API src

Found 123 results.

Related terms

DESERTEC - Wüstenstrom

Dieses Projekt ist vorerst nur geplant. Auf einer Veranstaltung am 13. Juli 2009 in München haben zwölf europäische Unternehmen zusammen mit der DESERTEC Foundation ein Memorandum of Understanding zur Gründung einer Desertec Industrial Initiative Planungsgesellschaft (DII) unterzeichnet. Die DII Planungsgesellschaft soll bis zum 31. Oktober 2009 als GmbH nach deutschem Recht gegründet werden. Ziel dieser Initiative ist die Analyse und Entwicklung von technischen, ökonomischen, politischen, gesellschaftlichen und ökologischen Rahmenbedingungen zur CO2-freien Energieerzeugung in den Wüsten Nordafrikas. Dieses von der TREC-Initiative des Club of Rome entwickelte DESERTEC-Konzept beschreibt die Perspektiven einer nachhaltigen Stromversorgung für alle Regionen der Welt mit Zugang zum Energiepotenzial von Wüsten. Die Gründungsunternehmen der DII, deren regionaler Fokus auf Europa, dem Nahen Osten und Nordafrika (MENA) liegt, werden sein: ABB, ABENGOA Solar, Cevital, Deutsche Bank, E.ON, HSH Nordbank, MAN Solar Millennium, Münchener Rück, M+W Zander, RWE, SCHOTT Solar, SIEMENS. Zu den wesentlichen Zielen der DII gehören auch die Erarbeitung konkreter Geschäftspläne und darauf aufbauender Finanzierungskonzepte sowie der Anstoß zu industriellen Vorbereitungen zum Bau einer Vielzahl vernetzter und über die MENA-Region verteilter solarthermischer Kraftwerke. Diese Energiequellen sollen durch ein internationales verlustarmes Hochspannungsgleichstromleitungsnetz (HGÜ) verbunden werden mit anderen regenerativen Energieerzeugern von Island bis Arabien. Es wird angestrebt, einen Anteil von rund 15 Prozent des Strombedarfs von Europa und einen erheblichen Anteil des Strombedarfs für die Erzeugerländer zu produzieren. Alle Tätigkeiten der DII sind darauf ausgerichtet, umsetzungsfähige Investitionspläne innerhalb von drei Jahren nach Gründung zu erstellen.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung

Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Leistungsdichteanhebung des HGÜ-Konverters

Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Hochleistungshalbleiter

Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Qualifikation von umweltverträglichen Esterflüssigkeiten für den Einsatz in Transformatorisoliersystemen für die Hochspannungs-Gleichstromübertragung, Teilvorhaben: Dielektrische Qualifikation und Simulation der Isolierwerkstoffe und -systeme

Qualifikation von umweltverträglichen Esterflüssigkeiten für den Einsatz in Transformatorisoliersystemen für die Hochspannungs-Gleichstromübertragung

Qualifikation von umweltverträglichen Esterflüssigkeiten für den Einsatz in Transformatorisoliersystemen für die Hochspannungs-Gleichstromübertragung, Teilvorhaben: Zusammenführung der Entwicklungsergebnisse und Überführung in ein Mock-up

Qualifikation von umweltverträglichen Esterflüssigkeiten für den Einsatz in Transformatorisoliersystemen für die Hochspannungs-Gleichstromübertragung, Teilvorhaben: Erforschung und Auslegung der Durchführung

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Ansteuerungsinnovationen und Potentiale zukünftiger Halbleiter

Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Systemstabilität durch marktbasierte Systemdienstleistungen und technische Mindestanforderungen an zukünftige elektrische Anlagen, Teilvorhaben: Realitätsnahe Testnetze und effiziente Modellierung von Windparks

1 2 3 4 511 12 13