API src

Found 288 results.

Optimierung der Wassereffizienz bei der luftgestützten Waldbrandbekämpfung

Zielsetzung: Deutschlandweit vernichteten Waldbrände im Jahr 2023 eine Fläche von1.240 Hektar Wald (3.058 Hektar in 2022). Das entspricht rund 1.771 Fußballfeldern. Hinzu kommt, dass global gesehen Waldbrände mit 6,5 Gigatonnen die viertgrößte Ausstoßquelle von CO2 Emissionen sind und jährlich weltweit Schäden in Milliardenhöhe verursachen. Gleichzeitig steht nicht ausreichend und oft nicht schnell genug Wasser zum Löschen zur Verfügung. Abhilfe verspricht hier der Systemansatz von CAURUS Technologies. Durch die Kombination von digitaler Sensortechnik mit Löschinnovation auf Basis von Dispersionstechnologie kann die Löscheffizienz von Wasser bis um das Zehnfache erhöht werden. Das System benötigt geringe Investitionskosten und ermöglich eine unmittelbare Verbesserung des Löscherfolges durch erhöhte Präzision und Effizienz des Löschwassereinsatzes sowie verbesserte Sicherheit der Einsatzkräfte. Auf diese Weise kann ein besserer Schutz für Bevölkerung, Umwelt und Wirtschaft erreicht werden. Große Waldbrände bedürfen in der Regel Löschunterstützung aus der Luft, da die Feuerwehr nicht zu allen betroffenen Gebieten vordringen kann oder Brände zu groß und gefährlich für Bodeneinsatzkräfte werden. Die derzeitig zum Einsatz kommenden Technologien wurde hauptsächlich in den 1970er Jahren entwickelt und basieren auf einem Prinzip: dem Abwurf großer Mengen Wasser aus der Luft durch Hubschrauber oder Flugzeuge. Grundproblem ist hier jedoch, dass ein Großteil des eingesetzten Wassers die Flammen nicht erreicht. 50 - 80% des Wassers verwehen oder verdampfen über der Vegetation, z.B. Baumwipfel, und bleiben somit wirkungslos. Die durch die Klimakrise zunehmende Wasserknappheit stellt die Waldbrandbekämpfung daher noch vor weitere Herausforderungen und die Schäden nehmen zu. Der Systemansatz von CAURUS Technologies besteht aus zwei Komponenten: - Eine digitale Plattform zur Optimierung des Wasserabwurfes durch präzisere Zielführung, datenbasierte Auswertung der Löschwirkung und kontinuierliche Entscheidungsunterstützung der Einsatzkräfte - Ein neuartiges Löschverfahren auf Basis von Dispersionstechnologie. Hierbei wird ein neu entwickelter Löschbehälter aus sicherer Höhe über dem Brandherd abgeworfen und innerhalb des Feuers in eine Aerosol Löschwolke mit bis zu zehnfach höherer Löschwirkung verwandelt

Optimierungen der massenhaften Ausbringung der parasitoiden Erzwespe Trichogramma dendrolimi (L.) gegen bestandesbedrohenden Befall des Kiefernspinners bei Helikopter gestützter Applikation, Teilvorhaben 3: Charakterisierung und Formulierung von Trichogramma-Wirtseiern

Optimierungen der massenhaften Ausbringung der parasitoiden Erzwespe Trichogramma dendrolimi (L.) gegen bestandesbedrohenden Befall des Kiefernspinners bei Helikopter gestützter Applikation, Teilvorhaben 1: Entwicklung eines Überschwemmungsverfahrens und Anwendungsoptimierung

Optimierungen der massenhaften Ausbringung der parasitoiden Erzwespe Trichogramma dendrolimi (L.) gegen bestandesbedrohenden Befall des Kiefernspinners bei Helikopter gestützter Applikation, Teilvorhaben 2: Optimierung der Vermehrung und Bereitstellung des Ei-Parasitoiden

Optimierungen der massenhaften Ausbringung der parasitoiden Erzwespe Trichogramma dendrolimi (L.) gegen bestandesbedrohenden Befall des Kiefernspinners bei Helikopter gestützter Applikation

Multimodales luftgestütztes Quantensensor-basiertes Instrument zur nachhaltigen Exploration natürlicher Ressourcen, Teilprojekt 1: Systemelektronik und Systemmechanik

Experimentelle und numerische Untersuchungen zur instationären aerodynamischen Belastung von Schiffen und Offshore-Strukturen, Vorhaben: Entwicklung von simulations- und modellbasierten Methoden zur Bewertung der instationären, aerodynamischen Strömung von Yachten im Entwurfsprozess

Projekt Waldkalkung

Zweck der Waldkalkungen ist, der zum Teil tief reichenden Versauerung der Waldböden entgegenzuwirken. Die fortschreitende Versauerung der Böden geht mit erheblichen Schädigungen des Ökosystems Wald einher. So werden mit sinkenden pH-Werten (Säuregradmesser) das giftige Aluminium und Schwermetalle ausgewaschen, die die Wurzeln der Bäume schädigen und ins Grundwasser verlagert werden. Auch Nährstoffe werden dem Boden entzogen und stehen damit den Pflanzen nicht mehr zur Verfügung. Durch die Kalkungsmaßnahmen werden die Waldböden sozusagen mit einer Schutzhülle aus Kalk bedeckt. Der Kalk soll die über die Niederschläge eingetragenen Säuremengen in den obersten Bodenschichten über einen gewissen Zeitabschnitt neutralisieren, um damit den Bodenzustand zu stabilisieren und ggfs. auch wieder zu verbessern. Die Kalkung dient zudem auch dem Grundwasser- und damit letztlich dem Trinkwasserschutz. Besonders kalkungsbedürftig sind die Waldflächen der Buntsandsteingebiete im Saarland, da deren Böden von Natur aus ein nur geringes Pufferungsvermögen gegenüber Säureeinträgen aufweisen. Den Kalkungsmaßnahmen vorausgegangen waren bodenchemische Analysen durch das Landesamt für Umwelt und Arbeitsschutz (LUA), um zuverlässige Aussagen über den Bodenzustand zu erhalten. Im Anschluss an die Kompensationskalkung wird es weitere Untersuchungen im Sinne einer Wirkungskontrolle geben. Von der Kalkung ausgeschlossen werden einerseits aus Naturschutzgründen sensible Flächen (z.B. Naturschutzgebiete, Naturwaldzellen u.ä.). Anderseits werden Verkehrsflächen und siedlungsnahe Flächen ausgeschlossen. Die Kompensationskalkung erfolgt ausschließlich in der vegetationsarmen Zeit, da nur dann sichergestellt ist, dass eine möglichst große Kalkmenge den Boden auch erreicht. Ausgebracht wird der Magnesiumkalk per Hubschrauber. Bei einer Menge von etwa 3 Tonnen pro Hektar können so pro Tag zwischen 60 und 75 Hektar Wald behandelt werden.

Vertikale Verteilung von Wolkenkondensationskernen in marinen und kontinentalen Luftmassen in Europa und ihre Verbindung zur Wolkentropfenanzahlkonzentration in warmen Wolken

Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.

Was bestimmt die Konzentration von Aerosolpartikeln in der marinen Grenzschicht über dem atlantischen Ozean?

Aerosolpartikel spielen eine wichtige Rolle für das regionale und globale Klima. Weltweit gibt es deshalb zahlreiche Messstationen, von denen allerdings nur ein kleiner Teil die marine Grenzschicht (MBL) erfasst, obwohl etwa 70% der Erdoberfläche mit Wasser bedeckt sind. Dieses Projekt soll dazu beitragen, das Wissen über Quellen und Austauschprozesse von Aerosolpartikeln in der MBL mithilfe einer Messkampagne über den Azoren im Nordostatlantik, welche nahezu unbeeinflusst von lokalen Quellen sind, zu verbessern.Die zentrale Hypothese ist, dass sowohl Ferntransport aus Nordamerika, als auch Partikelneubildung in der freien Troposphäre (FT) und an Wolkenrändern mit anschließendem Vertikaltransport wesentlich zur Anzahlkonzentration der Aerosolpartikel in der MBL beitragen. Das Verständnis der Partikelquellen und Senken zusammen mit dem vertikalen Partikelaustausch zwischen MBL und FT ist daher eine Grundvoraussetzung für die Vorhersagbarkeit der Partikelanzahlkonzentration in den unteren Schichten der MBL wo sie z.B. für die Wolkenbildung von großer Bedeutung ist. Diese Prozesse sind bisher über dem offenen Ozean nur unzureichend quantifiziert. Zur Verifizierung der Hypothese sollen vertikale Austauschprozesse und Partikelquellen über den Azoren mit hoher räumlicher Auflösung untersucht werden. Dazu werden mit einer am TROPOS entwickelten hubschraubergetragenen Messplattform Partikelanzahlkonzentration und Vertikalwind mit einer zeitlichen Auflösung gemessen, die erstmalig eine direkte Bestimmung des vertikalen turbulenten Partikelflusses in verschiedenen Höhen ermöglicht. Die hierfür notwendigen schnellen Partikelmessungen von mind. 10 Hz werden durch den Einsatz eines schnellen Partikelzählers ermöglicht, welcher am TROPOS im Rahmen eines abgeschlossenen DFG-Projektes entwickelt und erfolgreich eingesetzt wurde. Durch dieses Gerät ist es ebenfalls möglich zu prüfen, ob auch in dieser Region regelmäßig die Neubildung von Aerosolpartikeln an Wolkenrändern stattfindet, wie es an Passatwolken auf Skalen von wenigen Dekametern beobachtet wurde. Weiterhin werden Anzahlgrößenverteilungen von Aerosolpartikeln sowie Absorptionskoeffizienten bei drei Wellenlängen bestimmt. Damit sind Rückschlüsse auf die Herkunft der untersuchten Aerosolpartikel möglich.Da die Hubschrauberflüge zeitlich begrenzt sind und damit nur Momentaufnahmen darstellen, werden zusätzlich kontinuierliche Messungen der Partikelanzahlgrößenverteilung an zwei bodengebundenen Stationen installiert. Eine dieser Stationen ist wenige Meter über Meeresniveau gelegen, die andere auf 2200 m und somit in der FT. Damit wird auf der Basis kontinuierlicher Messungen über einen Zeitraum von einem Monat die Untersuchung der Austauschprozesse zwischen MBL und FT ermöglicht. Mit Hilfe der gewonnen Datensätze können Einflüsse globaler Klimaänderungen auf das lokale Klima und mögliche Rückkopplungseffekte über den Einfluss von Aerosol auf Wolken in dieser Region besser eingeordnet werden.

1 2 3 4 527 28 29