API src

Found 3997 results.

Similar terms

s/hoden/Boden/gi

Kohlenstoffreichen Böden in Niedersachsen 1: 50 000 mit Bedeutung für den Klimaschutz ohne versiegelte Flächen

Die Karte der kohlenstoffreichen Böden mit Bedeutung für den Klimaschutz beinhaltet Standorte mit einem besonderen Schutzbedarf („Erhalt“) oder Standorte mit einem Potenzial zur Minderung der Treibhausgas-Emissionen („Entwicklung“). Die relevanten Einheiten der BK50 wurden zu prägnanten Kategorien zusammengefasst: Hochmoor, Niedermoor, Moorgley, Organomarsch mit Niedermoorauflage, Sanddeckkultur sowie Böden mit flach überlagerten Torfen. Zusätzlich wurden die Flächen mit über 30 % Versieglung und kohlenstoffreiche Böden mit wenig Bedeutung für den Klimaschutz entfernt.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Quartäre Ablagerungen Saarland

Die Quartärkarte zeigt die Verbreitung quartärer Ablagerungen und periglazialer Lagen über präquartärem Untergrund im Saarland. Die Karte wurde auf Grundlage der BÜK 100 und geologischer Karten entwickelt. Attributfelder: WERT = Kurzbezeichnung der Legendeneinheiten Die Legendeneinheiten werden im Erläuterungstext zur Quartärkarte ausführlich beschrieben. Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Boden Substrat modelliert, die sich zusammen setzt aus der flächenhaften Featureklasse GDZ2010.A_gysub, der punkthaften Featureklasse GDZ2010.P_gysub und der Businesstabelle mit den Werten (GDZ2010.gysub); anschließend wurden die Flächen aus der GDZ2010.A_gysub mit Werten für den Parameter Substrat Quartärkarte für den Betrachtungsraum Saarland exportiert in die Filegeodatabase GDZ_GDB. Attributbeschreibung s. Zugriff URL.

Bodenbewertung - Sickerwasserrate (SWR), regionalspezifisch bewertet

Die Sickerwasserrate ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Wasserhaushaltes und beschreibt diejenige Wassermenge, die der Boden aufgrund seines beschränkten Wasserhaltevermögens nicht mehr halten kann und welche daher den Wurzelraum verlässt bzw. versickert (Grundwasserneubildung). Laterale Abflüsse (Drainage, Grabenentwässerung) werden an dieser Stelle nicht betrachtet. Sandige Böden können weniger Wasser halten als lehmige oder tonige Böden, so dass (unter sonst gleichen Bedingungen) die Sickerwasserrate unter sandigen Böden größer ist als unter lehmigen/tonigen Böden. In niederschlagsreichen Gebieten versickert mehr Wasser als in niederschlagsärmeren Gebieten. Mit der Sickerwasserrate wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium sind die allgemeinen Wasserhaushaltsverhältnisse mit dem Kennwert Sickerwasserrate. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird die Sickerwasserrate regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Sickerwasserrate (SWR), landesweit bewertet" gibt es noch eine Klassifikation der Sickerwasserrate, die die Sickerwasserrate über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.

INSPIRE HH Boden

Dieser Datensatz stellt Inhalte der Datensätze "Bodenformengesellschaften Hamburg" und "Bodenkunde-Horizonte" im INSPIRE-Zielmodell (Thema Boden) dar.

Lössvorkommen Saarland

Lage des einzigen, bekannten Lößvorkommens im Saarland, das im Moseltal östlich von Perl von BECKER (1968) beschrieben wurde. Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Boden Substrat modelliert, die sich zusammen setzt aus der flächenhaften Featureklasse GDZ2010.A_gysub, der punkthaften Featureklasse GDZ2010.P_gysub und der Businesstabelle mit den Werten (GDZ2010.gysub); anschließend wurden die Flächen aus der GDZ2010.A_gysub mit Werten für den Parameter Substrate Loess für den Betrachtungsraum Saarland exportiert in die File Geodatabase GDZ_GDB. Attributbezeichnung s. Zugriff URL.

Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen

<p>Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen</p><p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a>eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>⁠) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8&nbsp;% der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5&nbsp;% zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOxund Stickstoff, N2). Dieser Bereich trägt zu 16,2&nbsp;% an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ unberücksichtigt.</p><p></p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von<a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a>(Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirt­schaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die<strong>direkten Emissionen</strong>stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für<strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠ im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a>legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62&nbsp;Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen finden Sie auf den Themenseiten<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>,<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a>und<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>

Archiv der Naturgeschichte

Der Bodenteilfunktion „Archiv der Naturgeschichte“ liegt das Kriterium naturgeschichtliche Bedeutung nach Tab. 1 des sächsischen Bodenbewertungsinstruments zu Grunde. Zum Archiv der Naturgeschichte gehören Böden mit besonderen Merkmalen der naturhistorischen Entwicklung. Darunter fallen z.B. Böden aus seltenen Bodensubstraten (z.B. Flugsand) oder Nieder-, Übergangs- und Hochmoorböden, deren historische Entwicklung und Entstehung bis in die aktuelle Zeit reicht. Zusätzlich sind naturgeschichtliche Böden auch in der funktionalen Bedeutung hochinteressant und von sehr hohem Schutzwert. Beispielsweise haben intensiv stauvernässte Böden oder Grundwasserböden mit hoher Humusakkumulation sowie fossile Böden, wie z.B. Schwarzerden, eine hohe Funktion für die biologische Vielfalt. Die Archivfunktionen der Böden sind Teilfunktionen des Bundesbodenschutzgesetzes. Bei der Bewertung werden die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für den Erhalt und die Gefährdung der Archivböden relevant sind.

Biotopentwicklungspotenzial Saarland

Standorttypisierung und Biotopentwicklungspotenzial der Böden im Saarland. Ableitung aus der BÜK 100 gem. Verfahren des Bayerischen Geologischen Landesamtes (2000) in Anlehnung an Methode des Hessischen Landesamtes für Bodenforschung (1997). Gruppierung der Bodeneinheiten der BÜK zu insgesamt 11 Standorttypen mit unterschiedlichem Feuchteregime und Stoffbeständen in Abhängigkeit von Bodenart, Lagerungsdichte, Bodentyp, Stoffgehalten, Grundwasser- und Staunässestufe sowie bodenphysikalischen Kennwerten der Leitprofile. Je nach Wasserhaushalt und Nährstoffversorgung weisen die Standorttypen ein hohes bis sehr hohes Biotopentwicklungspotenzial auf oder sind aufgrund eines ausgeglichenen Wasserhaushaltes jeweils nur im regionalen Kontext zu bewerten. Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Boden Zustand modelliert, die sich zusammen setzt aus der flaechenhaften Featureklasse GDZ2010.A_gybzst und der Businesstabelle mit den Werten (GDZ2010.gybzst); anschließend wurde die Werte für den Parameter Biotopentwicklungspotenzial exportiert in die Filegeodatabase GDZ_GDB. Attributfelder: WERT = Charakterisierung des Feuchteregimes, WERTADD2 = Standorttyp. Exakte Attributbeschreibung s. Zugriff URL

Bodenkarte von Niedersachsen 1 : 50 000 - Pflanzenverfügbares Bodenwasser (1991-2020)

Die Karte zeigt das Pflanzenverfügbare Bodenwasser für den 30-jährigen Zeitraum 1991-2020. Das Pflanzenverfügbaren Bodenwassers (Wpfl) beschreibt die Wassermenge, die ein Boden für Pflanzen bereitstellen kann. Es stellt somit ein wichtiges Qualitätskriterium für die Bodenfruchtbarkeit dar. Der Kennwert setzt sich aus der Nutzbaren Feldkapazität im effektiven Wurzelraum und der Menge des kapillaren Aufstieges aus dem Grundwasser zusammen. Das Wpfl ist abhängig von der Textur, der Lagerungsdichte, dem Humusgehalt, der Schichtung und der Nutzung des Bodens sowie vom Grundwasserstand.

1 2 3 4 5398 399 400