Mit detaillierten sedimentologischen und geochemischen Analysen sollen die kleinskaligen Klimaänderungen und ihre Auswirkung auf Sedimentexport analysiert werden. Neben Gezeiten und Hurricanes erzeugen die Passage von Kaltwasserfronten einen wichtigen Transportmechanismus für die Verfrachtung von Karbonatschlämmen von einer flachen Karbonatplattform in tiefere Hangbereiche. Die Anwendung von Magnesium-Thermometrie für die Berechnung von Paläo-Oberflächentemperaturen wird die klimatischen Rahmenbedingungen gut charakterisieren können. Das hier beantragte Vorhaben konzentriert sich auf die Auswertung von Sedimentmaterial, das im Rahmen der fünften Expedition des internationalen IMAGES Projektes im Juni in der Nähe der Großen Bahama Bank gewonnen wurde. Feinskalige sedimentologische und geochemische Profile sollen für das Holozän entlang eines 38 m langen Sedimentkernes erstellt werden. Damit sollen kurzfristige Variabilitäten in der Karbonatproduktion der Großen Bahama Bank in Bezug zu hochfrequenten Klimaänderungen gesetzt werden.
Südchina, insbes. die Provinz Guandong, ist eines der am dichtesten besiedelten Gebiete der Erde. Positive Konsequenz dieser Ballung ist eine äußerst dynamische Wirtschaftsentwicklung, aber gerade diese von subtropischem Monsunklima geprägte Region ist auch immer wieder Ausgangspunkt für sich schnell und zunehmend global ausbreitende epidemische Krankheiten wie zuletzt SARS. Mit der globalen Erwärmung einhergehende Klimaveränderungen könnten sich für diese Region insbesondere durch Veränderungen der Häufigkeit und Intensität tropischer Wirbelstürme, aber auch Änderungen der Niederschlagsmenge- und Intensität bemerkbar machen. Im Gegensatz zu den schon recht umfangreichen Datensätzen aus der Südchinesischen See (SCS) gibt es bisher jedoch nur sehr wenige terrestrische Paläoklimaarchive aus der Region, die Klimaveränderungen während des Holozäns, des Spätglazials oder Glazials hochauflösend dokumentieren. Wir haben deshalb einen an der nördlichen Küste der SCS gelegenen Maarsee ausgewählt, um über die Analyse von Proxydaten aus Seesedimenten solche Paläo-Klimavariationen zu untersuchen. Aus dem Sediment des Huguang-Maarsees wurden mittels Usinger-Präzisionsstechtechnik von einem Floss aus insgesamt 7 Sedimentsequenzen gewonnen, von denen die tiefste bis 57 m unter den Seeboden reicht. Die zeitliche Einstufung der Profile wurde mit Hilfe von 17 Radiokohlenstoff-Datierungen vorgenommen und ergab ein extrapoliertes Maximalalter von ca. 78.000 Jahren. Ein breites Spektrum aus sedimentologischen, geochemischen, paläo- und gesteinsmagnetischen sowie palynologischen Methoden kam sodann zum Einsatz, um die Paläo-Umweltbedingungen, die natürlich immer das entsprechende Klima widerspiegeln, während dieses Zeitraumes zu rekonstruieren. Überraschenderweise ergab sich ein von vielen bekannten Klimaprofilen der Nordhemisphäre (insbes. des Atlantikraumes, aber auch mariner Kerne aus dem Indik und Südostasien) abweichendes Muster. Im Gegensatz zu dem bekannten Grundmuster eines vergleichsweise stabilen Klimas während des Holozäns und stärkerer Schwankungen während des letzten Glazials weisen die Daten aus dem Huguang-Maarsee für das letzte Glazial im Zeitraum zwischen 15.000 und 40.000 Jahren auf relativ stabile Umweltbedingungen hin. Die älteren Bereiche zwischen 40.000 und ca. 78.000 Jahren haben durch Eintrag von umgelagertem Torf eine eher lokale Komponente und sind somit für den regionalen und globalen Vergleich ungeeignet. Das Holozän hingegen zeichnet sich durch hohe Schwankungsamplituden vieler Proxydaten (Karbonatgehalt, magnetische Suszeptibilität, organischer Kohlenstoff, Trockendichte, gesteinsmagnetische Parameter, Redox-Verhältnisse) aus, die auf ein recht variables Klima hinweisen. Besonders interessant ist die Übergangsphase vom Glazial zum Holozän, die bei etwa 15.000 Jahren vor heute in etwa zeitgleich mit dem beobachteten stärksten Meeresspiegelanstieg der Südchinesischen See einsetzt und eine abrupte Intensitätszunahme des Sommermonsuns anzeigt
Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
Veränderungen der Ozeanwärme sind eng mit dem Wärmefluss an der Ozean-Atmosphärengrenze verbunden und spielen daher eine wic--htige Rolle bei der Regulierung des Erdklimas. Allerdings weisen in-situ-Messungen immer noch hohe Ungenauigkeiten auf und sind nur in wenigen Regionen in ausreichender Anzahl vorhanden. ROCSTAR wird neue Einsichten in das Energiebudget der Erde durch die verbesserten Schätzungen der ozeanischen Temperatur (T) und des Salzgehalts (S) liefern. Durch die Kombination der geodätischen Raumverfahren mit Argo-Profilen, werden gleichzeitig die Temperatur, der Salzgehalt und regional variierende Meeresspiegelbeiträge ermittelt. Die daraus resultierenden Schätzungen umfassen die gesamte Ozeansäule und die zugehörigen sterischen Änderungen werden sowohl mit dem beobachteten Meeresbodendruck als auch mit den Meeresspiegelanomalien konsistent sein. Vor diesem Hintergrund verfolgt das Projekt folgende Ziele:1. Erhöhung der Genauigkeit der in sich konsistenten T- und S-Felder und Bereitstellung von realistischen Fehlerschätzungen2. Ermittlung der T- und S-Schätzungen in Regionen mit wenigen Beobachtungen und in den Tiefen des Ozeans3. Quantifizierung der Rolle, welche die flachen und tiefen Schichten des Ozeans in der Energiebilanz der Erde und im Meeresspiegel-Budget spielen4. Identifizierung und Untersuchung von Ozeanwärmehotspots und deren Verbindung zum terrestrischen Wasserkreislauf im Südosten Asiens. ROCSTAR wird innerhalb des SPP1189-Schwerpunkts WPA (Ursprung der regionalen Meeresspiegeländerungen) angesiedelt sein. Das Projekt befasst sich mit globalen Beobachtungen, führt aber intensive Untersuchungen im indischen Ozean und Westpazifik durch, welche die Hauptquellen für Feuchtigkeit, Zyklon und Taifun Entwicklung in der südostasiatischen Region darstellen. Darüber hinaus wird ROCSTAR aktiv an den Öffentlichkeitsarbeiten des SPPs teilnehmen und ein konzeptionelles Brettspiel entwickeln, um Nicht-Wissenschaftlern das regionale Meeresspiegelbudget näher zu bringen.
Extreme kurzfristige Meeresspiegeländerungen können schwerwiegendere Auswirkungen auf die Gesellschaft und Ökosysteme haben, als ein langsam ansteigender mittlerer Meeresspiegel. Wenn sich die Anzahl von Extremereignissen unter dem Einfluss anthropogener Klimaänderungen verändert, kann das grundlegende Konsequenzen auf die Abschätzung klimawandelbedingter Auswirkungen haben, und in der Folge auf geplante Anpassungsmaßnahmen. Südostasien ist eine der bevölkerungsreichsten Regionen der Welt, welche den Auswirkungen von Taifunen und extratropischen Zyklonen unterliegt. Gegenwärtig ist noch unklar, inwiefern externe Klimaantriebe die Häufigkeit und Intensität von extremen Ereignissen wie Sturmfluten und starken und/oder langanhaltenden Niederschlagsereignissen beeinflussen, und welche Rolle dabei die interne Variabilität der Klimaantriebe spielt. Im Projekt Asia-Floods werden atmosphärische Wettermuster identifiziert werden, welche zu küstennahen Überflutungen durch Sturmfluten und/oder durch extreme kontinentale Niederschläge in der Region Südostasien führen können. Dazu wird eine Reihe von vorhandenen globalen und regionalen Klimasimulationen unterschiedlicher räumlicher Auflösung untersucht werden, welche sowohl die letzten Dekaden als auch Simulationen über das letzte Jahrtausend und Zukunftsszenarien abdecken. Auf Basis dieser Simulationen wird ein statistischer Downscaling Ansatz angewendet werden, in welchem die großskaligen atmosphärischen Klimafaktoren in einen statistischen Zusammenhang zu (beobachteten) lokalen Klimafaktoren gebracht werden. Dazu werden Beobachtungsdatensätze von extremen Wasserständen und Niederschlagsereignissen verwendet werden. Nach der Kalibrierung dieser statistischen Modelle anhand gegitterter Beobachtungsdaten und meteorologischer Reanalysen, können diese auf vergangene und zukünftige globale und regionale Klimasimulationen angewendet werden, um Änderungen in der Anzahl von Extremereignissen abschätzen zu können. Die erzielten Ergebnisse auf Basis der Klimasimulationen der vergangenen Jahrhunderte werden u.a. mit anderen Projekten innerhalb dieses SPPs abgeglichen, um die Häufigkeit von Überflutungen in Proxydaten zu untersuchen. Im Falle der Szenario-Simulationen werden die Ergebnisse u.a. verwendet, um den Anstieg der durch küstennahe Überflutungen verursachten ökonomischen Kosten abzuschätzen.
<p>Die Veränderungen im globalen Klimasystem haben seit 1950 rapide zugenommen und sind beispiellos im Vergleich zu den vorherigen Jahrtausenden. Der menschliche Einfluss hat zweifellos zur deutlichen Erwärmung der Atmosphäre, Ozeane und Landflächen geführt. Anhaltende Treibhausgas-Emissionen werden auch künftig starke Klimaänderungen und weitere Extremereignisse verursachen.</p><p>Aktueller Stand der Klimaforschung </p><p>Auf Basis deutlich verbesserter Kenntnis der Klimaprozesse, besserer (paläoklimatischer) Nachweise zu den Klimabedingungen vergangener Erdepochen und der Reaktion des Klimasystems auf den zunehmenden Strahlungsantrieb der Sonne ist der vom Menschen verursachte <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> eindeutig nachweisbar. Er wirkt sich bereits auf sehr viele <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wetter#alphabar">Wetter</a>- und Klimaextreme in allen Regionen der Welt aus.</p><p>Dieser Einfluss des Menschen auf das Erdklima (anthropogener Klimawandel) und die damit einhergehenden weitverbreiteten Veränderungen zeigen sich in der schnellen Erwärmung der unteren <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> und der Ozeane, in den Veränderungen des globalen Wasserkreislaufs, in der weltweiten Abnahme von Schnee und Eis, im Anstieg des mittleren globalen Meeresspiegels und an veränderten Jahreszeiten. Zudem gibt es jetzt noch mehr beobachtete Veränderungen von Wetterextremen wie Hitzewellen, Starkniederschlägen, Überflutungen, Dürren und tropischen Wirbelstürmen sowie insbesondere noch mehr eindeutigere Belege für deren Zuordnung zum Einfluss des Menschen.</p><p>Die <a href="https://gml.noaa.gov/ccgg/trends/">Treibhausgas-Konzentrationen in der Atmosphäre</a> sind auch in den letzten 10 Jahren weiter angestiegen und haben 2024 jährliche Mittelwerte von 421 <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a> für Kohlendioxid (CO2), 1.930 <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a> für <a href="https://gml.noaa.gov/webdata/ccgg/trends/ch4/ch4_annmean_gl.txt">Methan</a> (CH4) und 337,7 ppb für Lachgas (N2O) erreicht. Die mittlere globale dekadische Oberflächentemperatur stieg im Zeitraum von 1880 bis 2024 um mehr als 1,3 °C (vgl. Abb. „Der Einfluss des Menschen hat das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> in einem Maße erwärmt, wie es seit mindestens 2.000 Jahren nicht mehr der Fall war"). Das Einzeljahr 2024 lag ca. 1,55 °C über dem vorindustriellen Niveau. Auf der Nordhalbkugel war die letzte Dekade die wärmste seit mehr als 125.000 Jahren. . </p><p>Zu erwartende globale Klimaänderungen</p><p>Bis Ende des 21. Jahrhunderts wird sich die Erwärmung der bodennahen Luftschicht fortsetzen. Alle zugrunde gelegten Treibhausgasemissionsszenarien ergeben bis Ende des 21. Jahrhunderts eine Temperaturzunahme. Je nach <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Szenario#alphabar">Szenario</a> kann die mittlere Erwärmung von 1,5 bis 5,7 °C im Vergleich zu vorindustriellen Bedingungen (Referenzperiode: 1850-1900) reichen. Nur unter der Voraussetzung äußerst ambitionierter Klimaschutzmaßnahmen und drastischer Verminderung der CO2- und anderer <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen ließe sich der mittlere Temperaturanstieg bis 2100 gegenüber der vorindustriellen Zeit auf 1,5 °C bis 2,4 °C begrenzen.</p><p>Nähere Informationen zum Sechsten Sachstandsbericht des Weltklimarats (<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>-AR6) finden Sie auf der Seite der <a href="https://www.de-ipcc.de/250.php">Deutschen IPCC Koordinierungsstelle.</a></p><p>Die Teilberichte des AR6</p><p>Der Bericht der Arbeitsgruppe I des Weltklimarates <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a> kommt zu dem klaren Schluss, dass die vom Menschen verursachten (anthropogenen) Treibhausgasemissionen eindeutig die Ursache für die bisherige und die weitere Erwärmung des Klimasystems der Erde sind. Die zahlreichen Folgen der Klimaerwärmung - einschließlich der Extremereignisse – werden immer offensichtlicher und lassen sich direkt dem anthropogenen Treibhauseffekt zuordnen. Die Auswirkungen der globalen Klimaveränderungen sind somit intensiver und häufiger geworden und werden dies auch in den kommenden Jahrzehnten weiterhin tun. Der Anstieg der globalen, über 20 Jahre gemittelten Oberflächentemperatur wird im Vergleich zum vorindustriellen Niveau wahrscheinlich Anfang der 2030er Jahre den Wert von 1,5°C erreichen.</p><p>Mehr dazu, dass der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> schneller und folgenschwerer verläuft finden Sie <a href="https://www.umweltbundesamt.de/themen/ipcc-bericht-klimawandel-verlaeuft-schneller">hier</a>.</p><p>Im Fokus des zweiten Teilberichtes stehen die Folgen des Klimawandels sowie die <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassung_an_den_Klimawandel#alphabar">Anpassung an den Klimawandel</a>. Der IPCC warnt: Die Klimarisiken für Ökosysteme und Menschen nehmen weltweit rapide zu. Nur konsequenter <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a> und frühzeitige Klimaanpassung können Risiken verringern.</p><p>Der Teilbericht beschreibt sehr deutlich die Auswirkungen der Klimakrise. Bereits jetzt sind massive Folgen für Ökosysteme und Menschen in allen Regionen der Welt sichtbar und die weltweiten CO₂ Emissionen steigen weiter. Die Auswirkungen der <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/klimarisiken-gefaehrden-lebens-umweltqualitaet">Klimakrise</a> werden Menschen und Ökosysteme selbst dann noch spürbar belasten, wenn es uns gelingt, entschieden umzusteuern und die Erderhitzung auf 1,5 °C zu begrenzen.</p><p>Mehr zur Anpassung an den Klimawandel finden sie <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung">hier</a>.</p><p>Die wohl wichtigste Botschaft des dritten Teilberichtes ist, dass es technisch und ökonomisch nach wie vor möglich wäre, die globale Erwärmung entsprechend des Übereinkommens von Paris auf 1,5°C bis 2100 zu begrenzen. Dafür sind allerdings eine sofortige globale Trendwende sowie tiefgreifende <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Minderungen in allen Weltregionen und allen Sektoren nötig (d.h. in Energiesystemen, Städten, Land- und Forstwirtschaft, <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>, Gebäuden, Verkehr und Industrie). Sofortige Klimaschutzmaßnahmen würden das globale Wirtschaftswachstum nur geringfügig verringern – verglichen mit einer rein hypothetischen Entwicklung, die den Klimawandel gar nicht enthält. Verglichen mit den zu erwartenden Wirtschaftskrisen und Rezessionen bei einer Erwärmung von mehr als 1,8 °C stellen sofortige Klimaschutzmaßnahmen dagegen auch ökonomisch eine äußerst lohnende Investition dar.</p><p>Erstmalig stand auch das energie- und emissionssparende Verhalten in Unternehmen und im Alltag im Zentrum des Teilberichtes. Weltweit verbesserte Rahmenbedingungen wie politische und regulatorische Instrumente, internationale Zusammenarbeit, Marktinstrumente (z.B. CO₂-Bepreisung), Investitionen, Innovationen, Technologietransfer, Aufbau von Know-How sowie klimafreundliche Lebensstile bieten Möglichkeiten, die notwendigen System-Transformationen im Einklang mit nachhaltiger Entwicklung und globaler Gerechtigkeit zu gestalten.</p><p>Armutsbekämpfung und eine gesicherte Energieversorgung könnten global ohne signifikante Emissionssteigerungen erreicht werden. Die allerwichtigsten Optionen liegen dabei in der Nutzung von Sonnenenergie und Windkraft sowie im Mobilitäts-, Gebäude- und Ernährungs-Sektor (hier vor allem weniger Fleischkonsum), aber auch besonders im Schutz und der Verbesserung der Wirksamkeit von Ökosystemen (vor allem der globalen Wälder und Moore).</p><p>Hier haben wir für Sie die <a href="https://www.umweltbundesamt.de/minderung-des-klimawandels-was-notwendig-moeglich">Kernaussagen des dritten Teilberichts</a> zusammengefasst.</p>
Basierend auf dem Stand des Wissens ist es nicht möglich, zuverlässig die Transfergeschwindigkeiten für den Gasaustausch zwischen Ozean und Atmosphäre bei hohen Windgeschwindigkeiten anzugeben. Der Mangel an experimentellen Daten ist der Grund dafür. Das Ziel dieses Projekts ist es daher, die Mechanismen des Gasaustausches mit Fokus auf die hohen Windgeschwindigkeiten durch eine Reihe von Laborexperimenten unter den weit möglichen Bedingungen zu untersuchen. Drei geeignete Einrichtungen wurden ausgewählt: der erste Wind/Wellen Kanal, an dem Windgeschwindigkeiten mit Hurrikan Stärke möglich sind, an der Universität Kyoto, der große Kanal an der Universität Marseille und der große ringförmige Kanal an der Universität Heidelberg, das Aeolotron. Die experimentellen Bedingungen umfassen Windgeschwindigkeiten (U10) von 0-70 m/s, Wassertemperaturen von 5-40 Grad C, Süß- und Meerwasser, Überlagerung mechanisch und winderzeugter Wellen und Belüfter, um hohe Blasenkonzentrationen zu erreichen. Mehr als ein Dutzend Tracer - mit denen der gesamte Bereich der möglichen Diffusivitäten und Löslichkeit abgedeckt wird - lassen sich gleichzeitig durch Membraneinlass-Massenspektrometrie und UV Spektroskopie messen. Damit werden die vorhandenen konzeptionellen Modelle überprüft und, wenn notwendig, modifiziert oder erweitert, und die relative Bedeutung der einzelnen Mechanismen quantitativ bestimmt.
PHILEAS (Probing high latitude export of air from the Asian summer monsoon)Die asiatische Sommermonsun Antizyklone (AMA) während des Nordsommers wird als ein Haupttransportweg in die obere Troposphäre / untere Stratosphäre (UTLS) für troposphärische Luftmassen, die viel H2O und Aerosolvorläufergase und Verschmutzung enthalten, gesehen. Neuere Beobachtungen zeigen eine große Bedeutung des Transports von Ammoniumnitrat durch die AMA für das Aerosolbudget und die asiatische Tropopausenaerosolschicht (ATAL), wahrscheinlich auch mit Konsequenzen für die Zirrenbildung.Neuere flugzeuggetragene Messkampagnen konnten die Zusammensetzung und Aerosolgehalt im Inneren der AMA charakterisieren oder werden in unmittelbarer Nähe Messungen erheben. Im Gegensatz dazu wurde der Einfluss von monsungeprägten Luftmassen auf die Gesamtzusammensetzung der nördlichen untersten Stratosphäre, z.B. bei HALO Mesungen nachgewiesen. Allerdings gibt es bisher keine Studie, die den Übergang der AMA Luftmassen in die extratropische unterste Stratosphäre (LMS) und die Konsequenzen für Aerosolprozessierung und Zusammensetzung zeigt. Im Rahmen der früheren HALO Missionen TACTS/ESMVal und WISE hat sich gezeigt, dass der nördliche Zentralpazifik eine Schlüsselregion für diesen Übergang ist.Beobachtungen und Modelldaten zeigen eine besondere Bedeutung des sogenannten ‘eddy-sheddings‘ für die Befeuchtung der nördlichen UTLS an. Diese Eddies stellen isolierte dynamische Anomalien dar, die sich von der AMA gelöst haben und mit der Hintergrundströmung in der Atmosphäre zu zirkulieren beginnen. Die chemische Zusammensetzung der Eddies ist zunächst isoliert von ihrer Umgebung. Dynamische und diabatische Prozesse erodieren jedoch diese Anomalien und führen zu einer allmählichen Vermischung mit dem stratosphärischen Hintergrund.Weitere Transportpfade beeinflussen die Zusammensetzung der UTLS über dem Pazifik im Sommer: i) quasi-horizontales Mischen über den Subtropenjet ii) konvektiver Eintrag tropischer Taifune, die in die Extratropen wandern können iii) Wettersysteme der mittleren Breiten. Bei PHILEAS ist geplant, die relative Bedeutung verschiedener Prozesse für die Gasphasen und Aerosolzusammensetzung der UTLS zu untersuchen. Dabei soll insbesondere die dynamische und chemische Entwicklung ehemaliger AMA Filamente untersucht werden, die sich von der AMA abgespalten haben und über dem Pazifik aus der Troposphäre in die Stratosphäre übergehen.Insgesamt ergeben sich drei Hauptthemen, die die PHILEAS Mission motivieren:1) Welche Haupttransportpfade, Zeitskalen und Prozesse dominieren den Transport aus der AMA in die unterste Stratosphäre?2) Wie entwickeln sich Zusammensetzung der Gasphase und der Aerosole während des Transports speziell durch die 'shed eddies'?3) Welche Bedeutung hat der Prozess der Wirbelablösung für das globale Budget der UTLS speziell von H2O und infrarot-aktiven Substanzen?
The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.
Dieses Projekt zielt auf eine systematische Quantifizierung der Vorhersageunsicherheit für Spitzenböen über Deutschland ab, die im Zusammenhang mit Tiefdruckgebieten während des Winterhalbjahres auftreten. Das allgemeine Vorgehen dabei ist, verschiedene Quellen für Unsicherheit gemäß der angeregten Skalen (synoptisch bis Grenzschichtturbulenz) zu unterscheiden. Dazu werden Modelldaten (z.B. globale und regionale Ensemblevorhersagen, Grobstruktursimulationen) sowie Beobachtungsdaten (z.B. Messungen von neuartigen Doppler-Lidarsystemen, verschiedene Routinebeobachtungen) verwendet.
| Origin | Count |
|---|---|
| Bund | 79 |
| Land | 2 |
| Type | Count |
|---|---|
| Ereignis | 7 |
| Förderprogramm | 68 |
| Text | 6 |
| License | Count |
|---|---|
| geschlossen | 6 |
| offen | 75 |
| Language | Count |
|---|---|
| Deutsch | 56 |
| Englisch | 39 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 7 |
| Dokument | 4 |
| Keine | 49 |
| Unbekannt | 1 |
| Webseite | 31 |
| Topic | Count |
|---|---|
| Boden | 59 |
| Lebewesen und Lebensräume | 63 |
| Luft | 81 |
| Mensch und Umwelt | 81 |
| Wasser | 72 |
| Weitere | 81 |