API src

Found 10 results.

X-ray fluorescence data of the varved sediment record (HZM19) from Holzmaar, Germany

The elemental composition of the composite sediment record from HZM19 was obtained using the ITRAX XRF Core Scanner at the GEOPOLAR lab (University of Bremen) using a Cr tube with the following settings: exposure time: 5 s, voltage: 30 kV, and current: 50 mA. The step size was set to 200 µm. Prior to measurements and due to scanning times >7 h, core sections were covered with plastic foil (Chemplex Thin-Film). The dataset was cleaned following measurements, i.e. only data points remain that pass the following conditions: 1. counts per seconds >39.000; 2. MSE <15, and 3. validity equals 1. All values are provided in counts (cts). Here only the continuous XRF records of the composite profile is documented. Ages refer to Birlo et al. (2023) and the related dataset is Model D available via doi:10.1594/PANGAEA.949292.

Elemental pigment (hyperspectral imaging) data of the varved sediment record (HZM19) from Holzmaar, Germany

Hyperspectral image (HSI) scanning of the composite record from Holzmaar (HZM19) was measured using a Specim PFD-CL-65-V10 E line scan camera (University of Bern, Switzerland). Data were processed using the ENVI software following the workflow of Butz et al. (2015, doi10.1117/1.JRS.9.096031): data were white-corrected, masked for cracks in the sediment surface and Relative Absorption Band Depths (RABDs) were computed for 2mm wide subsets. RABD671 (band depths from 640 to 702 nm) for Total Chloropigments-a (TChl-a), RABD845 (790 - 900 nm) for Bacteriopheopigments-a (Bphe-a), and RABD620 (600 - 640 nm) for Phycocyanin (PhyCy). To translate HSI indices into absolute concentrations, a pigment extraction was performed at the University of Bern using 23 samples covering the full range of RABD671 and RABD845 index values. Ca 1 g of wet sediment was treated with 100 % acetone following the method of Lami et al. (1994, doi:10.1007/BF00684032) and extractions were measured using a Shimadzu UV-1800 spectrophotometer to obtain bulk concentrations of TChl-a and Bphe-a in µg/g dry sediment using a molar extinction coefficient for TChl-a and Bphe-a. A proxy-proxy calibration was carried out using an ordinary least square regression. After all, only 1.42 % and 0.77 % of datapoints are outside of the calibration ranges for Chl-a (calibration range: 12.75 – 1202.68 µg/g, intercept = -4799.52, slope= 4756,45, r² = 0.8, p-val = 0.00, RMSEP 10-fold = 169.03, RMSEP % = 14.05) and Bphe-a (calibration range 0.38 – 345.12 µg/g, intercept = -1295,8, slope= 1319,7, r² = 0.94, p-val = 0.00, RMSEP 10-fold = 25.26, RMSEP % = 7.32). Ages refer to Birlo et al. (2023) and the related dataset is Model D available via doi:10.1594/PANGAEA.949292.

Magnetic susceptibility data of the varved sediment record (HZM19) from Holzmaar, Germany

Scanning of magnetic susceptibility for all core sections of HZM19 has been carried out using the Bartington MS2 point sensor with step size set to 4 mm. Here only the continuous record of the composite profile is documented. Ages refer to Birlo et al. (2023) and the related dataset is Model D available via doi:10.1594/PANGAEA.949292.

Spectrophotometer data for calibration of HSI index of the varved sediment record (HZM19) from Holzmaar, Germany

To calibrate the hyperspectral imaging (HSI) index values from the sediments of Holzmaar (HZM19) to concentration, a spectrophotometrically measured pigment analysis (Butz et al., 2015; doi:10.1117/1.JRS.9.096031) was performed for 23 samples. These samples were selected to cover a wide range of pigment concentrations as documented by HSI scanning. Approximately 1 g of wet sediment was treated with 100 % acetone according to the method of Lami et al. (1994; doi:10.1007/BF00684032), and the extracts were measured with a Shimadzu UV-1800 spectrophotometer to obtain the mass concentration of Chl-a and Bphe-a in µg/g dry sediment using a mass extinction coefficient for Chl-a (Fiedor et al, 2002; doi:10.1562/0031-8655(2002)0760145POTBCS2.0.CO2) and for Bphe-a (Jeffrey and Humphrey, 1975; doi:10.1016/S0015-3796(17)30778-3).

Cs-137 activity of the composite profile HZM19

Varve chronology of the composite profile HZM19

Bayesian Modelling of the composite profile HZM19

Lead-210 measurements of the composite profile HZM19

Bayesian age-depth modelling applied to varve counting and radiometric dating to develop a high-resolution chronology for a new composite sediment profile from Holzmaar (Germany)

Four different age-depth models have been calculated for a new sediment profile (HZM19) from Holzmaar (425 m a.s.l., 50°7'8'' N, 6°52' 45'' E) using Bayesian statistics with Bacon (version 4.1.1) for the R programming language and the latest radiocarbon calibration curve Intcal20. Model A is based on previously published radiocarbon measurements only, while the three Models B, C and D integrate the previously published varve chronology (VT-99) applying different approaches. Model B rests upon radiocarbon data, while parameter settings are derived from sedimentation rates of VT-99. Model C is based on radiocarbon dates and on VT-99 as normal-distributed tie-points. Model D is segmented into four sections: Sections 1 and 3 are based on VT-99, whereas Sections 2 and 4 are based on Bacon models including additional information from VT-99. All models cover an age range of approx. 16,000 years for a composite depth of 14.6 m. The varve chronology was transferred to HZM19 using 43 predefined marker layers and 41 radiocarbon sampling positions with their specific VT-99 age and error. In addition, Pb-210 and Cs-137 activities (61 samples with a thickness of 2 cm each) have been measured for the top of HZM19. With this exercise, VT-99 was updated and efficiently applied to HZM19 providing a very precise age-depth model for these new sediment cores, which will value all ongoing and high-resolution investigations for a better understanding of decadal Holocene environmental and climatic variabilities.

Differenzierung zwischen klimatischem und anthropogenem Einfluß auf das Ökosystem und das Einzugsgebiet des Holzmaars, Eifel

Während der nacheiszeitlichen Warmphase (dem Holozän) existieren Hinweise für Klimaschwankungen wie z.B. alpine Gletscherstands- oder Seespiegelschwankungen. Gleichzeitig nimmt der Mensch durch seine Aktivitäten (Waldrodung, Kohlendioxid-Emissionen) zunehmend Einfluss auf das Klima. Generell ergibt sich die Frage, ob der Mensch als 'Klimafolger' oder als 'Klimamacher' anzusehen ist. Dieser Ursachen-Wirkungsrelationen kann nur nachgegangen werden, wenn Paläo-Umweltarchive zur Verfügung stehen, die eine zeitlich hochauflösende Beprobung erlauben und die mit interdisziplinärer Analytik und unter Zugrundelegung eines soliden zeitlichen Gerüstes untersucht werden. Dabei sollten möglichst quantitative klimatische Parameter und quantifizierbare Indikatoren zu Umweltveränderungen ermittelt werden. Solche Informationen können aus terrestrischen Archiven über sedimentologische, isotopengeochemische, palynologische und diatomologische Untersuchungen bereitgestellt werden. Die Sedimente der Eifelmaare werden bereits seit Jahren intensiv und interdisziplinär von verschiedenen Arbeitsgruppen in Deutschland untersucht. Als besonders interessant erwiesen sich Ablagerungen aus dem meso- bis eutrophen Holzmaar, das mit seinen jahreszeitlich geschichteten Sedimenten (Warven) http://www.gfz-potsdam.de/pb3/pb33/wiav.html eine hochauflösende interne Datierung bis 23.220 cal. BP zur Verfügung stellt. In Kombination mit AMS-14C-Datierungen bieten diese Sedimente einen soliden chronologischen Rahmen für weitere Untersuchungen. Durch die Integration verschiedener Untersuchungsmethoden lässt sich das komplexe Bild des Systems 'Holzmaar' mit dekadischer Auflösung rekonstruieren. Sedimentologische Analysen stellen integrative Daten von seeinternen Prozessen und Vorgängen im Einzugsgebiet zur Verfügung. Die Isotopengeochemie liefert Aussagen über die limnische Produktivität und die regionalen Temperaturbedingungen, während die diatomologischen Arbeiten eine Rekonstruktion der Wasserchemie des Sees erlauben. Ergänzend werden palynologische Daten hinzugezogen, die zusätzlich ein Abbild der Vegetationsveränderungen im Einzugsgebiet ergeben. Die Synopsis der in diesem Projekt für das Zeitfenster 6000-1500 cal. BP (ca. 4000 vor Christi bis 500 AD: Spätneolithikum bis Völkerwanderungszeit) gewonnenen Erkenntnisse verbessert das generelle Verständnis der zeitlichen Dynamik dieses komplexen Ökosystems sowie der einzelnen Kompartimente. Insgesamt sollte es auch möglich sein, klimatische von anthropogenen Einflüssen zu. differenzieren und die Reaktionsgeschwindigkeiten auf Umweltveränderungen einschließlich zeitverzögerter Effekte ('time lags') quantitativ zu rekonstruieren. Dieses Projekt ist Bestandteil des DFG-Schwerpunktprogramms 'Globaler Wandel der Geo-/Biosphäre während der letzten 15000 Jahre'. http://www.uni-frankfurt.de/fb11/ipg/spp/

1