API src

Found 472 results.

Related terms

Wasserstandsvorhersage Nordsee des BSH

Aktuelle Vorhersage: Am Freitag werden das Vormittag-Hochwasser an der deutschen Nordseeküste und in Emden sowie das Mittag-Hochwasser in Bremen und Hamburg <b>3 bis 5 dm </b><b>niedriger</b> als das mittlere Hochwasser eintreten.

Forschergruppe (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE), Teilprojekt: Hydrologie extremer Hochwasser - Ereignisanalysen

In den letzten zwei Jahrzehnten ereigneten sich in Deutschland und Österreich eine Reihe extremer Hochwasser, die mit den größten derartigen Ereignissen seit Beginn der systematischen Abflussbeobachtungen zu Beginn des 20. Jahrhunderts vergleichbar waren, oder diese sogar in ihrer Größe überschritten. Derartige Rekordhochwasser unterscheiden sich in mehrfacher Hinsicht von kleineren Hochwasserereignissen. Das Ausmaß, die Dauer und die räumliche Ausdehnung eines extremen Hochwassers werden von einer Reihe von Faktoren (beispielsweise durch den Niederschlag und seine räumliche und zeitliche Verteilung, den Vorfeuchtebedingungen und den Einzugsgebietseigenschaften wie Flächennutzung, Böden, Flussnetzen und anderen) gesteuert. Das Zusammenwirken des Regens in seiner ereignisspezifischen räumlichen und zeitlichen Verteilung mit der Bodenfeuchte ist oft der auslösende Faktor, da es eine extreme Abflussbildung bedingt. Sobald eine Hochwasserwelle sich im Flussnetz stromabwärts bewegt, wird ihr weitere Verlauf durch die Wechselwirkungen zwischen der Abflussbildung in den verschiedenen Teilbereichen des Einzugsgebietes, der Überlagerung von Hochwasserwellen aus Zuflüssen und den zur Verfügung stehenden Retentionsvolumina in den Überschwemmungsgebieten bestimmt. Welche Kombinationen dieser Faktoren extreme Hochwasserereignisse bedingen, stellt eine wichtige und interessante hydrologische Frage dar. Oft werden nur einige dieser Faktoren die Hochwasserentstehung dominieren und selten werden alle diese Faktoren gleichzeitig im Bereich ihres Maximums auftreten. Große Realisierungen einiger Wirkungsfaktoren reichen aber in der Regel aus, um extreme Hochwasserereignisse zu bedingen. In diesem Projekt werden diese Faktoren und deren Kombinationen im Rahmen einer detaillierten Analyse von extremen Hochwasserereignissen in verschiedenen Regionen Deutschlands und Österreichs untersucht. Aus der Anwendung eines einheitlichen analytischen Rahmens sind weitergehende Einblicke in den Hochwasserentstehungsprozess zu erwarten. Die Ergebnisse der Ereignisanalysen können durch regionalen Vergleiche verallgemeinert werden. Die Erkenntnisse zur Steuerung der hydrologischen Prozesse der Hochwasserentstehung werden in einem neuen GIS-basierte deterministischen Modellen zusammengefasst, um so das Wissen über die Entstehung von extremen Hochwasserereignissen zu verallgemeinern und zu formalisieren.

Forschungsgruppe (FOR) 2589: Zeitnahe Niederschlagsschätzung und -vorhersage; Near-Realtime Quantitative Precipitation Estimation and Prediction (RealPEP), sub project: Coordination Funds

High-quality near-real time Quantitative Precipitation Estimation (QPE) and its prediction for the next hours (Quantitative Precipitation Nowcasting, QPN) is of high importance for many applications in meteorology, hydrology, agriculture, construction, water and sewer system management. Especially for the prediction of floods in small to meso-scale catchments and of intense precipitation over cities timely, the value of high-resolution, and high-quality QPE/QPN cannot be overrated. Polarimetric weather radars provide the undisputed core information for QPE/QPN due to their area-covering and high-resolution observations, which allow estimating precipitation intensity, hydrometeor types, and wind. Despite extensive investments in such weather radars, QPE is still based primarily on rain gauge measurements since more than 100 years and no operational flood forecasting system actually dares to employ radar observations for QPE. RealPEP will advance QPE/QPN to a stage, that it verifiably outperforms rain gauge observations when employed for flood predictions in small to medium-sized catchments. To this goal state-of-the?art radar polarimetry will be sided with attenuation estimates from commercial microwave link networks for QPE improvement, and information on convection initiation and evolution from satellites and lightning counts from surface networks will be exploited to improve QPN. With increasing forecast horizons the predictive power of observation-based nowcasting quickly deteriorates and is outperformed by Numerical Weather Prediction (NWP) based on data assimilation, which fails, however, for the first hours due to the lead time required for model integration and spin-up. Thus, RealPEP will merge observation-based QPN with NWP towards seamless prediction in order to provide optimal forecasts from the time of observation to days ahead. Despite recent advances in simulating surface and sub-surface hydrology with distributed, physicsbased models, hydrologic components for operational flood prediction are still conceptual, need calibration, and are unable to objectively digest observational information on the state of the catchments. RealPEP will prove that in combination with advanced QPE/QPN physics-based hydrological models sided with assimilation of catchment state observations will outperform traditional flood forecasting in small to meso-scale catchments.

Hochwasser_WFS - Wassertiefe_HQ_100 - OGC API Features

Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Hochwasser dar.:Die Hochwassergefahrenkarte HQ 100 stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel alle 100 Jahre auftreten können, also ein Hochwasserszenario mittlerer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden.Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA

Hochwasser - Wassertiefe HQExtrem

Der Kartendienst (WMS-Gruppe) stellt die Daten der Hochwassergefahrenkarte und der Hochwasserrisikokarte der saarländischen Gewässer dar.:Die Hochwassergefahrenkarte HQ Extrem stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel sehr viel seltener als alle 100 Jahre auftreten können, also ein Hochwasserszenario geringer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden. Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA; Maßstabsbeschränkung: Min entfällt, Max 1:3000.

Hochwasser - Wassertiefe HQ100

Der Kartendienst (WMS-Gruppe) stellt die Daten der Hochwassergefahrenkarte und der Hochwasserrisikokarte der saarländischen Gewässer dar.:Die Hochwassergefahrenkarte HQ 100 stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel alle 100 Jahre auftreten können, also ein Hochwasserszenario mittlerer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden.Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA; Maßstabsbeschränkung: Min entfällt, Max 1:3000.

Hochwasser_WFS - Wassertiefe_HQ_Extrem - OGC WFS Interface

Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Hochwasser dar.:Die Hochwassergefahrenkarte HQ Extrem stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel sehr viel seltener als alle 100 Jahre auftreten können, also ein Hochwasserszenario geringer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden. Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA

Hochwasser_WFS - Wassertiefe_HQ_100 - OGC WFS Interface

Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Hochwasser dar.:Die Hochwassergefahrenkarte HQ 100 stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel alle 100 Jahre auftreten können, also ein Hochwasserszenario mittlerer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden.Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA

Hochwassermeldeordnung (StALU VP Stralsund)

Hochwassermeldedienst, Ostsee

Hochwasserwarnung

Hochwasserwarnungen umfassen flussgebietsbezogene Hochwasserinformationen bzw. -vorhersagen im aktuellen Hochwasserfall.

1 2 3 4 546 47 48