s/hydraulische-stimulation/Hydraulische Stimulation/gi
Enhanced Geothermal Systems (EGS) zielen darauf ab, die in der Erdkruste gespeicherte Wärme durch zirkulierende Flüssigkeiten zwischen Injektions- und Produktionsbohrlöchern zu extrahieren. Ideale Bedingungen finden sich typischerweise in Formationen in einer Tiefe von 2 bis 5 km, in denen die Durchflussrate für kommerzielle geothermische Anlagen nicht ausreicht und in denen die Temperaturen hoch sind (d. H. >> 100 ° C). Daher ist die Hochdruck-Flüssigkeitsinjektion, die als hydraulische Stimulation bekannt ist, eine allgemein angewandte Technik, um ein verbundenes Bruchnetzwerk zu erzeugen, das die Flüssigkeitszirkulation erleichtert. Die hydraulische Stimulation geht typischerweise mit einer induzierten Seismizität einher, die von der Öffentlichkeit wahrgenommen werden kann und sogar Schäden verursacht. Das Ziel dieses Projekts ist es, ein grundlegendes Verständnis der induzierten Seismizität in gebrochenen Gesteinen zu vermitteln, das die Fähigkeit verbessert, das seismische Risiko vorherzusagen und zu kontrollieren. Dieses Projekt geht von der Hypothese aus, dass die Seismizität gemeinsam durch die Bruchnetzgeometrie und die aktivierten thermo-hydromechanischen (THM) Prozesse in geologischen Systemen gesteuert wird. Wir werden Discrete Fracture Networks (DFN) anwenden, um die strukturellen Diskontinuitäten darzustellen und die THM-Prozesse mit hoher Auflösung zu modellieren. Dieses Projekt verwendet die Datensätze aus kleinen (Dekameter-) Stimulationsexperimenten am Grimsel-Teststandort in der Schweiz und modernste numerische Modelle, um Folgendes zu erreichen: 1) Testen Sie die Wirksamkeit hochauflösender Modelle zur Erfassung der seismische, hydraulische und mechanische Prozesse, die mit kleinen Experimenten beobachtet wurden; 2) Verknüpfung der geometrischen Attribute eines Bruchnetzwerks (wie Intensität, Konnektivität, Länge und räumliche Verteilung) mit der räumlichen, zeitlichen und Größenverteilung der induzierten Seismizität; 3) ein neuartiges Prognosemodell für die maximal mögliche Größe vorschlagen und testen, das die gemeinsamen Auswirkungen von Multiphysikprozessen berücksichtigt, die unter standortspezifischen geologischen Bedingungen und Betriebsbedingungen dominieren; 4) Bewertung der Hochskalierung der hochauflösenden DFN-Modelle im kleinen Maßstab (Dekameter), um die Experimente im Reservoir-Maßstab (Kilometer) zu simulieren. Dieses Forschungsprojekt ist neu in der Behandlung der durch Injektion induzierten Seismizität durch hochauflösende physikbasierte Modelle und hochwertige Datensätze, die aus einzigartigen In-situ-Experimenten abgeleitet wurden. Die vorgeschlagene Forschung hat erhebliche Auswirkungen auf die Förderung der Übergangspolitik hin zu einer Versorgung mit erneuerbaren Energien und trägt dazu bei, unser Wissen über die Auslösemechanismen induzierter Erdbeben zu erweitern.
To seismically monitor the GEOREAL hydraulic stimulation experiment, that took place during the period 6-15 November 2023, a station network was set up in the vicinity of the Kontinentale Tiefbohrung/ KTB deep crustal lab near Windischeschenbach, Germany. The network comprised both surface stations, shallow borehole (25-150 m deep) stations as well as a borehole chain at 2000 m depth in the main borehole, ca. 200m apart from the pilot borehole. First stations were installed in early 2022 and removed in mid-2024. A total of 600 m³ of water was injected into the 4 km deep pilot borehole (KTB-VB, 12° 7.16' E, 49° 48.98' N, 513.418 m above NN ). This volume was injected through a stuck packer in the cased borehole into the open borehole section a depth of 3.85-4 km. No induced seismicity was observed during the injection experiment. Waveform data is available from the GEOFON data centre, under network code 4R, and is fully open.
Mean S-wave coda quality factors (mean-Qc) were estimated from active ultrasonic transmission (UT) measurements acquired during the STIMTEC project in the URL Reiche Zeche (Saxony, Germany). We used S-coda waves of 88 selected UT measurements carried out in 3 differently oriented boreholes (BH10, BH12, BH16) to estimate the spatial change of the coda quality factor in the targeted rock volume, an anisotropic metamorphic gneiss. We also analysed temporal variation in attenuation before and after hydraulic stimulations performed in two boreholes (BH10, BH17). We formed in total 8 UT groups (see data table "2022-004_Blanke-and-Boese_mean_UT_event_locations") from neighbouring UT measurements within different depths and from separated time intervals (see also Tab. 1 in Blanke et al. 2023), and compare mean-Qc estimates of centre frequencies ranging 3-21 kHz of octave-width frequency bands. Our results show a characteristic frequency-dependence and we find that mean-Qc estimates reveal temporal-variations of attenuation more significantly than those obtained from velocity measurements. The temporal variations are strongly connected to hydraulic stimulation activities resulting in a reduction of the coda quality factor where AE events occurred. Analysis of mean-Qc estimates after a temporal resting phase (with no activity in the rock volume) suggests that frequencies > 15 kHz indicate healing of small-scale fractures induced by injections. The study shows that coda analysis is a powerful tool for the detection of damage zones and for monitoring changes of the local fracture network within reservoirs important for exploitation or underground storage of gases and liquids.
Ziel des Verbundprojekts GEOSMART ist es, eine transparente und standortunabhängige Methode zur Risikobewertung von hydrothermalen und petrothermalen Tiefengeothermieprojekten sowie von Speicherprojekten auf Grundlage einer modularen Simulation des Gesamtsystems zu entwickeln. Üblicherweise wird bei Risikoanalysen zunächst eine Reihe konzeptioneller Vereinfachungen vorgenommen, um komplexe Prozesse im Rahmen probabilistischer Ansätze beschreiben zu können. Für das Projekt GEOSMART wurde ein entgegengesetzter Ansatz gewählt. Es ist beabsichtigt, die erforderlichen Prozessmodelle zunächst entsprechend dem aktuellen Stand von Wissenschaft und Technik einschließlich der Prozesskopplung zu entwickeln. Im Anschluss werden für die Prozessmodelle mittels Sensitivitätsanalysen die Schlüsselparameter identifiziert, die den größten Einfluss auf die einzelnen Risikokomponenten haben. Die Abhängigkeit der Risikokomponenten von den Schlüsselparametern wird dann in Form von Wertetabellen bzw. Antwortfunktionen abgebildet und an ein zentrales Systemsimulationsmodell übergeben, mit dem die Wahrscheinlichkeitsverteilung für die einzelnen Risikokomponenten berechnet wird. Die Schnittstelle über die Wertetabellen bzw. Antwortfunktionen stellt die wesentliche Vereinfachung dar und ermöglicht eine probabilistische Simulation komplexer Modelle. Der entscheidende Vorteil gegenüber herkömmlichen Risikoanalysen besteht darin, dass die relevanten Prozesse nicht auf Grundlage stark vereinfachter Modelle abgebildet werden, was die Genauigkeit von Prognosen deutlich erhöht. Das Projekt GEOSMART gliedert sich in fünf Arbeitspakete. Im Rahmen des ersten Arbeitspaketes wird mit Hilfe des Programmpaketes GoldSim ein zentrales Systemsimulationsmodell entwickelt, an das sämtliche Prozessmodelle über Schnittstellen gekoppelt werden. Das zweite Arbeitspaket befasst sich mit einem Prozessmodell zur Integrität des Deckgebirges und den Auswirkungen von unkontrolliertem Risswachstum im Rahmen der hydraulischen Stimulation. Hierfür sind gekoppelte strömungsmechanische Simulationen vorgesehen. Im dritten Arbeitspaket wird die Migration von Fluiden aus einem Reservoir über geologische Schwächezonen betrachtet. Dabei wird mit dem Prozessmodell insbesondere der Stoff- und Wärmetransport quantifiziert. Änderungen des Spannungsfeldes und die dadurch möglicherweise induzierte Seismizität stehen im Zentrum des vierten Arbeitspaketes. Es ist geplant, mit einem Prozessmodell Wertetabellen für die Eintrittswahrscheinlichkeit solcher Ereignisse und Erschütterungskarten zu liefern. Im fünften Arbeitspaket wird die Integrität von Bohrungssystemen untersucht. Unter Berücksichtigung aller relevanten Prozesse erfolgt die Quantifizierung von Fluidleckagen für das Gesamtsystem Bohrung mithilfe gekoppelter numerischer Simulationen. (Text gekürzt)
Das Projekt STIMTEC konzentriert sich auf die Optimierung von Stimulationsverfahren und die Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch periodische Pumptests und hochauflösendes seismisches 3D-Monitoring analysiert und in Kombination mit numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulisches Testen und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung ihrer diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen. Die Projektarbeiten durch das GFZ zu den Arbeitspaketen AP1-3 sind in 6 Teilabschnitte untergliedert, die eng in den Ablaufplan des Gesamtvorhabens eingebunden sind (Details im Antrag). Folgende Schritte sind geplant: (1) Installation und Instrumentierung, (2) Ultraschall-Messungen, (3) Mikroseismische Beobachtungen, (4) Auswertung der Daten, (5) Wiederholungsmessungen, (6) Zusammenfassende Auswertung der Messergebnisse.
Das Projekt STIMTEC konzentriert sich auf die Optimierung von Stimulationsverfahren und die Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch periodische Pumptests und hochauflösendes seismisches 3D-Monitoring analysiert und in Kombination mit numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulisches Testen und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung ihrer diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen. Der Arbeitsplan umfasst folgende Schritte: 1.) Analyse spezifischer Daten aus dem Forschungsbergwerk sowie Literaturrecherche zum Stand von W+T 2.) Numerische Spannungsfeldsimulation 3.) Mechanische Laborversuche Deformationsparametern sowie bruchmechanischen Kennwerten an Freiberger Gneisproben 4.) Numerische Simulation der Rissausbreitung
This data set contains measurements of an underground hydraulic fracture experiment at Äspö Hard Rock Laboratory in May and June 2015. The experiment tested various injection schemes for rock fracture stimulation and monitored the resulting seismicity. The primary purpose of the experiment is to identify injection schemes that provide rock fracturing while reducing seismicity or at least mitigate larger seismic events. In total, six tests with three different injection schemes were performed in various igneous rock types. Both the injection process and the accompanied seismicity were monitored. For injection monitoring, the water flow and pressure are provided and additional tests for rock permeability. The seismicity was monitored in both triggered and continuous mode during the tests by high-resolution acoustic emission sensors, accelerometers and broadband seismometers. Both waveform data and seismicity catalogs are provided.
Das Projekt STIMTEC widmet sich der Optimierung von Stimulationsverfahren und der Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch hochauflösendes seismisches 3D-Monitoring beobachtet und in Kombination mit hydraulischen Versuchen sowie numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulische Tests und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung der für sie diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen.
Das Projekt STIMTEC konzentriert sich auf die Optimierung von Stimulationsverfahren und die Erforschung dabei ablaufender hydro-mechanischer Prozesse, um die Prognosefähigkeit für Stimulationsverläufe zu steigern und damit eine ökonomische und ökologische Gewinnung geothermischer Energie zu ermöglichen. Die Bündelung interdisziplinärer Kompetenzen an drei wissenschaftlichen Einrichtungen und eines KMU nutzend, soll die Ausbreitung hydraulischer Wegsamkeiten unter bekannten Randbedingungen im Feldversuch durch periodische Pumptests und hochauflösendes seismisches 3D-Monitoring analysiert und in Kombination mit numerischen Modellierungen eine Technologie zur kontrollierten Durchführung von Stimulationen entwickelt werden. Die Aussagen über die aktivierten hydraulischen Wegsamkeiten werden durch nachträgliches Erbohren, hydraulisches Testen und Laborexperimente an Kernmaterial des stimulierten Bereichs validiert, was erstmals einen eindeutigeren Nachweis der ablaufenden hydro-mechanischen Prozesse und eine Zuordnung ihrer diagnostischen Phänomene erlaubt. Das Projekt trägt dem Fehlen meso-skaliger Experimente Rechnung, die gegenüber der realen Skala den Vorteil der Kontrolle über Randbedingungen und Kenntnis der Gesteinsstrukturen und gegenüber Laborexperimenten den Sprung auf die praxisrelevante Zehnermeter-Skala bieten. Es wird ein hervorragend charakterisiertes Reservoirlabor mit einzigartigen Möglichkeiten für eine Weiternutzung hinterlassen. Der Projektpartner geomecon GmbH analysiert numerisch das durch die Stimulation hervorgerufenen Rissmuster mittels roxol. Der Schwerpunkt der Simulationen wird auf der Identifizierung der maßgeblichen Mechanismen bei der Evolution des Rissnetzwerkes liegen. Der Arbeitsplan der Arbeitspakete der geomecon beinhaltet folgende Einzelpunkte: Felskartierung, Modellbildung, Risswachstumsmodelle und Modellerweiterungen, Vergleichende Simulation des Risswachstums, Modellerweiterung und Validierung
| Origin | Count |
|---|---|
| Bund | 21 |
| Wissenschaft | 9 |
| Type | Count |
|---|---|
| Förderprogramm | 19 |
| Text | 2 |
| unbekannt | 9 |
| License | Count |
|---|---|
| geschlossen | 3 |
| offen | 27 |
| Language | Count |
|---|---|
| Deutsch | 19 |
| Englisch | 12 |
| Resource type | Count |
|---|---|
| Dokument | 2 |
| Keine | 12 |
| Webseite | 17 |
| Topic | Count |
|---|---|
| Boden | 22 |
| Lebewesen und Lebensräume | 13 |
| Luft | 13 |
| Mensch und Umwelt | 30 |
| Wasser | 10 |
| Weitere | 29 |