Enhanced Geothermal Systems (EGS) zielen darauf ab, die in der Erdkruste gespeicherte Wärme durch zirkulierende Flüssigkeiten zwischen Injektions- und Produktionsbohrlöchern zu extrahieren. Ideale Bedingungen finden sich typischerweise in Formationen in einer Tiefe von 2 bis 5 km, in denen die Durchflussrate für kommerzielle geothermische Anlagen nicht ausreicht und in denen die Temperaturen hoch sind (d. H. >> 100 ° C). Daher ist die Hochdruck-Flüssigkeitsinjektion, die als hydraulische Stimulation bekannt ist, eine allgemein angewandte Technik, um ein verbundenes Bruchnetzwerk zu erzeugen, das die Flüssigkeitszirkulation erleichtert. Die hydraulische Stimulation geht typischerweise mit einer induzierten Seismizität einher, die von der Öffentlichkeit wahrgenommen werden kann und sogar Schäden verursacht. Das Ziel dieses Projekts ist es, ein grundlegendes Verständnis der induzierten Seismizität in gebrochenen Gesteinen zu vermitteln, das die Fähigkeit verbessert, das seismische Risiko vorherzusagen und zu kontrollieren. Dieses Projekt geht von der Hypothese aus, dass die Seismizität gemeinsam durch die Bruchnetzgeometrie und die aktivierten thermo-hydromechanischen (THM) Prozesse in geologischen Systemen gesteuert wird. Wir werden Discrete Fracture Networks (DFN) anwenden, um die strukturellen Diskontinuitäten darzustellen und die THM-Prozesse mit hoher Auflösung zu modellieren. Dieses Projekt verwendet die Datensätze aus kleinen (Dekameter-) Stimulationsexperimenten am Grimsel-Teststandort in der Schweiz und modernste numerische Modelle, um Folgendes zu erreichen: 1) Testen Sie die Wirksamkeit hochauflösender Modelle zur Erfassung der seismische, hydraulische und mechanische Prozesse, die mit kleinen Experimenten beobachtet wurden; 2) Verknüpfung der geometrischen Attribute eines Bruchnetzwerks (wie Intensität, Konnektivität, Länge und räumliche Verteilung) mit der räumlichen, zeitlichen und Größenverteilung der induzierten Seismizität; 3) ein neuartiges Prognosemodell für die maximal mögliche Größe vorschlagen und testen, das die gemeinsamen Auswirkungen von Multiphysikprozessen berücksichtigt, die unter standortspezifischen geologischen Bedingungen und Betriebsbedingungen dominieren; 4) Bewertung der Hochskalierung der hochauflösenden DFN-Modelle im kleinen Maßstab (Dekameter), um die Experimente im Reservoir-Maßstab (Kilometer) zu simulieren. Dieses Forschungsprojekt ist neu in der Behandlung der durch Injektion induzierten Seismizität durch hochauflösende physikbasierte Modelle und hochwertige Datensätze, die aus einzigartigen In-situ-Experimenten abgeleitet wurden. Die vorgeschlagene Forschung hat erhebliche Auswirkungen auf die Förderung der Übergangspolitik hin zu einer Versorgung mit erneuerbaren Energien und trägt dazu bei, unser Wissen über die Auslösemechanismen induzierter Erdbeben zu erweitern.
To seismically monitor the GEOREAL hydraulic stimulation experiment, that took place during the period 6-15 November 2023, a station network was set up in the vicinity of the Kontinentale Tiefbohrung/ KTB deep crustal lab near Windischeschenbach, Germany. The network comprised both surface stations, shallow borehole (25-150 m deep) stations as well as a borehole chain at 2000 m depth in the main borehole, ca. 200m apart from the pilot borehole. First stations were installed in early 2022 and removed in mid-2024. A total of 600 m³ of water was injected into the 4 km deep pilot borehole (KTB-VB, 12° 7.16' E, 49° 48.98' N, 513.418 m above NN ). This volume was injected through a stuck packer in the cased borehole into the open borehole section a depth of 3.85-4 km. No induced seismicity was observed during the injection experiment. Waveform data is available from the GEOFON data centre, under network code 4R, and is fully open.
This data set contains measurements of an underground hydraulic fracture experiment at Äspö Hard Rock Laboratory in May and June 2015. The experiment tested various injection schemes for rock fracture stimulation and monitored the resulting seismicity. The primary purpose of the experiment is to identify injection schemes that provide rock fracturing while reducing seismicity or at least mitigate larger seismic events. In total, six tests with three different injection schemes were performed in various igneous rock types. Both the injection process and the accompanied seismicity were monitored. For injection monitoring, the water flow and pressure are provided and additional tests for rock permeability. The seismicity was monitored in both triggered and continuous mode during the tests by high-resolution acoustic emission sensors, accelerometers and broadband seismometers. Both waveform data and seismicity catalogs are provided.
Other
In 2020 and 2021 the STIMTEC-X hydraulic stimulation experiment was performed at ca.~130 m below surface at the Reiche Zeche underground research laboratory in Freiberg, Saxony/Germany. The project temporally followed the STIMTEC experiment at the same site and aimed at understanding the stress heterogeneity of the anisotropic and metamorphic gneiss rock mass. The STIMTEC-X experiment applied the hydraulic stimulation technique in several boreholes at the mine-scale. Complementary to the stimulations, there were active seismic ultrasonic transmission data acquired before the stimulations. We use a seismic monitoring network consisting of six single-component acoustic emission (AE) sensors (sensitivity 1-60 kHz), six hydrophone-like AE sensors (sensitivity 1-40 kHz) and four to twelve single-component Wilcoxon accelerometers (sensitivity 50 Hz-25 kHz). The AE sensors and remained stationary in sub-horizontal and upwards reaching boreholes, the accelerometers were mostly installed along the tunnel walls with one accelerometer in a shallow borehole in each tunnel, and the hydrophone-like AE sensors were installed in the down-going water filled boreholes, but repositioned for each measurement campaign (Figure 1). This data set of 120 active ultrasonic transmission (UT) measurements is supplementary to Boese et al. (2022, in review), which introduces some of the active measurement campaigns of the STIMTEC-X experiment in detail. The whole data set togetter with the “Ultrasonic transmission measurements from six boreholes from the STIMTEC experiment, Reiche Zeche Mine, Freiberg (Saxony, Germany)” [https://doi.org/10.5880/GFZ.4.2.2021.002] was used to evaluate performance measures such as sensitivity and frequency bandwith, coupling, placement and polarity of the hydrophone-like AE sensor compared to AE sensors. The active seismic data provided here are from seven boreholes (BH01, BH05, BH06, BH10, BH14, BH18, BH19) as shown in Figure 1. There are nine tables provided as metadata of which seven contain the STIMTEC-X sensor coordinates for each measurement campaign, the event information of all the 120 UT measurements and the UT picks. The UT measurements were recorded with a sampling rate of 1 MHz and results from an automatic stack of 1024 UT pulses generated by the ultrasonic transmitter and recorded by the STIMTEC-X sensors. The UT measurements are saved in binary file format (fsf file format). Fsf-files can be processed with FOCI software: https://www.induced.pl/software/foci. Each fsf file contains 32768 samples, which corresponds to 0.032768 seconds. All UT event files were manual inspected and phase arrivals identified. These are stored in the fsf-file header as well as in the table STIMTECX_UT_picks.csv.
Das Projekt STIMTEC konzentriert sich auf die Optimierung von Stimulationsverfahren und die Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch periodische Pumptests und hochauflösendes seismisches 3D-Monitoring analysiert und in Kombination mit numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulisches Testen und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung ihrer diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen. Der Arbeitsplan umfasst folgende Schritte: 1.) Analyse spezifischer Daten aus dem Forschungsbergwerk sowie Literaturrecherche zum Stand von W+T 2.) Numerische Spannungsfeldsimulation 3.) Mechanische Laborversuche Deformationsparametern sowie bruchmechanischen Kennwerten an Freiberger Gneisproben 4.) Numerische Simulation der Rissausbreitung
Das Projekt STIMTEC widmet sich der Optimierung von Stimulationsverfahren und der Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch hochauflösendes seismisches 3D-Monitoring beobachtet und in Kombination mit hydraulischen Versuchen sowie numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulische Tests und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung der für sie diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen.
This data publication contains seismic waveform data of 507 earthquakes recorded during the St1 Deep Heat project in June and July 2018, where the 6.1 km deep OTN-3 well near Helsinki, Finland, was hydraulically stimulated over 49 days (Kwiatek et al., 2019). The waveforms were recorded on a surrounding seismic monitoring network consisting of 12 stations, deployed at epicentral distances between 0.6 to 8.2 km and at depths between 0.23 to 1.15 km. Each station consists of three-component, 4.5 Hz, Sunfull PSH geophones, sampling at 500 Hz. The 507 earthquakes analysed were chosen from the relocated event catalogue by Leonhardt et al. (2021a). The dataset is supplementary material to the Geophysical Research Letters research article of Holmgren et al. (2022), which applied the Empirical Green’s Function technique to examine microseismic rupture behaviour at the Helsinki site.
This data publication contains seismic catalog developed by the analysis of seismicity recorded during hydraulic stimulation campaign performed in May 2020 in the 5.8-km deep OTN-2 well near Helsinki, Finland as part of the St1 Deep Heat project (Kwiatek et al., 2022). The original seismic data to develop the seismic catalog were acquired with the high-resolution seismic network composed of 22 geophones surrounding the project site. The centerpiece of the network was a 10-level borehole array of Geospace OMNI-2400 geophones (3C/15 Hz) sampled at 2 kHz placed in the OTN-3 well adjacent to the OTN-2 injection well, and located at 1.93 - 2.55 km depth, approx. 3km from injection intervals. Additional 12 stations at distances <10 km from project site formed the satellite network that was equipped with short-period 3C 4.5 Hz Sunfull PSH geophones, completing the seismic network. Near-real-time processing of induced seismicity data started on Jan 26, 2020, i.e. about 3 months prior to the onset of the injection, covering entire period of the stimulation campaign in May 2020. The monitoring stopped end of June 2020, about one month after the stimulation finished. The monitoring campaign resulted in initial industrial seismicity catalog containing 6,243 events that was refined and further extended (cf. Kwiatek et al., 2022). The final catalog associated with this data publication contains 6,318 earthquakes, including 197, 5427 and 694 events recorded before, during, and after stimulation campaign. The core catalog data contains origin time, local magnitude, (re)location and focal mechanism data.
| Origin | Count |
|---|---|
| Bund | 19 |
| Wissenschaft | 9 |
| Type | Count |
|---|---|
| Förderprogramm | 19 |
| unbekannt | 9 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 27 |
| Language | Count |
|---|---|
| Deutsch | 17 |
| Englisch | 12 |
| Resource type | Count |
|---|---|
| Keine | 12 |
| Webseite | 16 |
| Topic | Count |
|---|---|
| Boden | 20 |
| Lebewesen und Lebensräume | 22 |
| Luft | 12 |
| Mensch und Umwelt | 28 |
| Wasser | 8 |
| Weitere | 28 |