen sollen durch ein internationales verlustarmes Hochspannungsgleichstromleitungsnetz (HGÜ) verbunden werden mit anderen regenerativen Energieerzeugern von Island bis Arabien. Es wird angestrebt, einen Anteil von rund 15 Prozent des Strombedarfs von Europa und einen erheblichen Anteil des Strombedarfs für die Erzeugerländer zu produzieren. Alle Tätigkeiten der DII sind darauf ausgerichtet, umsetzungsfähige Investitionspläne innerhalb von drei Jahren nach Gründung zu erstellen.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Leistungsdichteanhebung des HGÜ-Konverters

Das Projekt "Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Leistungsdichteanhebung des HGÜ-Konverters" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Siemens Energy Global GmbH & Co. KG.Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung

Das Projekt "Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung" wird/wurde ausgeführt durch: Infineon Technologies AG.Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Hochleistungshalbleiter

Das Projekt "Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Hochleistungshalbleiter" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Infineon Technologies AG.Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Ansteuerungsinnovationen und Potentiale zukünftiger Halbleiter

Das Projekt "Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Ansteuerungsinnovationen und Potentiale zukünftiger Halbleiter" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Rostock, Institut für Elektrische Energietechnik, Lehrstuhl Leistungselektronik und Elektrische Antriebe.Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Ermittlung der Kollisionsraten von (Greif-) Vögeln und Schaffung planungsbezogener Grundlagen für die Prognose und Bewertung des Kollisionsrisikos durch Windenergieanlagen, Teilvorhaben: Optimierte Berechnung und performantes Auslösen von kurativen Maßnahmen unter Verwendung von PMU/WAMS

Das Projekt "Ermittlung der Kollisionsraten von (Greif-) Vögeln und Schaffung planungsbezogener Grundlagen für die Prognose und Bewertung des Kollisionsrisikos durch Windenergieanlagen, Teilvorhaben: Optimierte Berechnung und performantes Auslösen von kurativen Maßnahmen unter Verwendung von PMU/WAMS" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Magdeburg, Institut für Elektrische Energiesysteme, Lehrstuhl Elektrische Netze und Erneuerbare Energie (IESY,LENA)Elektroenergiequellen.

Felduntersuchung zum Einfluss von HoCHspAnnungsgleichstRomübertraGungs (HGÜ)-Erdkabel auf Böden und landwirtschaftlichen Kulturpflanzen (CHARGE)^Teil 2, Teil 1

Das Projekt "Felduntersuchung zum Einfluss von HoCHspAnnungsgleichstRomübertraGungs (HGÜ)-Erdkabel auf Böden und landwirtschaftlichen Kulturpflanzen (CHARGE)^Teil 2, Teil 1" wird/wurde gefördert durch: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Es wird/wurde ausgeführt durch: Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Allgemeiner Pflanzenbau (340a).Das Energiekonzept der Bundesregierung sieht seit Oktober 2010 einen Energiemix bei der Stromerzeugung für 2050 vor, bei dem der Anteil erneuerbarer Energien auf 80 % gesteigert wird. Bislang sind die deutschen Stromnetze nicht flächendeckend auf den Transport des Stroms aus erneuerbaren Energien ausgelegt. Demzufolge sind große Infrastrukturmaßnahmen geplant, die mit erheblichen Einwirkungen auf das Schutzgut Boden durch die Verlegung der Kabel verbunden sein werden. Neben Veränderungen in der Bodenstruktur führen Erdkabel auch zu einer erheblichen Wärmeabgabe an den umliegenden Boden. Die Zusammenhänge und Auswirkungen auf das Pflanzenwachstum, die Ertragsfähigkeit des Standortes durch alternative bodenschonende Baumaßnahmen sowie mögliche thermische Verluste der Erdkabel sind nur unzulänglich erforscht. Ziel des Projektes ist, statistisch abgesicherte Daten zum Einfluss von Erdkabeltrassen auf landwirtschaftliche Böden und Nutzpflanzen zu erheben und zu evaluieren. Die übergeordneten Ziele fügen sich in die wissenschaftlichen, wirtschaftlichen, gesellschaftlichen und politischen Ziele zum Ausbau erneuerbarer Energien in Deutschland und leisten einen wesentlichen Erkenntnisgewinn, der durch die angewandten Methoden auf andere Standorte übertragbar ist.

Felduntersuchung zum Einfluss von HoCHspAnnungsgleichstRomübertraGungs (HGÜ)-Erdkabel auf Böden und landwirtschaftlichen Kulturpflanzen (CHARGE), Teil 2

Das Projekt "Felduntersuchung zum Einfluss von HoCHspAnnungsgleichstRomübertraGungs (HGÜ)-Erdkabel auf Böden und landwirtschaftlichen Kulturpflanzen (CHARGE), Teil 2" wird/wurde gefördert durch: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Es wird/wurde ausgeführt durch: Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Biogeophysik.Das Energiekonzept der Bundesregierung sieht seit Oktober 2010 einen Energiemix bei der Stromerzeugung für 2050 vor, bei dem der Anteil erneuerbarer Energien auf 80 % gesteigert wird. Bislang sind die deutschen Stromnetze nicht flächendeckend auf den Transport des Stroms aus erneuerbaren Energien ausgelegt. Demzufolge sind große Infrastrukturmaßnahmen geplant, die mit erheblichen Einwirkungen auf das Schutzgut Boden durch die Verlegung der Kabel verbunden sein werden. Neben Veränderungen in der Bodenstruktur führen Erdkabel auch zu einer erheblichen Wärmeabgabe an den umliegenden Boden. Die Zusammenhänge und Auswirkungen auf das Pflanzenwachstum, die Ertragsfähigkeit des Standortes durch alternative bodenschonende Baumaßnahmen sowie mögliche thermische Verluste der Erdkabel sind nur unzulänglich erforscht. Ziel des Projektes ist, statistisch abgesicherte Daten zum Einfluss von Erdkabeltrassen auf landwirtschaftliche Böden und Nutzpflanzen zu erheben und zu evaluieren. Die übergeordneten Ziele fügen sich in die wissenschaftlichen, wirtschaftlichen, gesellschaftlichen und politischen Ziele zum Ausbau erneuerbarer Energien in Deutschland und leisten einen wesentlichen Erkenntnisgewinn, der durch die angewandten Methoden auf andere Standorte übertragbar ist.

Vorhaben 5 & 5a BBPlG: Höchstspannungsleitung Wolmirstedt - Isar und Klein Rogahn / Stralendorf / Warsow / Holthusen / Schossin – Isar

ID: 4849 Ergänzungstitel des Vorhabens: Vorhaben 5 & 5a des Bundesbedarfsplangesetzes (BBPlG) Kurzbeschreibung des Vorhabens: Im als Sued­Ost­Link bekannten Vorhaben 5 ist der Neubau einer Leitung zur Hochspannungs-Gleichstrom-Übertragung (HGÜ) von Sachsen-Anhalt nach Bayern geplant. Die Verbindung zwischen den Umspannwerken Wolmirstedt und Isar soll als Erd­kabel realisiert werden. Es handelt sich dabei um den sogenannten Korridor D des Netz­entwicklungs­plans. Mit dem Vorhaben 5a ist der Neubau einer Erdkabel-Leitung zur Hoch­spannungs-Gleich­strom-Übertragung (HGÜ) geplant. Es verbindet Standorte mit hohen Ein­speisungen aus Wind­energie und Photovoltaik im Norden mit Last­schwer­punkten im Süden Deutschlands. Das Vorhaben besteht aus zwei Bestandteilen. Der nördliche führt von einem Netzverknüpfungs­punkt im Bereich der Gemeinden Klein Rogahn, Stralendorf, Warsow, Holthusen und Schossin (Mecklenburg-Vorpommern) bis zum Landkreis Börde (Sachsen-Anhalt). In den entsprechenden Abschnitten wird es sowohl Bunde­fachplanungs- als auch Plan­feststellungs­verfahren geben. Die Vorhaben­träger bezeichnen diesen Teil als SuedOstLink+. Der südliche Bestandteil zwischen dem Land­kreis Börde und dem Umspannwerk Isar (Bayern) gehört dagegen zum Erdkabel-Projekt SuedOstLink. Da die neue Leitung dort in einer gemeinsamen Trasse mit dem Vorhaben 5 verlaufen soll, wird wegen der besonderen Eilbedürftigkeit auf eine eigene Bundes­fach­planung verzichtet. Raumbezug In- oder ausländisches Vorhaben: inländisch Ort des Vorhabens Eingangsdatum der Antragsunterlagen: 31.07.2023 Datum der Entscheidung: 18.03.2025 Art des Zulassungsverfahrens: Planfeststellungsverfahren gemäß § 18 ff. NABEG UVP-Kategorie: Leitungsanlagen und vergleichbare Anlagen Zuständige Behörde Verfahrensführende Behörde: Name: Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen Tulpenfeld 4 53113 Bonn Deutschland https://www.netzausbau.de Stellungnahmen und Einwendungen im Rahmen des Beteiligungsverfahrens sind zu richten an: • elektronisch vorzugsweise per Onlineformular (Link unter www.netzausbau.de/vorhaben5-A2 sowie www.netzausbau.de/vorhaben5a-A2) • per E-Mail an Vorhaben5@BNetzA.de • schriftlich an die Bundesnetzagentur, Referat 803, Postfach 8001, 53105 Bonn (Betreff: Vorhaben 5/5a, Abschnitt A2) 50 Hertz Transmission GmbH Heidestraße 2 10557 Berlin Deutschland Homepage: https://www.50hertz.com/de/ Öffentlichkeitsbeteiligung Auslegung: Auslegung des Plans und der Unterlagen nach § 21 NABEG Kontaktdaten des Auslegungsortes Online-Auslegung Deutschland Weitere Ortshinweise Die Unterlagen sind ausschließlich online abrufbar. Eröffnungsdatum der Auslegung 18.09.2023 Enddatum der Auslegung 17.10.2023 1. Planänderung Kontaktdaten des Auslegungsortes Online-Auslegung Deutschland Weitere Ortshinweise Die Unterlagen sind ausschließlich online abrufbar. Eröffnungsdatum der Auslegung 04.11.2024 Enddatum der Auslegung 03.12.2024 Erörterung: Planfeststellung: Erörterungstermin gemäß § 22 Abs. 5 i.V.m. § 10 Abs. 1 Netzausbaubeschleunigungsgesetz Übertragungsnetz (NABEG) Ort der Erörterung Ständehaus Merseburg Merseburg Deutschland Ort der Informationsveranstaltung: Deutschland Ende der Frist zur Einreichung von Einwendungen: 17.11.2023 Beginn der Frist zur Einreichung von Einwendungen: 18.09.2023 Verfahrensinformationen und -unterlagen Verlinkung auf die externe Vorhabendetailseite https://www.netzausbau.de/vorhaben5-a2 Erörterungstermin

Was sind Hochspannungsleitungen?

Was sind Hochspannungsleitungen? Der Stromtransport mit Hochspannung ist effizienter als mit niedriger Spannung, da weniger Energie verloren geht. Bis zu 380.000 Volt (380 kV ) tragen die Überlandleitungen für den Stromtransport von den Kraftwerken zu den Städten und Ballungsgebieten. Die Festlegung der Spannungshöhe einer Leitung erfolgt anhand der Länge der Übertragungsstrecke und der benötigten Leistung bei den Stromempfängern. In der Steckdose zu Hause kommt der Strom mit einer Spannung von 230 Volt (230 V ) an. Für den Transport dorthin werden jedoch weit höhere Spannungen verwendet. Bis zu 380.000 Volt (380 kV ) tragen die Überlandleitungen für den Stromtransport von den Kraftwerken zu den Städten und Ballungsgebieten. Video: Stromleitungen und Strahlenschutz Transport Der Stromtransport mit Hochspannung ist effizienter als mit niedriger Spannung, da weniger Energie verloren geht. Trotzdem kann die Spannung nicht unbegrenzt erhöht werden. Die Festlegung der Spannungshöhe einer Leitung erfolgt anhand der Länge der Übertragungsstrecke und der benötigten Leistung bei den Stromempfängern. Wechselstromspannungen und ihre Verwendung Bezeichnung Spannung Beispiel / Anwendung Niederspannung bis 1.000 Volt 230/400 Volt; Haus- und Gewerbeanschlüsse Hochspannung Mittelspannung über 1.000 Volt 10 Kilovolt, 20 Kilovolt, 30 Kilovolt; örtliche/überörtliche Verteilnetze, Versorgung von Ortschaften und Industrie Hochspannung über 30.000 Volt 110 Kilovolt; Anschluss kleinerer Kraftwerke, regionale Transportnetze, Versorgung von Städten und Großindustrie Höchstspannung über 150.000 Volt 220 Kilovolt und 380 Kilovolt; Anschluss von Großkraftwerken, überregionale Transportnetze, Stromhandel Gleich- und Wechselstrom Am Anfang des 20. Jahrhunderts gab es Hochspannungsnetze nur mit Wechselstrom. Anders als Gleichstrom wechselt dieser in Westeuropa 100 Mal pro Sekunde die Richtung. Das ergibt eine Frequenz von 50 Hertz (50 Hz ). Heute ist es möglich, Hochspannungsnetze auch mit Gleichstrom zu betreiben. Dabei wird der Energieverlust vermieden, der bei Wechselstrom entsteht. Somit ist für lange Transportstrecken die Hochspannungs-Gleichstrom-Übertragung ( HGÜ ) eine gute Alternative. In Westeuropa wird sie vor allem bei der Stromübertragung mit Seekabeln eingesetzt. Freileitung und Erdkabel 380 kV Freileitungs-Trasse Für den Stromtransport über Land werden überwiegend Freileitungen, aber auch Erdkabel verwendet. Bei Freileitungen dienen die an den Masten geführten Leiterseile zum Stromtransport. Da die Leiterseile – anders als beim Kabel – nicht von einer isolierenden Schicht umgeben sind, hängen sie außerhalb der Reichweite von Personen. Hoch- und Höchstspannungsleitungen sind in Deutschland überwiegend als Freileitungen ausgeführt. Der regionale Transport erfolgt oft noch über Niederspannungsfreileitungen, wobei die Häuser meist über Dachständer versorgt werden. Um zu erkennen, für welche Spannungshöhe eine Freileitung genutzt wird, kann als erster Anhaltspunkt die Mastkonstruktion dienen: Hoch- und Höchstspannungsleitungen werden üblicherweise an hohen Stahlgittermasten geführt, für Nieder- und Mittelspannungsleitungen werden eher kleinere Holz-, Beton- oder Stahlrohrmasten verwendet. Den zweiten Anhaltspunkt liefert die Eingrenzung der Spannungsebene durch einen genauen Blick auf die Leiterseile: Höchstspannungsleitungen: Bei 220 kV -Leitungen werden gebündelte Leiter oft aus zwei, bei 380 kV -Leitungen aus drei oder vier eng parallel zueinander geführten Einzelseilen verwendet. In regelmäßigen Abständen sind Abstandhalter zwischen den Einzelseilen angebracht (wie z. B. in dem Bild der 380 kV Freileitungs-Trasse zu erkennen ist). Hochspannungsleitungen: Für eine Spannung von 110 kV werden Bündelleitungen deutlich seltener verwendet. Erdkabel können einen oder mehrere Leiter enthalten, die jeweils einzeln durch eine Isolierung vor gegenseitiger Berührung geschützt sind. Dadurch liegen die Leiter in einem viel geringeren Abstand zueinander als bei Freileitungen. Erdkabel werden bei niedriger Spannung vor allem für Haus- und Gewerbeanschlüsse genutzt. Sie werden aber auch immer häufiger für den Stromtransport über große Entfernungen als Höchstspannungsleitungen verwendet. Anwendung finden auch gasisolierte Übertragungsleitungen ( GIL ), die in Deutschland bisher nur auf sehr kurzen Strecken eingesetzt werden, z. B. beider Ausleitung aus Innenräumen von Schaltanlagen. Gasisolierte Übertragungsleitungen bestehen aus einem inneren Aluminiumleiter, der in regelmäßigen Abständen auf Stütz- oder Scheibenisolatoren in einem Aluminiumrohr geführt wird. Zur Isolierung wird das Rohr mit einem Gas befüllt. Stand: 11.03.2025 Elektromagnetische Felder Häufige Fragen Ist die Tiefe, in der ein Kabel im Erdreich verlegt wird, relevant für die Stärke der Felder oberhalb des Kabels? Ab welchem Wert würde man oberhalb der Erde keine Werte mehr messen? Ab welcher Tiefe wird die Wärmeentwicklung für Pflanzen irrelevant? Welche unterschiedlichen Interessen gibt es beim Netzausbau? Sind durch die Überlagerung des Magnetfeldes eines Gleichstrom-Erdkabels mit dem Erdmagnetfeld gesundheitliche Wirkungen auf den Menschen zu erwarten? Warum wird das bestehende Stromnetz aus- und umgebaut? Welche Abstände zu Wohnhäusern müssen Stromleitungen einhalten? Alle Fragen

1 2 3 4 511 12 13