Zielsetzung:
Die auch hierzulande zunehmenden Dürreperioden und sinkenden Grundwasserstände rücken das Thema wassereffiziente Nahrungsmittelproduktion vermehrt in den Fokus. Dennoch fehlt im laufenden Schulbetrieb häufig der Bezug oder die Möglichkeit, zusammenhängende Prozesse praxisnah zu erkunden, zu erleben und zu verstehen. Schülerinnen und Schülern diese wichtigen Lernprozesse zu ermöglichen und im Sinne des BNE-Ansatzes interdisziplinäre, reflexive und forschende Gestaltungskompetenzen an Schulen zu fördern, ist wesentlicher Inhalt des vorliegenden Projekts 'WasserFarm'.
Zentrale Bestandteile der 'WasserFarm' sind die Schulung von Lehrpersonal, die Vermittlung von Basiswissen der hydroponischen Kultivierung und systemspezifischer Inhalte mit MINT-Bezug sowie die Unterstützung eines partizipativen Lern- und Verständnisprozesses von Schülerinnen und Schülern bezüglich globaler Nachhaltigkeit. Hydroponik ist eine erdlose und damit standortunabhängige Anbaumethode von Pflanzen. Die Pflanzen werden dabei durch eine Nährstofflösung mit allen wichtigen Nährstoffen versorgt. Durch die kontinuierliche Wiederverwendung des Wassers, also die Kreislaufführung dieser wasserbasierten Nährstofflösung, zeichnet sich der hydroponische Anbau durch eine hohe Ressourceneffizienz und die Vermeidung von umweltbelastenden Nährstoffüberschüssen, Pestiziden, Insektiziden und Herbiziden aus.
Ziel des Projektes ist es, durch ein objektbezogenes interdisziplinäres Schulungskonzept einen Lernrahmen zu schaffen, in dem Schülerinnen und Schülern durch Partizipation und Mitgestaltung fächerübergreifende Themen wie die nachhaltige Lebensmittelproduktion, Funktionsweisen von Kreislauftechnologien, Nährstoff- und Wasserkreisläufe, Ressourceneffizienz erlernen und so ein Bewusstsein für globale Herausforderungen und Lösungsansätze im Sinne der Sustainable Development Goals entwickeln können. Darüber hinaus soll den Schülerinnen und Schülern das Wissen und die Mittel mitgegeben werden, um auch eigenständig eine Hydroponikanlage einrichten und betreiben zu können. Dadurch sollen deren Nachhaltigkeits- und Gestaltungskompetenzen gefördert und ein Bewusstsein für globale Herausforderungen und Lösungsansätze in Zeiten des Klimawandels geweckt werden. Das Projekt wird an drei Pilotschulen in zwei Bundesländern (Brandenburg, Schleswig-Holstein) durchgeführt.
Die saisonunabhängige Versorgung mit regionalem, frischem Gemüse ist in unseren Breitengraden nur durch Gewächshäuser oder moderne Indoor-/Vertical Farms möglich. Die Effizienz dieser Anbautechniken ist um ein Vielfaches höher als im konventionellen Feldanbau durch die Kultivierung in hydroponischen Systemen, bei denen die Pflanzen in einem erdfreien Substrat wurzeln und mit einer bedarfsgerechten Nährlösung gezielt versorgt werden. Obwohl durch die Hydroponik kaum noch Pestizide eingesetzt werden sind die verwendeten Substrate wie Steinwolle, Kokossubstrate oder Torf nicht nachhaltig. Ziel dieses Projekts ist die Entwicklung eines neuen, nachhaltigen Substrats basierend auf regional produzierten Naturfasern, welches die hohen Anforderungen der Hydroponik in Gewächshäusern und Indoor Farms erfüllt sowie rückstandslos kompostiert werden kann. Da die Naturfasern ähnlichen Reaktionen mit der Nährlösung wie Kokos- oder Torfsubstrate ausgesetzt wären, liegt die zentrale Innovation dieses Vorhabens in der Versiegelung der Naturfasern mit einem Biowachs auf CO2-Basis, welches die Fasern vor der Nährlösung schützt und den biologischen Abbauprozess verzögert, da sich das Biowachs erst unter Kompostierungsbedingungen abbaut. Im Vorhaben werden unterschiedliche Faser- und Wachszusammensetzungen systematisch unter kontrollierten Bedingungen sowie unter realen Kulturbedingungen untersucht, um die optimale Form sowie Strukturstabilität zur Anwendung sowohl im Gewächshaus als auch als Haltesystem für die Indoor Farm herauszufinden. Die neue Wachs-Substrat-Struktur soll vergleichbar gute Kultivierungsbedingungen zu Steinwolle erreichen und gleichzeitig dessen Nachteile eliminieren, womit große Mengen an Steinwolleabfällen und notwendiger Energie in Zukunft vermieden werden können.
Die saisonunabhängige Versorgung mit regionalem, frischem Gemüse ist in unseren Breitengraden nur durch Gewächshäuser oder moderne Indoor-/Vertical Farms möglich. Die Effizienz dieser Anbautechniken ist um ein Vielfaches höher als im konventionellen Feldanbau durch die Kultivierung in hydroponischen Systemen, bei denen die Pflanzen in einem erdfreien Substrat wurzeln und mit einer bedarfsgerechten Nährlösung gezielt versorgt werden. Obwohl durch die Hydroponik kaum noch Pestizide eingesetzt werden sind die verwendeten Substrate wie Steinwolle, Kokossubstrate oder Torf nicht nachhaltig. Ziel dieses Projekts ist die Entwicklung eines neuen, nachhaltigen Substrats basierend auf regional produzierten Naturfasern, welches die hohen Anforderungen der Hydroponik in Gewächshäusern und Indoor Farms erfüllt sowie rückstandslos kompostiert werden kann. Da die Naturfasern ähnlichen Reaktionen mit der Nährlösung wie Kokos- oder Torfsubstrate ausgesetzt wären, liegt die zentrale Innovation dieses Vorhabens in der Versiegelung der Naturfasern mit einem Biowachs auf CO2-Basis, welches die Fasern vor der Nährlösung schützt und den biologischen Abbauprozess verzögert, da sich das Biowachs erst unter Kompostierungsbedingungen abbaut. Im Vorhaben werden unterschiedliche Faser- und Wachszusammensetzungen systematisch unter kontrollierten Bedingungen sowie unter realen Kulturbedingungen untersucht, um die optimale Form sowie Strukturstabilität zur Anwendung sowohl im Gewächshaus als auch als Haltesystem für die Indoor Farm herauszufinden. Die neue Wachs-Substrat-Struktur soll vergleichbar gute Kultivierungsbedingungen zu Steinwolle erreichen und gleichzeitig dessen Nachteile eliminieren, womit große Mengen an Steinwolleabfällen und notwendiger Energie in Zukunft vermieden werden können.
Die Carboxylat-Exsudation ist ein wichtiger Prozess für Pflanzen, um eine ausreichende Nährstoffaufnahme, insbesondere in Böden mit Phosphor-Mangel, sicherzustellen. Die Gewinnung von Carboxylatproben von im Boden gewachsenen Wurzeln ist aufgrund der geringen Konzentrationen von Carboxylaten in der Bodenlösung und ihrer schnellen Mineralisierung durch Mikroben sehr anspruchsvoll. Deshalb wurden die meisten Studien bisher mit künstlichen Wachstumssystemen (z. B. Hydroponik) durchgeführt, von denen viele die Zusammensetzung und Menge der Wurzelexsudate beeinflussen können. Wegen dieser erheblichen technischen Lücke besteht immer noch eine große Wissenslücke hinsichtlich der räumlichen Verteilung von Carboxylat-Exsudaten in der Rhizosphäre, sowie hinsichtlich des zeitlichen Verlaufs der Exsudation über die Vegetationsperiode von Kulturpflanzen. Wir haben kürzlich eine niedrig-invasive Citrat-Exsudat-Probenahmemethode entwickelt, die auf der “Diffusive Gradients in Thin Films” Methode (DGT) basiert. Diese Methode stellt eine signifikante Verbesserung gegenüber bestehenden Techniken dar. In diesem Projekt werden wir (1) unsere DGT-Citrat-Probenahmemethode weiterentwickeln, um weitere wichtige Carboxylat-Exsudat-Verbindungen einzubeziehen, (2) die DGT-Chemical-Imaging-Funktion nutzen, um Carboxylat-Exsudations-Bildgebungs-Workflows mit mm- und sub-mm-Auflösung zu entwickeln, (3) die entwickelten DGT-Carboxylat-Probenahmemethoden hinsichtlich ihrer Möglichkeiten und Einschränkungen charakterisieren und (4) die DGT-Carboxylat-Probenahme anwenden, um die Rolle der Carboxylat-Exsudation bei der Phosphoraufnahmeeffizienz von Hartweizen-Genotypen über ihre Vegetationsperiode und mit hoher räumlicher Auflösung zu untersuchen. Ausgewählte Anionenaustauscherharze werden auf ihre Carboxylatbindungseigenschaften charakterisiert. Räumliche Carboxylatverteilungen werden durch Schneiden der DGT-Gele und durch hochauflösende Massenspektrometrie (LDI-FTICR-MS) visualisiert. Die Probenahmeeffizienz der neuen Methode wird unter Verwendung von Mikrodialyse (künstliche Wurzelsonden) in Kombination mit C-14-markierten Carboxylatverbindungen quantifiziert. Die numerische Simulation der Probenahme und der experimentelle Vergleich mit herkömmlichen Methoden werden die Möglichkeiten und Grenzen der DGT-Carboxylat-Probenahme demonstrieren. Die neu entwickelte Probenahmetechnik wird die Probenahme von ganzen Wurzelsystemen und Wurzelsystemteilen, die Kartierung mit einer Auflösung im mm-Maßstab, die Abbildung von Exsudatgradienten im Mikrometer-Maßstab, und die wiederholte Probenahme über die gesamte Vegetationsperiode ermöglichen. Mit dieser neuartigen Methodik werden beispiellose Daten zu Carboxylat-Exsudationsmustern in Wurzelsystemen von Hartweizen gesammelt werden. Diese Methode wird eine wichtige technische Lücke schließen und zur Entwicklung/Auswahl von Kultursorten mit hoher Phosphoraufnahmeeffizienz beitragen.