API src

Found 97 results.

Related terms

Hochwassergefahrenkarte Wuppertal

<p>Die Hochwassergefahrenkarte Wuppertal ist eine im Auftrag der Stadt Wuppertal von der Firma cismet GmbH betriebene interaktive Internet-Kartenanwendung zur Information der Öffentlichkeit über Überflutungsrisiken im Zusammenhang mit Hochwasserereignissen. Sie stellt hierzu die Maximalwerte von Wassertiefen dar, die im Verlauf der drei vom Land NRW für die Wuppertaler Risikogewässer (Wupper, Schwelme, Mirker Bach, Morsbach, Hardenberger Bach, Deilbach) simulierten Hochwasser-Szenarien auftreten. Dazu wird ein Raster mit einer Kantenlänge von 1 m benutzt. Die Wassertiefen werden in der 2D-Kartendarstellung mit einem Farbverlauf visualisiert. In der 3D-Ansicht wird die Wasseroberfläche in den überfluteten Bereichen wie eine zweite digitale Geländeoberfläche in einem transparenten Blauton dargestellt. Sobald die Hochwassergefahrenkarte und die Starkregengefahrenkarte auf einem Endgerät in zwei Fenstern desselben Browsers gestartet werden, sind ihre 2D-Kartenausschnitte (Position und Maßstab) standardmäßig miteinander gekoppelt. Die Implementierung erfolgte ebenfalls durch die Firma cismet als Applikation innerhalb des Urbanen Digitalen Zwillings der Stadt Wuppertal (DigiTal Zwilling). Im Konzept des DigiTal Zwillings implementiert die Hochwassergefahrenkarte einen Teilzwilling, der dem Fachzwilling Klimawandel zuzuordnen ist. Die Hochwassersimulationen des Landes NRW erfolgen nach den Vorgaben der EU-Hochwasserrisikomanagement-Richtlinie (EU-HWRM-RL) in einem Turnus von sechs Jahren für die Risikogewässer des Landes. Derzeit sind die im Dezember 2019 vorgelegten Ergebnisse des zweiten Umsetzungszyklus der EU-HWRM-RL verfügbar. Für die Hintergrundkarten nutzt die Hochwassergefahrenkarte Internet-Kartendienste (OGC-WMS) des Regionalverbandes Ruhr zur Stadtkarte 2.0, des Bundesamtes für Kartographie und Geodäsie zur basemap.de sowie der Stadt Wuppertal (True Orthophoto, Amtliche Basiskarte ABK und Hillshade). Technisch basiert die Hochwassergefahrenkarte auf Open-Source-Komponenten, insbesondere den JavaScript-Bibliotheken React, Leaflet und CesiumJS. Die Hochwassergefahrenkarte Wuppertal ist frei zugänglich für beliebige interne Nutzungen. Die Integration in eine eigene online-Applikation oder Website des Anwenders ist generell vertrags- und kostenpflichtig.</p> <p> </p>

Grenzen der Hochwasser-Gefahrengebiete HQhäufig 2. Zyklus

Überflutungsgebiete gemäß Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021 ohne zu erwartende signifikante Schäden für ein Hochwasser mit hoher Wahrscheinlichkeit (HQhäufig).Diese Daten sind auch im INSPIRE Datenmodell „Annex 3: Gebiete mit naturbedingten Risiken“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.

3D-Mesh NW (SLPK)

Seit 2023 wird aus den Luftbildern zusätzlich ein 3D-Mesh für NRW produziert. Ein 3D-Mesh ist eine aus Luftbildinformationen erzeugte Darstellungsform eines 3D-Oberflächenmodells. Es stellt die Geländeoberfläche inklusive Vegetation, Bebauung und weiterer künstlicher Objekte (z.B. stehende Autos) dar. Hierzu werden benachbarte dreidimensionale Punkte aus der Bildkorrelation der orientierten Luftbilder zu einem Netz (engl. Mesh) verbunden. Die Mesh-Oberfläche wird danach mit den zugrundeliegenden Luftbildern texturiert. In den letzten Jahren entstanden im kommunalen Kontext 3D-Stadtmodelle, die als Planungsgrundlage u.a. für räumliche Analysen im dreidimensionalen Raum und für die Öffentlichkeitsarbeit eingesetzt werden. Das 3D-Mesh von Geobasis NRW wird für die gesamte Landesfläche von NRW erzeugt und stellt ein realitätsgetreues Modell zum Erhebungszeitpunkt dar. Es dient als effiziente Alternative zu Schrägluftbildern und eignet sich als Datengrundlage für digitale Zwillinge. Nutzungsmöglichkeiten: Erkundung für die Fortführung der Amtlichen Basiskarte,Planungsgrundlage (z.B. bei Stadtplanung, bei der Denkmalpflege, im Umweltmanagement),Hilfestellung für den Katastrophenschutz, die Wirtschaftsförderung oder den Tourismus,Visualisierung von computergestützten Analysen (u.a. zu Hochwassersimulationen, Sichtachsen, Schattenwurf, Lärmausbreitung oder Windströmungen),Verwendung in der 3D-Navigation,Immobilienbranche,Öffentlichkeitsarbeit

3D-Mesh NW (b3dm)

Seit 2023 wird aus den Luftbildern zusätzlich ein 3D-Mesh für NRW produziert. Ein 3D-Mesh ist eine aus Luftbildinformationen erzeugte Darstellungsform eines 3D-Oberflächenmodells. Es stellt die Geländeoberfläche inklusive Vegetation, Bebauung und weiterer künstlicher Objekte (z.B. stehende Autos) dar. Hierzu werden benachbarte dreidimensionale Punkte aus der Bildkorrelation der orientierten Luftbilder zu einem Netz (engl. Mesh) verbunden. Die Mesh-Oberfläche wird danach mit den zugrundeliegenden Luftbildern texturiert. In den letzten Jahren entstanden im kommunalen Kontext 3D-Stadtmodelle, die als Planungsgrundlage u.a. für räumliche Analysen im dreidimensionalen Raum und für die Öffentlichkeitsarbeit eingesetzt werden. Das 3D-Mesh von Geobasis NRW wird für die gesamte Landesfläche von NRW erzeugt und stellt ein realitätsgetreues Modell zum Erhebungszeitpunkt dar. Es dient als effiziente Alternative zu Schrägluftbildern und eignet sich als Datengrundlage für digitale Zwillinge. Nutzungsmöglichkeiten: Erkundung für die Fortführung der Amtlichen Basiskarte, Planungsgrundlage (z.B. bei Stadtplanung, bei der Denkmalpflege, im Umweltmanagement), Hilfestellung für den Katastrophenschutz, die Wirtschaftsförderung oder den Tourismus, Visualisierung von computergestützten Analysen (u.a. zu Hochwassersimulationen, Sichtachsen, Schattenwurf, Lärmausbreitung oder Windströmungen), Verwendung in der 3D-Navigation,Immobilienbranche, Öffentlichkeitsarbeit.

Hochwassergefahrenkarte Wuppertal

<p>Die Hochwassergefahrenkarte Wuppertal ist eine im Auftrag der Stadt Wuppertal von der Firma cismet GmbH betriebene interaktive Internet-Kartenanwendung zur Information der Öffentlichkeit über Überflutungsrisiken im Zusammenhang mit Hochwasserereignissen. Sie stellt hierzu die Maximalwerte von Wassertiefen dar, die im Verlauf der drei vom Land NRW für die Wuppertaler Risikogewässer (Wupper, Schwelme, Mirker Bach, Morsbach, Hardenberger Bach, Deilbach) simulierten Hochwasser-Szenarien auftreten. Dazu wird ein Raster mit einer Kantenlänge von 1 m benutzt. Die Wassertiefen werden in der 2D-Kartendarstellung mit einem Farbverlauf visualisiert. In der 3D-Ansicht wird die Wasseroberfläche in den überfluteten Bereichen wie eine zweite digitale Geländeoberfläche in einem transparenten Blauton dargestellt. Sobald die Hochwassergefahrenkarte und die Starkregengefahrenkarte auf einem Endgerät in zwei Fenstern desselben Browsers gestartet werden, sind ihre 2D-Kartenausschnitte (Position und Maßstab) standardmäßig miteinander gekoppelt. Die Implementierung erfolgte ebenfalls durch die Firma cismet als Applikation innerhalb des Urbanen Digitalen Zwillings der Stadt Wuppertal (DigiTal Zwilling). Im Konzept des DigiTal Zwillings implementiert die Hochwassergefahrenkarte einen Teilzwilling, der dem Fachzwilling Klimawandel zuzuordnen ist. Die Hochwassersimulationen des Landes NRW erfolgen nach den Vorgaben der EU-Hochwasserrisikomanagement-Richtlinie (EU-HWRM-RL) in einem Turnus von sechs Jahren für die Risikogewässer des Landes. Derzeit sind die im Dezember 2019 vorgelegten Ergebnisse des zweiten Umsetzungszyklus der EU-HWRM-RL verfügbar. Für die Hintergrundkarten nutzt die Hochwassergefahrenkarte Internet-Kartendienste (OGC-WMS) des Regionalverbandes Ruhr zur Stadtkarte 2.0, des Bundesamtes für Kartographie und Geodäsie zur basemap.de sowie der Stadt Wuppertal (True Orthophoto, Amtliche Basiskarte ABK und Hillshade). Technisch basiert die Hochwassergefahrenkarte auf Open-Source-Komponenten, insbesondere den JavaScript-Bibliotheken React, Leaflet und CesiumJS. Die Hochwassergefahrenkarte Wuppertal ist frei zugänglich für beliebige interne Nutzungen. Die Integration in eine eigene online-Applikation oder Website des Anwenders ist generell vertrags- und kostenpflichtig.</p> <p> </p>

Hydraulischer Modellversuch Odertalsperre

Am Südwestrand des Harzes wurde zwischen 1930 und 1933 bei Bad Lauterberg (Niedersachsen) die Odertalsperre errichtet, die dem Hochwasserschutz, der Energieerzeugung und der Niedrigwasseraufhöhung des Unterlaufes der Oder in Trockenzeiten dient. Die Gesamtanlage besteht neben der 56 m hohen Hauptsperre (Erddamm mit Betonkern) aus einem unterhalb gelegenen Ausgleichsbecken (ca. 200 m x 700 m), das wiederum durch einen 7,5 m hohen Erddamm mit integrierter Wehranlage begrenzt wird. Das Reservoir der Hauptsperre und das Ausgleichsbecken wurden bis Anfang der 1990er Jahre als Pumpspeicherkraftwerk betrieben. Zur sicheren Ableitung extremer Hochwasser existiert am linken Hang der Hauptsperre eine Hochwasserentlastungsanlage (HWE) aus Beton, die nach fast 80 Jahren Schäden aufweist, die einer Sanierung bedürfen. Aus Sicherheitserwägungen soll außerdem die Wehranlage des Ausgleichsbeckens umgebaut werden. Für den Betreiber, die Harzwasserwerke GmbH aus Hildesheim, wurden deshalb von Dezember 2008 bis September 2009 zur Vorbereitung der geplanten Sanierungen hydraulische Modellversuche zur HWE, zur Wehranlage am Abschlussdamm des Ausgleichsbeckens und zum Ausgleichsbecken selbst durchgeführt. Unter Leitung von Prof. Jürgen Stamm erfolgten im Hubert-Engels-Labor des Instituts für Wasserbau und Technische Hydromechanik (IWD) der TU Dresden durch Dipl.-Ing. Holger Haufe und Dipl.-Ing. Thomas Kopp die Untersuchungen an drei Teilmodellen, zwei davon physikalisch im Maßstab M 1:25 für die HWE und M 1:20 für die Wehranlage. Bei dem dritten Teilmodell handelte es sich um ein tiefengemitteltes 2D-hydronumerisches Modell zur Ermittlung der Strömungsverhältnisse im Ausgleichsbecken. Am Teilmodell der HWE wurde im Rahmen mehrerer Versuchsreihen die hydraulische Leistungsfähigkeit und Funktionstüchtigkeit für verschiedene Zustände (vor, während und nach der Sanierung) überprüft und nachgewiesen. Durch Maßstabseffekte bedingte hydraulische Unterschiede zwischen Natur und Modell (Wasser-Luft-Gemischabfluss), die im 'verkleinerten' Modell nicht auftraten, wurden analytische Berechnungen durchgeführt, mit denen nachgewiesen werden konnte, dass die Seitenwände der HWE auch beim vermutlich größten Hochwasser (PMF) nicht überströmt werden. Die Harzwasserwerke GmbH wird voraussichtlich 2010/11 auf Grundlage der Versuchsergebnisse mit den Sanierungsarbeiten beginnen. Die am IWD untersuchten und hydraulisch optimierten Einzelmaßnahmen werden dann zu einer effizienten Bauausführung beitragen und anschließend die Hochwassersicherheit der Odertalsperre für die nächsten Generationen gewährleisten. (Text gekürzt)

Hochauflösende Schwerefelder für verbesserte Hochwasservorhersagen

Hochwasser ist eine der größten Naturgefahren. Beobachtung, Vorhersage und Frühwarnung von Hochwasserereignissen ist daher essentiell für die Schadensminderung. Neben Niederschlagseigenschaften sind die Vorfeuchtebedingungen ein wichtiger Faktor für die Abflussbildung und somit für die Ausprägung von Hochwasserereignissen. Seit 2002 wurde es mit der Satellitenmission GRACE (Gravity Recovery and Climate Experiment) und deren Nachfolger GRACE Follow-On (GRACE-FO, ab 2018) möglich, Anomalien der terrestrischen Wasserspeicherung (Terrestrial Water Storage, TWS) aus den zeitlichen Veränderungen des Erdschwerefeldes zu beobachten. Dies eröffnet die Möglichkeit, die Feuchtebedingungen vor und während Hochwasserereignissen zu erfassen. Die Nutzung dieser Daten war bisher jedoch wegen ihrer geringen Auflösung (monatlich, 250 - 300 km) stark eingeschränkt. Daher ist es das Ziel dieses Projektes, die Vorhersage und Beobachtung von Hochwasserereignissen mit täglicher zeitlicher Auflösung und auf 50 km räumlicher Auflösung herunterskalierten globalen TWS-Datensätzen von GRACE/GRACE-FO zu verbessern. Im ersten Schritt werden tägliche Schwerefelder mit einem Kalman-Filter Ansatz erzeugt. Diese Verbesserung gegenüber den Standard-Schwerefeldprodukten geht jedoch mit einer schlechteren räumlichen Auflösung einher. Mit neuen Methoden des Maschinellen Lernens (ML), die TWS-Daten von GRACE/GRACE-FO mit simulierten TWS-Daten hydrologischer Modelle kombinieren, werden hochauflösende TWS-Daten erzeugt. Für die Hochwasserwarnung und -beobachtung werden zudem ML-Methoden zur Erzeugung von TWS-Daten in Echtzeit und zu ihrer Vorhersage entwickelt. Auf Basis der hochauflösenden TWS-Anomalien wird ein Vorfeuchteindex als ein Indikator zur Frühwarnung bei hochwasserträchtigen Bedingungen der Wasserspeicherung in Einzugsgebieten abgeleitet. Der Nutzen des Indizes wird im Vergleich mit anderen Hochwasserfaktoren für verschiedene Umweltbedingungen in Einzugsgebieten mit einer Größe von wenigen 10.000 km² bis einigen Millionen km² weltweit analysiert. Ein ML-Ansatz zur Hochwasservorhersage wird unter Nutzung von Vorfeuchteindex, Niederschlagsvorhersagen und andere Hilfsdaten entwickelt. Die schwerebasierten TWS-Anomalien werden zudem in ein bestehendes Hochwasservorhersagemodell für ausgewählte Einzugsgebiete in Niedersachen integriert. Die Vorhersagegüte des ML-Ansatzes und des Hochwassermodells werden auf der regionalen Skala über die Analyse von Hochwasserereignissen der Vergangenheit und einen Vergleich mit dem bestehenden Hochwasservorhersagesystem evaluiert. Der neue Ansatz hat ein großes Potenzial zur Verbesserung der Genauigkeit und Zuverlässigkeit von Hochwasservorhersagen. Weiterhin können auch andere Anwendungen von den hochauflösenden TWS-Daten profitieren, wie zum Beispiel bei der Beobachtung von Grundwasser- oder Bodenfeuchtedynamiken.

Forschungsgruppe (FOR) 2589: Zeitnahe Niederschlagsschätzung und -vorhersage; Near-Realtime Quantitative Precipitation Estimation and Prediction (RealPEP), sub project: Coordination Funds

High-quality near-real time Quantitative Precipitation Estimation (QPE) and its prediction for the next hours (Quantitative Precipitation Nowcasting, QPN) is of high importance for many applications in meteorology, hydrology, agriculture, construction, water and sewer system management. Especially for the prediction of floods in small to meso-scale catchments and of intense precipitation over cities timely, the value of high-resolution, and high-quality QPE/QPN cannot be overrated. Polarimetric weather radars provide the undisputed core information for QPE/QPN due to their area-covering and high-resolution observations, which allow estimating precipitation intensity, hydrometeor types, and wind. Despite extensive investments in such weather radars, QPE is still based primarily on rain gauge measurements since more than 100 years and no operational flood forecasting system actually dares to employ radar observations for QPE. RealPEP will advance QPE/QPN to a stage, that it verifiably outperforms rain gauge observations when employed for flood predictions in small to medium-sized catchments. To this goal state-of-the?art radar polarimetry will be sided with attenuation estimates from commercial microwave link networks for QPE improvement, and information on convection initiation and evolution from satellites and lightning counts from surface networks will be exploited to improve QPN. With increasing forecast horizons the predictive power of observation-based nowcasting quickly deteriorates and is outperformed by Numerical Weather Prediction (NWP) based on data assimilation, which fails, however, for the first hours due to the lead time required for model integration and spin-up. Thus, RealPEP will merge observation-based QPN with NWP towards seamless prediction in order to provide optimal forecasts from the time of observation to days ahead. Despite recent advances in simulating surface and sub-surface hydrology with distributed, physicsbased models, hydrologic components for operational flood prediction are still conceptual, need calibration, and are unable to objectively digest observational information on the state of the catchments. RealPEP will prove that in combination with advanced QPE/QPN physics-based hydrological models sided with assimilation of catchment state observations will outperform traditional flood forecasting in small to meso-scale catchments.

Grenzen der Hochwasser-Gefahrengebiete HQ100 2. Zyklus

Überflutungsgebiete gemäß Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021 ohne zu erwartende signifikante Schäden für ein Hochwasser mit mittlerer Wahrscheinlichkeit (HQ100).Diese Daten sind auch im INSPIRE Datenmodell „Annex 3: Gebiete mit naturbedingten Risiken“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.

Küstengebiete HWRM-RL Übersicht 2. Zyklus

Küstengebiete (Coastal Areas) der Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021, Übersicht zu Art. 5 HWRM-RL.Diese Daten sind auch im INSPIRE Datenmodell „Annex 3: Gebiete mit naturbedingten Risiken“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.

1 2 3 4 58 9 10