Bestimmungsschlüssel typischer Gewässerorganismen für Kinder/Jugendarbeit des NP
Nord- und Ostsee sind besonders hohen Belastungen durch Abwaesser, eingebrachte Industrieprodukte und starke Schiffahrt ausgesetzt. Generelles Verstaendnis zum Aufbau der Lebensgemeinschaften und der Produktion sollen dazu beitragen, die Rolle des Benthos im Energiekreislauf des Meeres und die Veraenderungen des Systems durch menschliche Eingriffe zu verstehen. Stoff- und Energieumsatz durch einzelne Arten (besonders Sedimentfresser) sollen ihre Funktion in den Lebensgemeinschaften klaeren.
Im Rahmen der hier vorgeschlagenen Studie sollen erstmalig das Vorkommen und die ökologische Bedeutung mixotropher Protisten in küsten- bzw. ufernahen Sedimenten aquatischer Lebensräume untersucht werden. Im Konzept des mikrobiellen Nahrungsnetzes, eines integralen Teils planktischer Nahrungsnetze, das durch den Fraßdruck kleiner Protisten auf Bakterien geprägt ist, spielen mixotrophe Einzeller eine entscheidende Rolle. Durch ihre Fähigkeit zur Kombination der oxygenen Photosynthese wirken sie im System sowohl auf der Ebene der Primärproduzenten als auch auf der der Konsumenten partikulären organischen Materials. Ausmaß und relative Bedeutung der unterschiedlichen Ernährungsmodi unterlagen sowohl auf Organismen- als auch auf Lebensraumebene sehr großen Schwankungen. Im Vergleich zu pelagischen Lebensräumen gibt es noch große Lücken im Wissensstand zur ökologischen Bedeutung benthischer Protisten. Zwar ist die Gemeinschaft des Mikrophytobenthos sowohl hinsichtlich der von ihr gestellten Biomasse als auch hinsichtlich ihrer Photosyntheseleistung sehr gut untersucht, der Großteil der Arbeiten an benthischen 'Protozoen' beschränkt sich dagegen auf Studien, die wenig zu ihrer Funktion im Lebensraum sagen. Zum Potential für Mixotrophie benthischer Einzeller gibt es bisher keine Studien. Die enge taxonomische Verwandschaft zwischen Vertretern der benthischen und der pelagischen Einzeller legt die Vermutung nahe, dass in den euphotischen Bereichen mariner und limnischer Sedimente mixotrophe Protisten vorkommen und einen erheblichen Beitrag sowohl an der Produktion als auch am Konsum organischen Materials haben. Das hier vorgestellte Projekt dient dem Ziel, das Vorkommen benthischer Mixotrophre zu verifizieren, ihre Bedeutung für die Lebensgemeinschaft zu ermitteln und die Auswirkungen verschiedener abiotischer und biotischer Faktoren (Licht, Temperatur, Nährstoff- bzw. Nahrungsangebot) für die Ausbildung oder Dominanz der unterschiedlichen Ernährungsmodi zu beschreiben
Aktuelle Modelle zur Beschreibung benthischer Prozesse in der Nordsee behandeln nur unvollständige Ausschnitte aus dem Gesamtsystem. Dies ist auf eine nur lückenhafte Kenntnis über die im Benthos ablaufenden Prozesse zurückzuführen. Im beantragten Forschungsvorhaben soll die strukturelle und funktionelle Charakterisierung benthischer mikrobieller Gemeinschaften in verschiedenen durch die Markofauna definierten Subsysteme der südlichen und zentralen Nordsee (Deutsche Bucht, Niederländische Küste, Oyster Ground, Doggerbank, östliche Nordsee, Skagerrak und Kattegat) untersucht werden. Zum Verständnis benthischer Prozesse soll zusätzlich der qualitative und quantitative Eintrag von organischem Material sowie dessen Umsetzung im System betrachtet werden. Durch parallele Untersuchungen der Makrofaunastruktur (Dr. I. Kröncke, Forschungsinstitut Senckenberg) werden Aufschlüsse über die Wechselwirkungen zwischen verschiedenen Größenklassen und deren Rolle am Transfer von organischem Material in den einzelnen Subsystemen erwartet. Aus dem Zusammenhang von Struktur und Funktion komplexer Gemeinschaften, die in diesem Umfang bislang noch nicht in der Nordsee untersucht wurden, werden Hinweise auf die Bedeutung verschiedenen benthischer Systeme für den Stoff- und Energieaustausch erwartet. Daher können die aus dem beantragten Forschungsvorhaben erwarteten Ergebnisse maßgeblich zum Verständnis benthischer Prozesse beitragen und der Modellierung zugeführt werden. Hauptauftragnehmer im Ausland: University Northeastern Boston; Boston.
Standorte von extremer Salinitaet werden auf ihre oekologischen Parameter und die damit selektionierte Bakterienflora untersucht. Ziel: Loesung der Frage, wodurch Mikroorganismen befaehigt sind, in gesaettigten Salzloesungen (evtl. von hoher Alkalinitaet) zu ueberleben und sich diesen Standorten anzupassen. Das Projekt befindet sich gegenwaertig im Stadium einer Bestandsaufnahme. Bisheriges oekologisches Objekt: Alkaliseen in Aegypten.
Durch die Aufnahme von anthropogenem CO2 ist eine Verringerung des ph Wertes im Ozean zu erwarten Dies könnte weitrechende Auswirkungen auf Korallenriffe haben und ist daher von großem wissenschaftlichen Interesse. Die Mehrzahl der bisher durchgeführten Studien zur Ozeanversauerung wurde anhand vereinfachter Systeme im Labor vorgenommen. Obwohl diese Studien wichtig und aufschlussreich waren, wiesen sie jedoch Einschränkungen auf, im Besonderen hinsichtlich natürlicher Veränderungen, Beobachtungsdauer, Altersverteilung, genetischer Vielfalt und Wechselbeziehungen zwischen einzelnen Korallenarten. Eine Möglichkeit diese Einschränkungen zu umgehen, ist die Untersuchung von Korallenriffen in der Umgebung von submarinen CO2-Austritten. Der erhöhte CO2 im Meerwasser dort sorgt für pH und Temperaturbedingungen wie sie als Folge der Ozeanversauerung bis zum Jahr 2100 vorausgesagt werden. Drei solche Korallenriffe in Papua Neu Guinea, Japan und den Nördlichen Marianen-Inseln wurden untersucht und interessanter Weise fiel die Auswirkung der Ozeanversauerung an jedem der Standorte unterschiedlich aus. Eine mögliche Erklärung für die beobachteten Unterschiede könnte sein, dass die Studien nicht alle Parameter berücksichtigten, die sich nachteilig auf die Gesundheit von Korallen auswirken. Im Allgemeinen werden submarine CO2-Austritte von submarinen Hydrothermalquellen mit Temperaturen bis zu 100 °C begleitet. Der hydrothermale Eintrag induziert steile Temperaturgradienten und erhöht die Konzentrationen von Schwermetallen in dem zu untersuchenden Gebiet. Diese zwei Effekte gilt es bei einer solchen Untersuchung zur Ozeanversauerung in Betracht zu ziehen. In diesem Sinne dient die geplante internationale Zusammenarbeit dem Ziel, ein Expertenteam aus der Aquatischen Chemie und der Korallenphysiologie zusammenzubringen, um detaillierte chemische und biologische Untersuchungen an Korallenriffen mit CO2-Austritten vorzunehmen, um die Auswirkungen der Ozeanversauerung besser zu verstehen.
Übergreifendes Ziel des Vorhabens ist es, die Rolle der Turbulenz für die Populationsdynamik des Phytoplanktons in marinen Systemen zu untersuchen. Im Zentrum des Projektes steht die zu überprüfende Hypothese, dass Ausprägung und Sukzession morphofunktionaler Lebensformen im Phytoplankton nicht ausschließlich Ausdruck unterschiedlicher Nährstoff-, Licht- und Temperaturregime im Milieu sind, sondern im entscheidenden Maße von direkten Turbulenzeffekten abhängen, die unmittelbar das Wachstum einzelner Arten regulieren und mit den anderen Steuerfaktoren interagieren. Im vorliegenden Projekt werden Auswirkungen unterschiedlicher kleinskaliger Turbulenzintensitäten auf die Phytoplanktonzuammensetzung im Feld, in Mesokosmen und Laborexperimenten untersucht und das Wachstum dominanter Arten auf seine Turbulenzsensitivität hin getestet. Eine praktische Herausforderung hierbei ist darüber hinaus die Beantwortung der Frage, wie zuverlässig und reproduzierbar Turbulenzintensitäten im experimentellen Modellsystemen erzeugt werden können.
Meeressedimente enthalten schätzungsweise größer als 10^29 mikrobielle Zellen, welche bis zu 2.500 Meter unter dem Meeresboden vorkommen. Mikrobielle Zellen katabolisieren unter diesen sehr stabilen und geologisch alten Bedingungen bis zu einer Million mal langsamer als Modellorganismen in nährstoffreichen Kulturen und wachsen in Zeiträumen von Jahrtausenden, anstelle von Stunden bis Tagen. Aufgrund der extrem niedrigen Aktivitätsraten, ist es eine Herausforderung die metabolische Aktivität von Mikroorganismen unterhalb des Meeresbodens zu untersuchen. Die Transkriptionsaktivität von diesen mikroben kann seit Kurzem metatranskriptomisch untersucht werden, z.B. durch den Einsatz von Hochdurchsatzsequenzierung von aktiv transkribierter Boten-RNA (mRNA), die aus Sedimentproben extrahiert wird. Tiefseetone zeigen ein Eindringen von Sauerstoff bis zum Grundgebirge, welches auf eine geringe Sedimentationsrate im ultra-oligotrophen Ozean zurückzuführen ist. Der Sauerstoffverbrauch wird durch langsam respirierende mikrobielle Gemeinschaften geprägt, deren Zellzahlen und Atmungsraten sehr niedrig gehalten werden durch die äußerst geringe Menge organischer Substanz, die aus dem darüber liegendem extrem oligotrophen Ozean abgelagert wird. Die zellulären Mechanismen dieser aeroben mikroben bleiben unbekannt. Im Jahr 2014 hat eine Expedition erfolgreich Sedimentkerne von sauerstoffangereichertem Tiefseeton genommen. Vorläufige metatranskriptomische Analysen dieser Proben zeigen, dass der metatranskriptomische Ansatz erfolgreich auf die aeroben mikrobiellen Gemeinschaften in diesen Tiefseetonen angewendet werden kann. Wir schlagen daher vor diese Methode mit einem hohen Maß an Replikation, in 300 Proben von vier Standorten, anzuwenden. Dieser Einsatz wird es uns ermöglichen, Hypothesen in Bezug auf zelluläre Aktivitäten unterhalb des Meeresbodens, mit einer beispiellosen statistischen Unterstützung, zu testen.Wir warden den aeroben Stoffwechsel, welcher die langfristige Existenz von Organismen in Tiefseetonen unterstützt, bestimmen, Subsistenzstrategien identifizieren in aeroben und anaeroben Gemeinden unterhalb des Meeresbodens, und extrazelluläre Enzyme und ihr Potenzial für den organischen Substanzabbau charakterisieren. Die folgenden Fragen werden damit beantwortet: Wie das Leben im Untergrund über geologische Zeiträume unter aeroben Bedingungen überlebt? Was die allgegenwärtigen und einzigartigen Mechanismen sind, die langfristiges Überleben in Zellen unter aeroben und anaeroben Bedingungen fördert? Was die Auswirkungen von Sedimenttiefe und Verfügbarkeit von organischer Substanz auf die mikrobielle Produktion von extrazellulären Hydrolasen unter aeroben und anaeroben Bedingungen sind? Dies wird sowohl ein besseres Verständnis dafür liefern, wie mikrobielle Aktivitäten unterhalb des Meeresbodens verteilt sind und was ihre Rolle in biogeochemischen Zyklen ist, als auch wie das Leben über geologische Zeiträume unter extremer Energiebegrenzung überlebt.
Das Projekt befasst sich mit der Bestandssituation von Stratiotes aloides in der Wesermarsch, einem ihrer Verbreitungsschwerpunkte, in dem im letzten Jahrzehnt ein deutlicher Rückgang festgestellt wurde. Im Mittelpunkt der Arbeit stehen populationsbiologische Aspekte wie Bestandsstruktur und Populationsdynamik.
Feststellung des Ist-Zustandes von Fluessen und Seen in Wuerttemberg; Auswirkung des Gewaesserzustandes auf die Flora.
| Origin | Count |
|---|---|
| Bund | 819 |
| Land | 20 |
| Type | Count |
|---|---|
| Förderprogramm | 814 |
| Text | 8 |
| unbekannt | 12 |
| License | Count |
|---|---|
| geschlossen | 17 |
| offen | 815 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 742 |
| Englisch | 213 |
| Resource type | Count |
|---|---|
| Bild | 3 |
| Dokument | 10 |
| Keine | 574 |
| Webseite | 250 |
| Topic | Count |
|---|---|
| Boden | 545 |
| Lebewesen und Lebensräume | 822 |
| Luft | 341 |
| Mensch und Umwelt | 834 |
| Wasser | 741 |
| Weitere | 802 |