API src

Found 15 results.

Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius^Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius^Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius, Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius

Entwicklung eines umweltfreundlichen und kostengünstigen in situ Aluminisierungsverfahrens zum Korrosionsschutz metallischer Bauteile in aggressiven Hochtemperaturumgebungen

Bei vielen Anwendungen im Hochtemperaturbereich kommt es zu Korrosionserscheinungen an metallischen Konstruktionsmaterialien aufgrund der Prozessgase. Besonders aggressive Verbrennungsatmosphären treten vor allem bei der Müllverbrennung, in der Zementindustrie oder anderen Prozessen, in denen Ersatzbrennstoffe wie etwa hochkalorische Müllfraktionen (Kunststoffabfälle) eingesetzt werden, aber auch bei Prozessen der chemischen Industrie auf. Kritisch sind hierbei im Wesentlichen hohe Gehalte an Chlorverbindungen bzw. weiteren Halogenen, Alkalien, Schwefel und Schwermetallen, welche die Bildung leicht flüchtiger Verbindungen bzw. schmelzflüssiger Salze ermöglichen. Die Untersuchungen konzentrieren sich auf Anker zur Befestigung der Feuerfestmaterialauskleidung, sind aber auf andere korrosionskritische Bereiche übertragbar. Diese Anker sind starken korrosiven Angriffen ausgesetzt aufgrund der Porosität des Auskleidungsmaterials und einhergehender Diffusionspfade für die Prozessgase. Das Versagen derartiger Anker ist sehr kostspielig, da Schäden durch Abplatzen von Mauerteilen auftreten können und Stillstandzeiten zwecks Reparaturen notwendig werden können. Um eine möglichst lange Betriebsdauer sicherzustellen, werden in den hochtemperaturbeanspruchten Bereichen derzeit kostenintensive Austenite oder Nickelbasislegierungen als Ankermaterialien verwendet. Das vorliegende Projekt setzt sich zum Ziel, diese Materialien durch kostengünstige Werkstoffe, welche mit einer schützenden Aluminiumdiffusionsschicht versehen werden, zu ersetzen. Hierfür sollen Schichtsysteme entwickelt werden, welche direkt auf eingebaute Anker appliziert werden können. Der notwendige Diffusionsprozess soll mittels der prozesseigenen Energie erfolgen, ohne dass die Verwendung einer Schutzgasatmosphäre notwendig ist. Für die Beschichtung sind umweltfreundliche, wasserbasierte Schlickersysteme vorgesehen. Zum Schutz vor Oxidation des zu diffundierenden Aluminiums sind unterschiedliche Deckschichtsysteme vorgesehen, welche im Laufe des Vorhabens entwickelt und untersucht werden.

Teilvorhaben: 'Prüfbarkeit von dickwandigen Bauteilen aus Nickellegierungen und Schweißverbindungen mit zerstörungsfreien Prüfmethoden - Teil III'^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe II (RoMoTurb II)^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe II (RoMoTurb II)^COORETEC-Werkstoffe^Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilprojekt: Grundlegende Untersuchungen zur Belagsbildung und Korrosion von neuen Werkstoffen im 700 Grad C-Dampfkraftwerk^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe (RoMoTurb)^Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilvorhaben: Untersuchung und Modellierung der wasserdampfseitigen Oxidation und Schutzschichtbildung für Werkstoffe des 700 Grad C-Kraftwerks^Teilvorhaben: Prüfbarkeit von dickwandigen Bauteilen aus Nickellegierungen und Schweißverbindungen mit zerstörungsfreien Prüfmethoden^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe (RoMoTurb)^Material- und Prozeßtechnologie für ein modulares Konzept für Gasturbinen-Heißgasbauteile (ModulTurb)^Teilvorhaben: Untersuchungen zum langzeitigen Festigkeits- und Verformungsverhalten von Rohren und Schmiedeteilen aus Nickelbasislegierungen (Festigkeit NiBasis)^Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilvorhaben: Grundlegende experimentelle Untersuchungen zur Korrosion und Belagsbildung sowie Erweiterung von Modellen im Zusammenhang mit der Gesamtprozessbetrachtung und -optimierung^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe II (RoMoTurb II)^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe II (RoMoTurb II) - Teilprojekt Werkstoffverhalten, Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilprojekt: Vermeidung der Feuerraumwandkorrosion

Feinstpartikelabscheidung für Hochtemperaturprozesse unter Nutzung aktiver und passiver, thermisch induzierter Potenzialfelder

Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius^Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius^Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius^Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius, Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius

Ziel des Verbundvorhabens ist ein Entwicklungsschritt von 50-100 Grad Celsius für warmfeste Gusseisenwerkstoffe mit Kugelgraphit (Sphäroguss, GJS) zur direkten Anwendung in der SIEMENS Gasturbine mit verbesserten Werkstoffeigenschaften zur Herstellung dickwandiger Gussstücke im Anwendungstemperaturbereich bis über 500 Grad Celsius. 1) Bewertung der metallurgischen Grundlagen; 2) Erarbeitung einer Strategie zur Legierungsdefinition unter Berücksichtigung kombinatorischer Methoden und die Erstellung eines Anforderungsprofils; 3) Herstellung von Laborschmelzen und Screening-Versuche zur Einordnung der Schmelzen; 4) Herstellung von Gussproben mit bauteilähnlichen Querschnitten; 5) Entwicklung und Herstellung eines einbaufertigen Demonstrationsbauteils; Wirtschaftliche Herstellung zahlreicher großvolumiger Gussstücke - Unmittelbare Verwendung und Erprobung eines Demonstrationsbauteils in der Gasturbine - Direkte und kurzfristige Anwendung in Wärmekraftanlagen - Erkenntnistransfer für thermisch hochbelastete Bauteile der Antriebstechnik. Der im Rahmen des Projekts zu entwickelnde Verdichterleitschaufelträger soll in einer Siemens Gasturbine eingebaut werden.

Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius, Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius

Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius^Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius, Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius

Teilvorhaben: 'Prüfbarkeit von dickwandigen Bauteilen aus Nickellegierungen und Schweißverbindungen mit zerstörungsfreien Prüfmethoden - Teil III'^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe II (RoMoTurb II)^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe II (RoMoTurb II)^Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilprojekt: Vermeidung der Feuerraumwandkorrosion^Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilprojekt: Grundlegende Untersuchungen zur Belagsbildung und Korrosion von neuen Werkstoffen im 700 Grad C-Dampfkraftwerk^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe (RoMoTurb)^Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilvorhaben: Untersuchung und Modellierung der wasserdampfseitigen Oxidation und Schutzschichtbildung für Werkstoffe des 700 Grad C-Kraftwerks^COORETEC-Werkstoffe^Teilvorhaben: Prüfbarkeit von dickwandigen Bauteilen aus Nickellegierungen und Schweißverbindungen mit zerstörungsfreien Prüfmethoden^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe (RoMoTurb)^Material- und Prozeßtechnologie für ein modulares Konzept für Gasturbinen-Heißgasbauteile (ModulTurb)^Teilvorhaben: Untersuchungen zum langzeitigen Festigkeits- und Verformungsverhalten von Rohren und Schmiedeteilen aus Nickelbasislegierungen (Festigkeit NiBasis)^Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilvorhaben: Grundlegende experimentelle Untersuchungen zur Korrosion und Belagsbildung sowie Erweiterung von Modellen im Zusammenhang mit der Gesamtprozessbetrachtung und -optimierung^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe II (RoMoTurb II)^Robuste Modelle zur verbesserten Werkstoffausnutzung für aktuelle Turbinenschaufelwerkstoffe II (RoMoTurb II) - Teilprojekt Werkstoffverhalten, Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Mineralfreisetzung, -umwandlung und -antransport, innovative Wandstärkenmessungen mit Ultraschall (verwendbar während des Betriebes)

Teilprojekt: Ingenieurtechnische Umsetzung, Entwicklung Pilotanlage^Teilprojekt: Verfahrenstechnische Hochskalierung, Testung^Teilprojekt: Industrielle Umsetzung/Fertigung geträgerter Katalysatoren^Klimaschutz: Katalytisch-thermische Entsorgung methanhaltiger Schwachgase^Teilprojekt: Auswahl Deponie, Einrichtung/Betrieb Pilotanlage^Teilprojekt: Katalysatoren-Laboranalysen, verfahrenstechnische Grundlagen, Teilprojekt: Entwicklung Substrat/Trägerung und Katalysator, Koordination

Ingenieurkeramik zur Energieeinsparung in Thermoprozessanlagen mit hochintensiver Gasumwälzung bei höheren Temperaturen^Hochintensive Gasumwälzung^Einsatz von Ingenieurkeramik zur Energieeinsparung in Thermoprozessanlagen mit Gasumwälzung bei höheren Temperaturen, Ingenieurkeramik zur Energieeinsparung in Thermoprozessanlagen mit hochintensiver Gasumwälzung bei höheren Temperaturen (Kennwort: KEEP HIGHT)

1 2