Das Projekt "Entwicklung und Kalibrierung eines numerischen Modells für mikrobiell unterstützte Förderung von Methan aus Kohleflözen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.Das übergeordnete Ziel des vorgeschlagenen Vorhabens ist die Entwicklung eines numerischen Modells, das in der Lage ist Prozesse zu simulieren, die bei der mikrobiell unterstützten Produktion von Methan aus Kohleflözen (englisch: MECBM) auftreten. Dieses Modell soll in den numerischen Simulator Dumux (www.dumux.org) implementiert werden, der als Open Source Programm zur Verfügung steht. Indem das Modell zur Ergänzung und Unterstützung experimenteller Arbeiten eingesetzt wird, können damit gezielt verschiedene Hypothesen über den reaktiven Transport bei MECBM Prozessen getestet werden. Dies betrifft verschiedene Detailfragen, die zur Zeit noch nicht vollständig verstanden sind. Dies soll durch Vergleiche zwischen Simulationen und Experimenten erreicht werden, die am Center for Biofilm Engineering an der Montana State University in Bozeman/USA (MSU-CBS) durchgeführt werden. Zunächst sollen hierfür Säulenexperimente verwendet werden, um Sensitivitäten der simulierten Prozesse hinsichtlich verschiedener Modellparameter zu analysieren. Wo erforderlich, werden die Modellgleichungen dann entsprechend an neu gewonnene Daten und Erkenntnisse aus den Validierungsversuchen mit experimentellen Daten angepasst. Unsere Vision ist es, dass das neu entwickelte Modell ein wesentliches Werkzeug sein wird, um letztendlich das Wissen und Know-how von der Laborskala auf die Feldskala zu übertragen, und um dann auch geplante MECBM-Demonstrationsprojekte im Feld zu konzipieren. Das numerische Modell soll eine wichtige Rolle bei der weiteren Entwicklung von MECBM-Produktionstechnologien spielen; spezifische Möglichkeiten dazu ergeben sich z.B. für geplante Feldanwendungen durch MSU-CBS in Zusammenarbeit mit der US Geological Survey (USGS).Das erwartete Ergebnis aus dem vorgeschlagenen Projekt wird also ein deutlich verbessertes Grundlagenwissen über MECBM Prozesse sein, welches mit dem neu entwickelten Simulationswerkzeug in Kombination mit experimentellen Studien am MSU-CBE auf der Labor- und Feldskala erzielt wird. Die Entwicklung von Simulationskapazitäten soll aber in keinster Weise die Wichtigkeit von Experimenten schmälern, aber die Simulation wird einen entscheidenden Beitrag leisten, um die vorhandenen Ressourcen of die wesentlichen experimentellen (Feld-)Studien zu fokussieren.
Das Projekt "Reallabor: Supply-Chain orientierte Energiewende trifft Dekarbonisierung der Industrie, Teilvorhaben: Ertüchtigung und Testbetrieb der Kaverne H106 für die Speicherung von elektrolytisch erzeugtem Wasserstoff" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Raffinerie Heide GmbH.
Das Projekt "Ecosystem Engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Wasser- und Umweltsystemmodellierung.Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Das Projekt "H2Giga_TP_IntegrH2ate, Raffinerieintegration für 100 MW Elektrolyseure unter Nutzung der Nebenprodukte Wärme und Sauerstoff & hybrider Betriebsweise in Verbindung mit bestehenden konventionellen H2 Erzeugungsanlagen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Linde GmbH.
Das Projekt "Reallabor: Supply-Chain orientierte Energiewende trifft Dekarbonisierung der Industrie, Teilvorhaben: Installation und Inbetriebnahme eines 30-MW-Elektrolysesystems und Einbindung in die Prozesse der Raffinerie Heide" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: H2 Westküste GmbH.
Das Projekt "Forscherguppe (FOR) 1536: INTERNANO: Mobility, aging and functioning of engineered inorganic nanoparticles at the aquatic-terrestrial interface, Aging of engineered inorganic nanoparticles in surface waters" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften.When released into surface waters, engineered inorganic nanoparticles (EINP) can be subject to multiple transformations. The objectives of MASK are to understand under which conditions EINP in aquatic systems will attach to suspended matter, under which conditions and in which time scale EINP are coated by NOM present in freshwater systems, how these coated colloidal particles are stabilized in the aquatic system and to which extent the aquatic aging processes are reversible. Homo-aggregation, coating changes, biological interactions and hetero-aggregation are hypothesized as key processes governing EINP aging in water bodies. In process orientated laboratory incubation experiments (50 ml to 6 l) with increasing complexity, MASK unravels the relevance and the interplay of inorganic colloids, aquagenic and pedogenic organic matter and solution physicochemistry for stability of EINP. These systems will successively approach situations in real waters. MASK thus provides information on EINP fluxes in the aquatic compartment, their time scales, reversibility and relative relevance. EINP will be analysed by standard light scattering techniques, ICP-MS, ESEM/EDX, WetSTEM and AFM. A method coupling hydrodynamic radius chromatography (HDC) with ICPMS recently developed by K. Tiede for nAg0 will be optimized and developed for further EINP analysis, MASK is further responsible for the virtual subproject ANALYSIS, the development and optimization of joint research unit methods of EINP analysis, sample preparation and sample storage, the exchange of methods and coordinates the joint analyses and the central EINP database.
Das Projekt "Reallabor: Supply-Chain orientierte Energiewende trifft Dekarbonisierung der Industrie, Teilvorhaben: Wasserstoffpipeline: Errichtung eines Netzes für die Wasserstoffversorgung zwischen dem Standort des 30-MW-Elektrolysesystems und den Wasserstoffabnehmern" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Open Grid Europe GmbH.
Das Projekt "Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Klima-Engineering über Land: Umfassende Evaluierung von Auswirkungen terrestrischer Carbon-Dioxide-Removal-Methoden auf das Erdsystem (CE-LAND+)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Potsdam-Institut für Klimafolgenforschung e.V..Methoden des terrestrischen Carbon Dioxide Removal (tCDR) wie Aufforstung und Biomasseplantagen werden zuweilen als effektive, 'grüne' und sichere Varianten des Klimaengineering (CE) verstanden wegen ihrer Möglichkeit, die natürliche CO2-Aufnahme durch die Biosphäre zu erhöhen, und ihrer denkbaren ökonomischen Tragfähigkeit. Erkenntnisse aus der ersten Phase des CE-LAND-Projekts legen indes nahe, dass tCDR aufgrund schwieriger erdsystemischer und ethischer Fragen ebenso kontrovers wie andere CE-Methoden ist. CO2-Budgetierungen und rein ökonomische Bewertungen sind daher um profunde Analysen der natürlichen Begrenzungen, der Auswirkungen auf das Erdsystem mit damit verbundenen Unsicherheiten, der Tradeoffs mit anderen Land- und Wassernutzungen und der weitreichenden ethischen Implikationen von tCDR-Maßnahmen zu ergänzen. Analysen hypothetischer Szenarien der ersten Projektphase zeigen, dass effektives tCDR die Umwidmung großer Flächen voraussetzt, womit schwierige Abwägungsprozesse mit anderen Landnutzungen verbunden wären. Darüber hinaus zeigt sich, dass signifikante Nebenwirkungen im Klimasystem (außer der bezweckten Senkung der Weltmitteltemperatur) und in terrestrischen biogeochemischen Kreisläufen aufträten. CE-LAND+ bietet eine tiefergehende quantitative, räumlich explizite Evaluierung der nicht-ökonomischen Kosten einer Biosphärentransformation für tCDR. Potentielle Tradeoffs und Impakts wie auch die systematische Untersuchung von Unsicherheiten in ihrer Abschätzung werden mit zwei Vegetationsmodellen, einem Erdsystemmodell und, neu im Projekt, dynamischen Biodiversitätsmodellen analysiert. Konkret wird CE-LAND+ bisher kaum bilanzierte Tradeoffs untersuchen: einerseits zwischen der Maximierung der Flächennutzung für tCDR bzw. Biodiversitätsschutz, andererseits zwischen der Maximierung der Süßwasserverfügbarkeit für tCDR bzw. Nahrungsmittelproduktion sowie Flussökosysteme. Auch werden die (in)direkten Auswirkungen veränderten Klimas und tCDR-bedingter Landnutzungsänderungen auf Wasserknappheit (mit diversen Metriken und unter Annahme verschiedener Varianten des Wassermanagements) und Biodiversität quantifiziert. Die Tradeoffs und Impakts werden im Kontext von neben der Bekämpfung des Klimawandels formulierten globalen Nachhaltigkeitszielen - Biodiversitätsschutz, Wasser- und Ernährungssicherheit interpretiert - was sonst nicht im Schwerpunktprogramm vermittelt wird. Ferner wird das Projekt zu besserem Verständnis und besserer Quantifizierung von Unsicherheiten von tCDR-Effekten unter zukünftigem Klima beitragen. Hierzu untersucht es modellstrukturbedingte Unterschiede, Wachstum und Mortalität von tCDR-Pflanzungen unter wärmeren und CO2-reicheren Bedingungen und Wechselwirkungen zwischen tCDR-bezogenen Landnutzungsaktivitäten und Klima. Schließlich wird CE-LAND+ in Kooperationen innerhalb des Schwerpunktprogramms und mit einer repräsentativen Auswahl von Szenarien zur Evaluierung tCDR-bedingter Tradeoffs aus umweltethischer Sicht beitragen.
Das Projekt "H2Giga_QT4.2_FertiRob: Fertigung und Robotik, Teilvorhaben O" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: let's dev GmbH & Co. KG.
Das Projekt "Transport of EINP through soil affected by the dynamics of infiltration flux and particle properties" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Bodenphysik.In this project we experimentally explore the transport of engineered inorganic nanoparticles (EINP) through soils. This is done for original EINPs and some pre-aged form. Transport of NPs in soil is expected to be different from that of reactive solutes, in that hydrodynamic drag, inertial and shear forces as well as the affinity to water-gas interfaces are expected to be more relevant. Hence, the mobility of EINPs in soil is highly sensitive to the morphology of the porous structure and the dynamics of water saturation.This project provides the pore network structure for natural soils using X-ray micro-tomography to allow for an up-scaling of pore-scale interactions explored by project partners to the scale of soil horizons. The pore structure is represented by a network model suitable for pore scale simulations including the dynamics of water-gas interfaces.Pore network simulations will be compared to column experiments for conservative tracers as well as for unaltered and pre-aged EINPs (obtained from INTERFACE). This includes steady state flow scenarios for saturated (ponding) and unsaturated conditions as well as for transient flow to explore the impact of moving water-gas interfaces. The final goal is to arrive at a consistent interpretation of experimental findings and numerical simulations to develop a module for modelling EINP transfer through soil as a function of particle properties, soil structural characteristics and external forcing in terms of flux boundary conditions.
Origin | Count |
---|---|
Bund | 248 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 248 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 248 |
Language | Count |
---|---|
Deutsch | 193 |
Englisch | 81 |
Resource type | Count |
---|---|
Keine | 204 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 159 |
Lebewesen & Lebensräume | 159 |
Luft | 144 |
Mensch & Umwelt | 248 |
Wasser | 118 |
Weitere | 249 |