Nach einem Jahr unter Mitwirkung des Landesamtes für Umwelt und mit umfangreicher Beteiligung der maßgeblichen Stakeholder liegt der “Zukunftsplan Wasser” jetzt vor. Im Bürgerhaus Mainz-Finthen läutete Klimaschutzministerin Katrin Eder am 31. Oktober in einer Veranstaltung mit zahlreichen Fachvorträgen offiziell die Phase der Umsetzung ein. „Wasser ist unser Lebensmittel Nummer 1, Wirtschaftsgut, Transportmedium, Energiequelle, Betriebsmittel für Industrie, Gewerbe und Landwirtschaft sowie Erholungs- und Freizeitort und Lebensraum für eine Vielzahl von Pflanzen und Tieren. Der Klimawandel stellt die Wasserwirtschaft vor enorme Herausforderungen. Sie muss nicht nur die Trinkwasserversorgung sichern, sondern auch für Mensch und Umwelt die Vorsorge vor Extremereignissen wie Dürre oder Starkregen treffen. Daher hat das Klimaschutzministerium zusammen mit dem Landesamt für Umwelt (LfU) ein Jahr lang gemeinsam mit allen maßgeblichen Stakeholdern der Wasserwirtschaft, Wassernutzern und anderen Interessensgruppen für Rheinland-Pfalz den „Zukunftsplan Wasser“ entwickelt, der nun in die Umsetzung geht“, sagte die rheinland-pfälzische Klimaschutzministerin Katrin Eder Mittwoch in Mainz. Im Beteiligungsverfahren wurden über 2.500 Kommentare aus 61 Stellungnahmen, zahlreiche Fachgespräche mit Expertinnen und Experten sowie Diskussionen in Rahmen von Workshops und Arbeitssitzungen ausgewertet und sind in die Fortschreibung des Zukunftsplans mit eingeflossen. Mit dem „Zukunftsplan Wasser“ werden unter anderem Managementstrategien für drohende Wasserknappheit, Maßnahmen für klimaresiliente Gewässer sowie der Schutz einer energieeffizient und leistungsfähig aufgestellten Wasserwirtschaft als Teil der kritischen Infrastruktur verfolgt. Zwölf Handlungsschwerpunkte Zum Erreichen der Ziele definiert der Plan zwölf Handlungsschwerpunkte. So sollen unter anderem der Wasserrückhalt in der Fläche gestärkt, Gewässer und Auen renaturiert werden sowie Wassernutzungen und Wasserverteilung nachhaltig gesteuert und bewirtschaftet werden. Aber auch das Bewusstsein für die Ressource Wasser soll größer sein. Dafür sind insgesamt 144 Maßnahmen den zwölf Handlungsschwerpunkten zugeordnet und ihre Wirkung auf die zentralen Ziele bewertet und schließlich priorisiert worden. Von den 144 Maßnahmen befinden sich bereits 81 in der Umsetzung beziehungsweise sind Daueraufgaben. 63 weitere Maßnahmen sind geplant, von denen 36 kurzfristig (bis 2027), 23 mittelfristig (zwischen 2027 und 2030) und vier langfristig (nach 2030) angegangen werden sollen. Der Zeithorizont des Zukunftsplans reicht dabei über die nächsten zehn Jahre hinaus. Ein Beispiel für eine konkrete Maßnahme, die zeitnah angegangen wird, ist die Bereitstellung eines digitalen Hochwasser- und Starkregenrisikochecks. So sollen zukünftig alle Hausbesitzerinnen und Hausbesitzer in Rheinland-Pfalz einen digitalen Hochwasserpass erstellen lassen können. Dieser enthält dann basierend auf unseren neuen landesweiten Sturzflut- und Hochwassergefahrenkarten auch konkrete Maßnahmenvorschläge, die den Hochwasser- und Starkregenschutz des Gebäudes verbessern können. Damit soll auch das Risikobewusstsein der rheinland-pfälzischen Bevölkerung weiter gestärkt werden. Eine weitere Maßnahme wird eine vom Land finanzierte Beratungsstelle Abwasser an der RPTU Kaiserslautern Landau sein, die ausgewählte Kommunen und deren Planer bei der Einrichtung von 4. Reinigungsstufen auf Kläranlagen ab Dezember 2024 unterstützt, um den Eintrag von Spurenstoffen in die Gewässer zu reduzieren. Weitere beispielhafte Maßnahmen sind: die Ausstattung von Grundwassermessstellen mit Datenfernübertragung zur Überwachung der Grundwassermenge; der Pakt „Resiliente Wasserversorgung“ sowie die Erarbeitung eines Wasserversorgungsplans Landwirtschaft. Klimawandel sorgt für Extremereignisse „Wir stehen mit fortschreitendem Klimawandel in einem Spannungsfeld zwischen extremen Ereignissen durch zu viel und durch zu wenig Wasser. Und die Schere geht immer weiter auseinander. Das scheinbar Normalste der Welt gerät aus dem Gleichgewicht“, erklärte Eder mit Blick auf die Zukunftsszenarien. Neueste Modellrechnungen für Rheinland-Pfalz zeigen, dass in der Zukunft mit höheren Hochwasserabflüssen gerechnet werden muss. Bis zum Jahr 2100 liegt die Zunahme teilweise über 40 Prozent. Gleichzeitig zeigen die Modelle, dass die Niedrigwasserabflüsse deutlich abnehmen und Niedrigwasserphasen sich verschärfen. Bis zum Ende des Jahrhunderts sind Abnahmen von bis zu -60 Prozent in Teilen von Rheinland-Pfalz nicht ausgeschlossen. „Die Extreme werden zur neuen Normalität“, führte Eder aus. „Die Zeit zu handeln, um den Klimawandel einzudämmen und uns an die Folgen anzupassen, ist jetzt. Tun wir das nicht, werden die Folgen des Klimawandels mit jedem Jahrzehnt gravierender und wir sehen uns mit enormen Folgekosten konfrontiert. Mit dem Zukunftsplan Waser stellen wir uns als Landesregierung dieser dringenden gesamtgesellschaftlichen Aufgabe“, schloss die rheinland-pfälzische Umweltministerin. Quelle: Pressemitteilung des Ministeriums für Klimaschutz, Umwelt, Energie und Mobilität vom 30.10.2024
Abgrenzung ausgewiesener Flächen der durchgeführten Rückschnittmaßnahmen zur Sicherung des Hochwasserabflüsses in der Elbe.
Das Projekt "Hydraulische Messungen während des Elbe-Hochwassers im Sommer 2013" wird/wurde ausgeführt durch: Bundesanstalt für Wasserbau.Erste Auswertungen der Messkampagnen von Bundes- und Landesbehörden bestätigen bisherige Modellrechnungen und verbessern das Verständnis von Hochwasserabläufen. Im Mai und Juni des Jahres 2013 traten in den deutschen Flussgebieten außerordentliche Hochwasser auf. Die Elbe wies in einigen Abschnitten neue Höchstwasserstände auf. Insbesondere aus der Saale strömten große Wassermassen in den Fluss ein, sodass das Hochwasser unterhalb der Saalemündung deutlich höher auflief als beim Sommerhochwasser 2002; bei Magdeburg-Buckau lag der Scheitel 75 cm über dem bisherigen Höchststand. Um die Elbe zu entlasten, aktivierte man den Elbe-Umflutkanal bei Magdeburg, sperrte Nebenflüsse ab und setzte die Havelniederung kontrolliert unter Wasser. Auch durch einige Deichbrüche wurden teilweise erhebliche Volumina aus der Elbe abgeführt. Das führte zu einem Absunk der Wasserspiegel im Bereich mehrerer Dezimeter. Trotzdem wurde in Magdeburg nach Angaben der Bundesanstalt für Gewässerkunde mit ca. 5.100 m3?s ein Hochwasser mit einem Wiederkehrintervall von 200 bis 500 Jahren erreicht. Mehrere Institutionen der Elbe-Anrainerländer und des Bundes führten Messungen während des Hochwassers durch. Die BAW benötigt insbesondere Messwerte von Oberflächen- und Grundwasser, um mit ihnen Modelle zu überprüfen. Hauptziel einer Messkampagne vom 7. bis 13. Juni 2013 war deshalb, zwischen Riesa bei Elbe (El)-km 106 und dem Wehr Geesthacht (El-km 586 ) nah am Hochwasserscheitel den Wasserspiegel etwa in der Flussachse zu messen. Begleitend wurden Durchflussmessungen durchgeführt, die dazu dienten, sowohl den Abfluss als auch Durchflussanteile und Fließgeschwindigkeiten zu ermitteln. Am 14. Juni 2013 wurden im Bereich der Deichrückverlegung Lenzen (bei El-km 480) zusätzlich Fließgeschwindigkeiten in den Deichschlitzen gemessen. Diese wurden durch punktuelle Grund- und Oberflächenwasser-Messungen ergänzt. Die Auswertung der Messungen wird noch geraume Zeit in Anspruch nehmen. Schon jetzt ist aber klar, dass die Ergebnisse von großem Nutzen sein werden, um die Prozesse in der Natur besser verstehen und beschreiben zu können. Auch tragen sie dazu bei, die Strömungsmodelle der (acronym = 'Bundesanstalt für Wasserbau') BAW zu validieren. Zwei erste Auswertungen machen dies deutlich.
Das Projekt "Bestimmung optimaler Fliessbeiwertfunktionen fuer den Hochwasserwellen-Ablauf in natuerlichen Gerinnen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Institut für Bauingenieurwesen IV, Wasserbau und Wassermengenwirtschaft.
Das Projekt "Abflusskennwerte in Baden-Württemberg - Abfluss-BW" wird/wurde gefördert durch: Landesanstalt für Umwelt Baden-Württemberg. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Wasser und Gewässerentwicklung, Bereich Hydrologie.Als Grundlage für die Planung und Bewertung von wasserwirtschaftlichen Maßnahmen werden in der Regel umfangreiche Abfluss-Kennwerte, oft in hoher räumlicher Auflösung, benötigt. Das Institut für Wasser und Gewässerentwicklung - Bereich Hydrologie hat Anfang 2000 in Kooperation mit der LUBW damit begonnen, abgestimmte Regionalisierungsverfahren für Baden-Württemberg zu entwickeln. Die neuen Verfahren basieren auf multiplen Regressionsmodellen und erlauben die Beschreibung von Abfluss-Kennwerten auf Basis maßgebender Einzugsgebietskenngrößen und Landschaftsgroßräumen. Die Anpassung und Plausibilisierung der Verfahren erfolgte anhand von Beobachtungszeitreihen an 448 Pegeln in Baden-Württemberg. Über alle Pegel zeigen die Modellanpassungen sehr gute Übereinstimmungen mit den statistisch ermittelten Kennwerten. Mit der Anwendung dieser neuartigen Verfahren wurde es möglich regionalisierte Abfluss-Kennwerte flächendeckend für Baden-Württemberg zu bestimmen und der wasserwirtschaftlichen Praxis zur Verfügung zu stellen. Inzwischen liegen in Baden-Württemberg die Abflusskennwerte für mehr als 13.000 Gewässerstellen bzw. deren Einzugsgebiete vor. Ebenso eine Vielzahl von Abflusslängsschnitte für die wichtigsten Gewässerläufe. Die regionalisierten Abfluss-Kennwerte finden in der wasserwirtschaftlichen Praxis enormen Anklang und sind heute aus der wasserwirtschaftlichen Bearbeitung nicht mehr wegzudenken. Vielmehr wachsen die Anforderungen hinsichtlich Inhalt und Umfang immer weiter. Vom IWG wurden daher in den vergangenen Jahren in mehreren Überarbeitungen kontinuierliche Anpassungen und Weiterentwicklungen vorgenommen. Seit 2007 liegen landesweit für alle baden-württembergische Fließgewässer die wichtigsten Abfluss-Kennwerte wie bspw. Mittlere Abflüsse (MQ), Mittelwerte und Jährlichkeiten von Hochwasserabflüssen (MHQ, HQT), Niedrigwasserabflüssen (MNQ, NQT) und Niedrigwasser-Dauern (MND, NDT) vor. Zudem werden hinsichtlich der Anforderungen der Hochwassergefahrenkarten (HWGK) ein Extremabfluss HQExtrem und zur Bemessung von Hochwasserrückhaltebecken entsprechend DIN 19700 Hochwasserabflüsse mit Jährlichkeiten zwischen T = 200 und 10.000 a abgeschätzt.
Das Projekt "Modellversuch Hochwasserrückhaltebecken Bärenstein" wird/wurde gefördert durch: Landestalsperrenverwaltung des Freistaates Sachsen, Betrieb Oberes Elbtal. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik.Im Rahmen des Hochwasserschutzkonzeptes Nr. 5 (Verbesserung des Hochwasserschutzniveaus im Müglitztal) beabsichtigt der Betrieb Oberes Elbtal der Landestalsperrenverwaltung des Freistaates Sachsen die Errichtung eines ökologisch durchgängigen Hochwasserrückhaltebeckens (HRB). Im Osterzgebirge, ungefähr 5,0 km südlich der Ortslage Glashütte, wird dazu ein begrünter Steinschüttdamm mit Asphaltkerndichtung geplant, welcher die Biela im Hochwasserfall noch oberhalb der Mündung in die Müglitz stauen soll. Im Modellversuch sollen zwei Anlagenteile auf ihre hydraulische Leistungs- und Funktionsfähigkeit getestet werden, der Gewässerdurchlass sowie die Hochwasserentlastungsanlage (HWE). Zur Durchleitung der Biela dient ein (b x h) 4,0 x 4,5 m, mit natürlichem Sohlsubstrat versehener Durchlass, der im Hochwasserfall verschlossen werden kann. Während eines Hochwasserereignisses wird stattdessen das Wasser über eine Bypassleitung mit integrierter Gegenstromtoskammer in Dammmitte abgeführt und über ein Wehr wieder in den Gewässerdurchlass eingeleitet. Der Abfluss der Bypassleitung wird über zwei parallel angeordnete Betriebsschützen geregelt. Im Modellversuch (Teilmodell 1) wird die im Damminneren angeordnete Gegenstromtoskammer im Maßstab 1:12 nachgebildet, untersucht und optimiert. Das Teilmodell 2 ist eine im Maßstab 1:20 verkleinerte Nachbildung der geplanten HWE, einer einseitig angeströmten Hangseitenentlastung, bestehend aus dem Einlaufbauwerk, der Sammel-, Übergangs- und Schussrinne, dem räumlichen Tosbecken sowie dem Unterwasserbereich.
Das Projekt "Forschungsgruppe (FOR) 2589: Zeitnahe Niederschlagsschätzung und -vorhersage; Near-Realtime Quantitative Precipitation Estimation and Prediction (RealPEP), Evaluierung von Verbesserungen in QPE und QPN in einem Echtzeit-vorhersagesystem für Abfluss und Überflutungen mit Datenassimilatio" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre.Echtzeitvorhersagen von Abfluss und Überflutungen stellen eine große Herausforderung dar, auch weil Wettervorhersagen konvektive Starkregenereignisse auf der stündlichen Sub-Kilometerskala noch nicht mit ausreichender Qualität vorhersagen können. Das führt zu unvorhergesehenen Überflutungen und großen Schäden öffentlichen Eigentums und Infrastruktur und potentiell zu Todesopfern. Bekannte Beispiele in der Region des Geoverbundes ABC/J sind die Sturzfluten in Wachtberg am 3. Juli 2010 und am 6. Juni 2016. Das Projekt wird ein neuartiges, probabilistisches Echtzeitvorhersagesystem für Abfluss und Überflutungen in kleinen Einzugsgebieten (kleiner als 500 km2) entwickeln. Das Projekt konzentriert sich auf die Einzugsgebiete Wachtberg, Ammer und Bode. Wir werden QPE, QPN und QPF (quantitative Niederschlagsschätzung, Nowcasting und numerische Vorhersage), die Produkte von P1, P2 und P3 in dem Vorhersagesystem verwenden, um die erreichten Verbesserungen in RealPEP zu bewerten. Ein wichtiger Aspekt des Projektes ist die Verwendung verschiedener hydrologischer Modelle (konzeptionell und physikbasiert) für die Flutvorhersage. Wir werden den Mehrwert und die Limitierungen der verschiedenen Modelle (und Datenassimilierungsverfahren) identifizieren. Konzeptionelle Modelle profitieren hauptsächlich von der Optimierung/Kalibrierung des Abflusses und der Möglichkeit schnell, große Ensemble berechnen zu können; physikbasierte Modelle dagegen haben den Vorteil verschiedenartige Beobachtungsdaten verarbeiten zu können und Prozesse besser abzubilden, wodurch eine einfachere Übertragbarkeit auf andere Einzugsgebiete ohne Kalibration möglich ist. Schlussendlich werden wir untersuchen ob die verschiedenen Ansätze sich ergänzende Information zu Echtzeitvorhersage von Überflutungen liefern können.
Das Projekt "Quantifizierung der Gerinnespeicherung von kohäsiven Feinpartikeln im Verlauf von künstlich erzeugten Hochwasserwellen und stationären Trockenwetterrandbedingungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Trier, Fachbereich VI Raum- und Umweltwissenschaften, Fach Hydrologie.Kohäsive Feinpartikel sind potentielle Träger von anorganischen und organischen Schadstoffen und spielen eine entscheidende Rolle beim Stoffaustausch zwischen Wasserkörper, Schwebstoff und Sediment. Daher ist die Kenntnis der Depositionsdynamik dieser Feinpartikel ein wichtiger Baustein für ein effizientes Sedimentmanagement und eine physikalisch basierte Modellierung des Schadstofftransfers in Fließgewässern. Es überrascht jedoch, dass sich Untersuchungen zum Transport- und Sedimentationsverhalten kohäsiver Partikel bisher häufig auf definierte stationäre Randbedingungen im Labormaßstab und Trockenwetterbedingungen im Gelände konzentrieren. Weitgehend ungeklärt ist hingegen das Verhalten von Feinpartikeln und deren Speicherung im Gerinnebett während der dynamischen Phase von Hochwasserereignissen. Um die im Gerinne ablaufenden Prozesse weitgehend unabhängig von den Einzugsgebietsprozessen zu untersuchen hat sich in unserer Arbeitsgruppe seit nunmehr über 10 Jahren ein Ansatz mit künstlich generierten Hochwasserwellen bewährt. Es ist ein genereller Vorteil von solchen Geländeexperimenten, dass einzelne steuernde Größen ausgeschlossen oder gezielt kontrolliert werden können. Außerdem ist ein solcher Ansatz eine Voraussetzung, um die Aussagekraft experimentell gewonnener Laborergebnisse zur potentiell hohen Feinpartikel-Retention in Sand- und Kiessedimenten in einem natürlichen System zu validieren. Das übergeordnete Ziel des hier beantragten Projekts ist es, die Gerinnespeicherung kohäsiver Feinpartikel in einem natürlichen System bei variierenden hydrologisch-hydraulischen Randbedingungen zu quantifizieren. Zu diesem Zweck werden standardisierte Feinpartikeltracer (Kaolinit, d50 = 2ìm, ñ = 2,6 g/cm3) sowohl im Verlauf von künstlich generierten Hochwasserwellen als auch während stationärer Trockenwetterbedingungen in einen Mittelgebirgsbach induziert. Die Retention und Sedimentation der eingegebenen Feinpartikel wird gezielt in kleinräumig variierenden Flussbettstrukturen (Hyporheische Zone, Stillwasserzonen, Gerinnerandbereiche, Riffle-Pool-Sequenzen) und für einzelne Gerinneabschnitte erfasst. Die Quantifizierung der Speicherung erfolgt mit bereits erprobten Resuspensionstechniken und Sedimentfallen sowie einer in Pilotprojekten erfolgreich getesteten Tracerfrachtberechnung mittels FTIR-DRIFT Spektroskopie an mehreren Basismessstationen im Längsprofil. In einem interdisziplinären Forscherverbund mit Kollegen des 'Hydraulics Laboratory' und des 'Dept. of Civil Engineering' der Universität Gent, der 'Ecosystem Management Research Group, Dept. of Biology' der Universität Antwerpen und des 'Dept. of Hydrology and Hydraulic Engineering' der Freien Universität Brüssel in Belgien wird darüber hinaus die Transport- und Speicherdynamik der Feinpartikel mit der neuen, FORTRAN basierten Modellierungssoftware 'FEMME' ('Flexible Environment for Mathematically Modelling the Environment') abgebildet.
Das Projekt "'DAS': Offenes Lernen und Arbeiten mit OpenSource-GIS und Open Data als Werkzeug eines klimaangepassten Gewässermanagements" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz. Es wird/wurde ausgeführt durch: Universität Rostock, Agrar- und Umweltwissenschaftliche Fakultät, Professur für Wasserwirtschaft.
Das Projekt "Abflussprognosemodell fuer das Einzugsgebiet der Enns und der Steyer" wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Institut für Wasserwirtschaft, Hydrologie und konstruktiven Wasserbau (IWHW).Ziel des Modells ist die taegliche kurzfristige Prognose des mittleren Abflusses, eine Prognose des mittleren Abflusses ueber das Wochenende sowie eine ein- bis mehrstuendige Hochwasserprognose. Das Modell soll als Grundlage fuer die verbesserte energiewirtschaftliche Nutzung des Wasserdargebotes dienen.
Origin | Count |
---|---|
Bund | 249 |
Land | 117 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 234 |
Messwerte | 1 |
Text | 43 |
Umweltprüfung | 34 |
unbekannt | 42 |
License | Count |
---|---|
geschlossen | 101 |
offen | 249 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 335 |
Englisch | 77 |
Resource type | Count |
---|---|
Archiv | 10 |
Bild | 10 |
Datei | 1 |
Dokument | 45 |
Keine | 194 |
Webdienst | 10 |
Webseite | 119 |
Topic | Count |
---|---|
Boden | 286 |
Lebewesen & Lebensräume | 314 |
Luft | 273 |
Mensch & Umwelt | 354 |
Wasser | 329 |
Weitere | 355 |