API src

Found 688 results.

Similar terms

s/iks/IKT/gi

Schwerpunktprogramm (SPP) 1569: Erzeugung multifunktioneller anorganischer Materialien durch molekulare Bionik

norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.

Nachhaltige Lackentwicklung durch digitale Technologien für den Klima- und Umweltschutz, Teilvorhaben: Entwicklung einer Methode zur Generierung reproduzierbaren Trainingsdaten für einen digitalen Lack-Zwilling und Ableitung einer Prozesskette zur digitale Neu- und Reformulierung von Lacksystemen

Agrarsysteme der Zukunft_2: Innovative Nutzung des Grünlands für eine nachhaltige Intensivierung der Landwirtschaft im Landschaftsmaßstab, Teilprojekt G

Higher frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, within the CTBT-relevant infrasound range (around 0.01-4 Hz), this dataset covers higher frequencies (1-3 Hz) and is therefore called the ‘hf’ product. The temporal resolution (time step and window length) is 5 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Very low frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset, called the ‘maw’ product, covers a very low frequency range of infrasound (0.02-0.07 Hz). The temporal resolution (time step and window length) is 30 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022.

Microbarom low-frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers the dominant frequency range of microbaroms (0.15-0.35 Hz) and is therefore called the ‘mb_lf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Microbarom high-frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers, among other phenomena, the upper frequency range of microbaroms (0.45-0.65 Hz) and is therefore called the ‘mb_hf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Anlage 1 Anlagenverzeichnis RSEB - Formblatt für Anträge im Gefahrgutbereich

Anlage 1 Formblatt für Anträge im Gefahrgutbereich Bei Anträgen auf Zulassung einer Ausnahme bzw. den Abschluss von Vereinbarungen sowie bei Anregungen von Vorschriftenänderungen sind Angaben zu folgenden Fragen oder Punkten zu machen*): Antragsteller (Name) ( (Firma) ) (Anschrift) Kurzbeschreibung des Antrags (z. B. "Verpackung von ………. in freitragenden Kunststoffgefäßen mit einem Fassungsraum von höchstens …….. Liter" oder "Zulassung der Beförderung von ………. als Stoff der Klasse ………. ") Anlagen (mit Kurzbeschreibung) Aufgestellt: Ort: Datum: Unterschrift: (des für die Angaben Verantwortlichen) 1.Allgemeines 1.1Folgende Regelung(en) wird (werden) berührt, mit Angabe der Rechtsgrundlage (z. B. Paragraph, Teil, Kapitel, Abschnitt, Unterabschnitt, Absatz): GGVSEB RID ADR ADN GGVSee IMDG-Code ICAO-TI UN-Modellvorschriften 1.2 Der Antrag/die Anträge betrifft/betreffen: einen nach den Beförderungsvorschriften nicht zugelassenen Stoff oder Gegenstand eine nach den Beförderungsvorschriften nicht zulässige Verpackung ein nach den Beförderungsvorschriften nicht zugelassenes Beförderungsmittel eine Ersterteilung, Erweiterung oder Neuerteilung einer Ausnahme gemäß § 5 der GGVSEB (Gutachten beifügen) eine Vereinbarung gemäß Abschnitt 1.5.1, einschließlich Anträge auf Erweiterung und Neuerteilung von Vereinbarungen (Fragebogen und Gutachten dem Antrag beifügen) eine Ersterteilung, Erweiterung oder Neuerteilung einer Ausnahme gemäß § 5 der GGVSee (Gutachten beifügen) die Klassifizierung von Stoffen und Gegenständen die Umklassifizierung *) Bei Fragen, die für den betreffenden Antragsgegenstand nicht zutreffen, ist "entfällt" einzutragen. Die Angaben werden nur für amtliche Zwecke verwendet und vertraulich behandelt. -2- die Aufnahme eines Stoffes, einer Verpackungsart oder eines Beförderungsmittels in UN-Modellvorschriften ADR RID ADN IMDG-Code ICAO-TI Sonstige Anträge 1.3 Welche Gründe erfordern das Abweichen von den gesetzlichen Vorschriften? Einhaltung der Vorschriften unzumutbar (Gründe angeben) Beförderung sonst ausgeschlossen 1.4Voraussichtlicher Umfang der vorgesehenen Transporte, soweit bekannt (maximale Größe je Verpackungsein- heit, Versandstück oder Ladungseinheit) 1.5Voraussichtliche Zielgebiete (In-, Ausland, ggf. Staaten) 1.6Mit welchen Staaten bzw. Eisenbahnverwaltungen soll ggf. eine Vereinbarung getroffen werden? 1.7Welche Verkehrsträger sind vorgesehen? 2.Allgemeine Angaben zum Gefahrgut 2.1Handelt es sich um einen Stoff um ein Gemisch um eine Lösung um einen Gegenstand 2.2Chemische Bezeichnung 2.3Synonyme 2.4Handelsname 2.5Strukturformel und/oder Zusammensetzung, Konzentration, technischer Aufbau und Wirkungsmechanismus des Gegenstandes 2.6Gefahrklasse  ggf. Verträglichkeitsgruppe (nur bei explosiven Stoffen und Gegenständen mit Explosivstoff der Klasse 1)  ggf. Prüfung oder Zulassung durch die Bundesanstalt für Materialforschung und -prüfung (nur bei organi- schen Peroxiden der Klasse 5.2 und gewissen selbstzersetzlichen Stoffen der Klasse 4.1 sowie bei explosi- ven Stoffen und Gegenständen mit Explosivstoff der Klasse 1)  ggf. Prüfung und Zulassung durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr (nur bei explosiven Stoffen und Gegenständen mit Explosivstoff der Klasse 1, die ausschließlich militärisch genutzt werden) 2.7UN-Nummer (soweit vorhanden) 2.8ggf. Verpackungsgruppe (I, II oder III) 2.9Angaben zur Umweltgefährdung 3.Physikalisch-chemische Eigenschaften 3.1Zustand während der Beförderung (z. B. gasförmig, flüssig, körnig, pulverförmig, geschmolzen …) 3.2Dichte der Flüssigkeit bei 20 °C 3.3Beförderungstemperatur (bei Stoffen, die in aufgeheiztem oder gekühltem Zustand befördert werden) 3.4Schmelzpunkt oder Schmelzbereich ….. °C 3.5Ergebnis des Penetrometer-Tests gemäß Abschnitt 2.3.4:  Auslaufzeit nach ISO 2431 (1984) für den 4-mm-Becher: …….... Sekunden oder 6-mm-Becher: …….... Sekunden  Temperatur: …….... °C (vorzugsweise bei 23 °C) (falls nach DIN 53211 bestimmt, Auslaufzeiten für den DIN-Becher sowie die für den geeigneten ISO-Becher umgerechneten Auslaufzeiten angeben) 3.6 Siedepunkt/Siedebeginn oder Siedebereich …….... °C -3- 3.7 Dampfdruck bei 20 °C ……...., bei 50 °C ……...., bei 55 °C …….... bei verflüssigten Gasen, Dampfdruck bei 70 °C ………. bei permanenten Gasen, Druck der Füllung bei 15 °C ………. Betriebstemperatur (höchster Wert aus Füll-, Transport- und Entleerungstemperatur) ………. °C 3.8 Löslichkeit in Wasser bei 15 °C Angabe der Sättigungskonzentration in mg/l ………. bzw. Mischbarkeit mit Wasser bei 15 °C beliebig teilweise keine (Konzentration angeben) 3.9 Farbe 3.10 Geruch 3.11 pH-Wert des Stoffes bzw. einer wässerigen Lösung (Konzentration angeben) 3.12 Sonstige Angaben 4.Sicherheitstechnische Eigenschaften 4.1Zündtemperatur nach DIN 51794 ………. °C 4.2Flammpunkt im geschlossenen Tiegel ………. °C im offenen Tiegel ………. °C (Prüfmethode angeben, z. B. nach DIN …) 4.3 Explosionsgrenzen (Zündgrenzen): untere ………. %, obere ………. % (Prüfmethode angeben, z. B. nach DIN …) 4.4 Ist der Stoff bei Luftzufuhr brennbar? (Prüfmethode angeben) 4.5 Explosionsgefahr bei Stoß/Entzündung/Reibung/Sonstigem? (entsprechend den Prüfverfahren in den jeweils zutreffenden Vorschriften) 4.6 Bildung explosionsfähiger Dampf/Luft-Gemische Bildung explosionsfähiger Staub/Luft-Gemische 4.7 Kann sich der Stoff schon in kleinen Mengen und nach kurzer Zeit (Minuten) bei gewöhnlicher Temperatur an der Luft ohne Energiezufuhr erhitzen und schließlich entzünden? Kann sich der Stoff nur in größeren Mengen und nach längerer Zeit (Stunden bis Tage) bei gewöhnlicher Temperatur an der Luft ohne Energiezufuhr erhitzen und schließlich entzünden? 4.8 Neigt der Stoff ohne Luftzufuhr zur Selbstzersetzung? bei gewöhnlicher Temperatur bei erhöhter Temperatur Für organische Peroxide der Klasse 5.2 und gewisse selbstzersetzliche Stoffe der Klasse 4.1 angeben:  SADT ………. °C  Höchstzulässige Beförderungstemperatur ………. °C  Notfalltemperatur ………. °C 4.9 Zersetzungsprodukte bei Brand unter Luftzutritt oder bei Einwirkung eines Fremdbrandes: 4.10 Ist der Stoff brandfördernd? Ja Nein 4.11 Reagiert der Stoff mit Wasser oder feuchter Luft unter Entwicklung entzündlicher oder giftiger Gase? Ja Nein Entstehende Gase: ……….

IQ Projekte Hamburg

Integration durch Qualifizierung (IQ) – das bundesweite Förderprogramm: Das Förderprogramm "Integration durch Qualifizierung (IQ)" arbeitet seit 2005 an der Zielsetzung, die Arbeitsmarktchancen für Menschen mit Migrationshintergrund zu verbessern. Von zentralem Interesse ist, dass im Ausland erworbene Berufsabschlüsse – unabhängig vom Aufenthaltstitel – häufiger in eine bildungsadäquate Beschäftigung münden. IQ Netzwerk Hamburg: Erwachsene mit Migrationshintergrund, Zuwanderer und geflüchtete Menschen besser in den Hamburger Arbeitsmarkt integrieren – das ist Ziel des IQ Netzwerks Hamburg. Diverse Partner haben sich zusammengeschlossen und bieten Beratungen, Qualifizierungen und Schulungen an. Das Netzwerk arbeitet im Rahmen des bundesweiten Förderprogramms „Integration durch Qualifizierung (IQ)“ und wird koordiniert von der Behörde für Arbeit, Gesundheit, Soziales, Familie und Integration (Sozialbehörde).

Abfallüberwachungssystem ASYS im Land Brandenburg

Für eine effektive Überwachung der Abfallentsorgung sind aktuelle, umfassende und verlässliche Informationen zum Entsorgungsgeschehen erforderlich. Darüber hinaus sind diese Informationen so umfangreich, dass die Bereitstellung und Auswertung der erforderlichen Daten den Einsatz moderner Informationstechnologien erfordert. Um ihren Abfallbehörden die benötigten Informationen und EDV-Werkzeuge effektiv bereitstellen zu können, haben die Länder mit Abschluss der Verwaltungsvereinbarung gemeinsame Abfall DV Systeme - GADSYS ¿ eine enge Zusammenarbeit vereinbart. Die beiden Säulen dieser Zusammenarbeit sind eine gemeinsame Softwareentwicklung und ein intensiver Austausch von Daten und Informationen. Das Abfallüberwachungssystem ASYS bietet dem Anwender aus den Abfallbehörden die Möglichkeit, alle zur Überwachung der Abfallentsorgung notwendigen Daten effizient zu verwalten. Der inhaltliche Rahmen hierzu ergibt sich aus dem Kreislaufwirtschaftsgesetz und dem zugehörigen untergesetzlichen Regelwerk sowie den für den Bereich Abfall maßgeblichen europäischen Richtlinien sowie Verordnungen. Inhaltliche Schwerpunkte von ASYS sind dabei - Stammdatenpflege zu Entsorgern, Beförderern und Erzeugern - die Vorab- und Verbleibskontrolle der Abfallströme - Bearbeitung von Anzeigen und Erlaubnissen zu Sammlern, Beförderern, Händlern und Maklern - die Entsorgungsfachbetriebszertifikate - die grenzüberschreitende Abfallverbringung - funktional bietet ASYS die Möglichkeit, Daten automatisiert auf elektronischem Wege zwischen den ASYS-einsetzenden Behörden und mit den beteiligten Betrieben auszutauschen. Im elektronischen Nachweisverfahren erfolgt der Datenaustausch dabei über die ZKS-Abfall. Die Organisation von ASYS in Brandenburg erfolgt arbeitsteilig zwischen der Sonderabfallgesellschaft Brandenburg/Berlin mbH (SBB) und dem Landesamt für Umwelt (LfU). Darüber hinaus können auch die Landkreise und kreisfreien Städte auf die ASYS-Daten lesend zugreifen. ASYS dient des Weiteren in Brandenburg als Datenbasis für den LUIS-Dienst, der die Öffentlichkeit im Internet mit Informationen zu Entsorgungsanlagen und zugelassenen Beförderern informiert. Durch den Anschluss der ASYS-Datenbank an die Web-Applikation IPA-KON ist es dem BAG (Bundesamt für Güterverkehr) möglich, mobil auf die ASYS-Daten zuzugreifen

1 2 3 4 567 68 69