API src

Found 545 results.

Related terms

Statistisches Jahrbuch Heidelberg_Kapitel Umwelt

Im aktuellen Statistischen Jahrbuch der Stadt Heidelberg sind eine Vielzahl interessanter Informationen zu den unterschiedlichsten Bereichen des Heidelberger Lebens und der Entwicklung der Stadt enthalten. Besonderer Wert wurde hierbei auf längere Zeitreihen und zeitvergleichende Grafiken und Tabellen gelegt. Es besteht aus 14 Kapiteln und über 150 Tabellen und Grafiken. Das Kapitel Umwelt enthält Zahlen zu den quellenbezogenen CO²-Emissionen, den Feinstaubbelastungen durch den Straßenverkehr, Immissionskonzentrationen ausgewählter Luftschadstoffe sowie der Wassergüte des Neckars. _Quelle:_ * Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW) * Statistisches Landesamt Baden-Württemberg (https://www.statistik-bw.de/)

AAI - Auswerte- und Auskunftssystem für Immissionsdaten

Das Auswerte- und Auskunftssystem für Immissionsdaten (AAI) löste 1998 die Verfahren LIMBA und Smog-Frühwarnsystem (Smog-FWS) ab. Die erste Entwicklungsstufe von AAI wurde bereits 1997 abgeschlossen. Die Erledigung folgender Fachaufgaben wird mit Hilfe des AAI unterstützt: - Erfüllung von Berichtspflichten im Rahmen der Europäischen Union (EU-Datenaustausch, Berichterstattung zu verschiedenen EU-Richtlinien und EU-Tochterrichtlinien, 22. BImSchV) - Auswertung, Darstellung, Beschreibung, Bewertung der Immissionssituation in Deutschland (z.B. jährliche Berichterstattung über die Ozonbelastung in Deutschland auf Veranlassung durch die UMK, Daten zur Umwelt, Bundesimmissionsschutzbericht) - Information der Öffentlichkeit über die Immissionssituation in Deutschland, Beantwortung von Anfragen aus dem Parlament und der Öffentlichkeit. Die weiteren Entwicklungsarbeiten an AAI werden nunmehr vor allem in Richtung der Bearbeitung der Daten konform zu rechtlichen Grundlagen gehen. Insgesamt ist zu berücksichtigen, dass AAI ein sehr dynamisches System ist, das permanent weiterentwickelt und den sich ändernden gesetzlichen Anforderungen angepasst werden muss. Mit der Entscheidung des Rates der Europäischen Union vom 27.01.1997 zum Datenaustausch, geändert durch Entscheidung der Kommission vom 17.10.2001 (2001/752/EG), der Rahmenrichtlinie vom 27.09.1996 (96/62/EG), der 1. TRL (1999/30/EG), der 2. TRL (2000/69/EG), der 3. TRL für Ozon (2002/3/EG) sowie mit der derzeit in Entwicklung befindlichen 4. Tochterrichtlinie (Schwermetalle) wird der gesetzlich vorgesehene Umfang an die Datenbereitstellung erheblich erweitert. Diese Erweiterungen beziehen sich sowohl auf die Messkomponenten, auf die Lieferinhalte, z.B. Informationen zu den Messstationen, als auch auf die zeitliche Aktualität der Daten. Darüber hinaus sind neue Auswerteverfahren nach den neuen EU-Richtlinien zu entwickeln. Die Ozonprognose und Aktualdatenbereitstellung wurden im Ergebnis einer Schwachstellenanalyse des Verfahrens AAI in 2001 aus AAI herausgelöst und auf einer neuen, ausfallsicheren Systemplattform realisiert. Das System AAI ermöglicht sowohl die Auswertung aktueller als auch historischer Immissionsdaten. Der Datenbestand der IT-Anwendung beträgt derzeit ca. 700 Mio. Einzeldaten. Der jährliche Zuwachs umfasst ca. 70 Mio. Einzeldaten.

Verbesserung der NO2-Immissionsmodellierung mit HBEFA4.1

Es wurden detaillierte Emissions- und Ausbreitungsberechnungen für die Zeppelinstraße in Potsdam für die Bezugsjahre 2015, 2018 und 2019 durchgeführt, weil hier eine sehr gute Datenlage vorlag. Die modellierten NOx- und NO2-Jahresmittelwerte wurden mit den Messdaten an der Messstation Zeppelinstraße verglichen. Die Ergebnisse der Modellrechnungen zeigten auf, dass bei optimaler Datenlage und Anwendung des dreidimensionalen prognostischen Strömungs- und Ausbreitungsmodells MISKAM mit HBEFA4.1 die NOx-Zusatzbelastung für das Jahr 2015 um 16% unterschätzt und für die Jahre 2018 und 2019 um 16% bzw. 15% überschätzt werden. In der NOx-Gesamtbelastung ergab dies Abweichungen zwischen -12% (2015) und +11% (2018) bzw. 10% (2019). Eine Ursache für die Überschätzungen 2018 und 2019 könnte ggf. in der im HBEFA4.1 nicht vorhandenen Berücksichtigung der Wirkung der freiwilligen Softwareupdates und/oder höherer Wirkungen der verpflichtenden Softwareupdates zu finden sein. Verwendet man zur Berücksichtigung der NO-NO2-Konversion das vereinfachte Chemiemodell nach Düring et al. (2011) in seinen Standardeinstellungen und unter Nutzung der NO2-Direktemissionsanteile aus HBEFA4.1, dann wird 2015 der NO2-Messwert (leicht) überschätzt (4%). Statistische Konversionsmodelle nach Romberg et al. (1996) bzw. Bächlin et al. (2008) zeigen tendenziell eine NO2-Unterschätzung. In den Bezugsjahren 2018 und 2019 werden mit dem vereinfachten Chemiemodell deutliche Überschätzungen der NO2-Messwerte berechnet, weil die NOx-Zusatzbelastung (NOx-Emission) zu hoch ist (16% bzw. 15%) und die NO-NO2-Konversion im vereinfachten Chemiemodell zusätzlich zu einer weiteren Überschätzung in der Gesamtbelastung führt. Auch die statistischen Konversionsmodelle zeigen NO2-Überschätzungen der Gesamtbelastung, die aber geringer sind als mit dem Chemiemodell berechneten. Es zeigt sich, dass mit einer Halbierung der NO2-Direktemissionsanteile des HBEFA4.1, wie aus Analysen der Immissionsdaten ableitbar, die mit dem Chemiemodell berechneten NO2-Gesamtbelastungen deutlich näher am Messwert liegen. Quelle: Forschungsbericht

Schallimmissionsdaten

Die Schallimmissionspläne (Städte sh. unten) gliedern sich auf in: 1. Daten zu natürl. und künstl. Hindernissen ausgewählter Städte: Angabe von Koordinaten (x, y und z) 2. Emissions- und Immissionsdaten von lärmrelevanten Gewerbebetrieben ausgewählter Städte: 3. Emissions- und Immissionsdaten von lärmrelevanten Sport- und Freizeitanlagen ausgewählter Städte: 4. Emissions- und Immissionsdaten von Straßen und Parkplätzen ausgewählter Städte: 5. Emissions- und Immissionsdaten von Schienen- und Rangierverkehr 6. Emissions- und Immissionsdaten von Wasserverkehr 7. Emissions- und Immissionsdaten militärische Anlagen zu 1.) natürl. Hindernisse: Geländeprofil (Höhenlinien, Böschungskanten, Geländeeinschnitte) künstl. Hindernisse: Bebauung (Einzelhindernisse, teilw. Einzelbebauung zusammengefaßt in homogene Gebiete mit einheitl. Höhe und Bebauungsdämpfung); - Schallschirme (Lärmschutzwände, -wälle, Wände); - zusammenhängende Waldgebiete; - größere Wasserläufe, Gewässer zu 2.) Emissionsbeurteilung erfolgte nach TA Lärm bzw. VDI 2058, Angabe von Koordinaten (x, y und z) und für die Berechnung benötigten Eingangsdaten der einzelnen Betriebe und Gewerbegebiete Lärmrelevante Betriebe wurden mittels Messung beurteilt, andere erhielten Standarddaten aus der Fachliteratur, Gewerbegebiete erhielten größtenteils Flächenbezogene Schalleistungspegel entsprechend der DIN 18005. zu 3.) Emissionsbeurteilung erfolgte nach 18.BImSchV, Angabe von Koordinaten (x, y und z) und für die Berechnung benötigten Eingangsdaten der einzelnen Stätten, Lärmrelevante Sport- und Freizeitanlagen wurden mittels Messung beurteilt, andere erhielten Standarddaten aus der Fachliteratur zu 4.) Emissionsberechnung erfolgte nach RLS-90, Angabe von Koordinaten (x, y und z) und für die Berechnung benötigten Emissionsdaten (Regelqerschnitt, DTV, p, Straßenoberfläche, Steigung, Straßengattung) der Steckenabschnitte, die Zähldaten liegen für alle Städte für den Istzustand, für ausgewählte auch für verschiedene Prognosevarianten 2010 vor. Die Emissionsdaten können mit einem Editor aktualisiert werden. zu 5) Emissionsberechnung erfolgte mit Schall 03. Die Zähldaten liegen für alle Städte für den Istzustand und für den Prognosezustand 2010 vor. Rangierverkehr teilweise mit Akustik 04, sonst über FBS nach DIN18005. zu 6.) Emissionsberechnung über FBS nach DIN 18005 bzw. für Motorboote als Linienquelle, Eingangsdaten abgeschätzt zu 7.) Berechnung der Emissionen ausschließlich über FBS Folgende Projekte wurde in den einzelnen Jahren bearbeitet bzw. sind geplant: 1992 Güstrow (SIP) 1993 Rostock (V), Schwerin (V), Greifswald 1994 Stralsund, Wismar, Neubrandenburg, Grevesmühlen 1995 Bützow, Ludwigslust 1996 Güstrow (SIP, LMP), Waren 1997 Neustrelitz, Ribnitz-Damgarten, Laage, Malchin 1998 Malchow, Bad Doberan, Wolgast (SIP), Anklam, Pasewalk, Parchim 1999 Neubukow, Wittenburg, Wolgast (LMP) 2000 Hagenow, Bergen, Kaiserbäder (Ahlbeck, Her.-dorf, Bansin)

Satellitenbasierte Dienste und mobile Anwendungen für Luftqualität

Im Rahmen des Projektes sollen durch In-Situ-Messungen ermittelte Luftqualitätsdaten der Messnetze von Bund und Ländern mit Copernicus Modelldaten unter Verwendung weltweiter Satelliten- und In-Situ Daten kombiniert werden. Hierdurch können flächendeckende Informationen, insbesondere auch für Gebiete mit geringer Stationsdichte in Deutschland gewonnen werden, aber auch Daten und Informationen für Gebiete außerhalb Deutschlands sowie Prognosen. Zudem sollen Satellitendaten für die Ermittlung von Ursachen (Quellen) von Ereignissen hoher Luftschadstoffbelastung herangezogen werden. Die Ergebnisse des Projektes dienen der besseren Information der Bevölkerung durch flächendeckende Luftqualitätskarten und -vorhersagen und Information über die Ursachen vorübergehend hoher Luftschadstoffbelastungen. Hierzu soll eine Einbindung in die UBA-Internetseiten erfolgen sowie mobile Anwendungen entwickelt werden. Quelle: Bericht

Schallimmissionskarten

Die Schallimmissionspläne (Städte sh. unten) gliedern sich auf in: 1. Daten zu natürl. und künstl. Hindernissen ausgewählter Städte: Angabe von Koordinaten (x, y und z) 2. Emissions- und Immissionsdaten von lärmrelevanten Gewerbebetrieben ausgewählter Städte: 3. Emissions- und Immissionsdaten von lärmrelevanten Sport- und Freizeitanlagen ausgewählter Städte: 4. Emissions- und Immissionsdaten von Straßen und Parkplätzen ausgewählter Städte: 5. Emissions- und Immissionsdaten von Schienen- und Rangierverkehr 6. Emissions- und Immissionsdaten von Wasserverkehr 7. Emissions- und Immissionsdaten militärische Anlagen zu 1.) natürl. Hindernisse: Geländeprofil (Höhenlinien, Böschungskanten, Geländeeinschnitte) künstl. Hindernisse: Bebauung (Einzelhindernisse, teilw. Einzelbebauung zusammengefaßt in homogene Gebiete mit einheitl. Höhe und Bebauungsdämpfung); - Schallschirme (Lärmschutzwände, -wälle, Wände); - zusammenhängende Waldgebiete; - größere Wasserläufe, Gewässer zu 2.) Emissionsbeurteilung erfolgte nach TA Lärm bzw. VDI 2058, Angabe von Koordinaten (x, y und z) und für die Berechnung benötigten Eingangsdaten der einzelnen Betriebe und Gewerbegebiete Lärmrelevante Betriebe wurden mittels Messung beurteilt, andere erhielten Standarddaten aus der Fachliteratur, Gewerbegebiete erhielten größtenteils Flächenbezogene Schalleistungspegel entsprechend der DIN 18005. zu 3.) Emissionsbeurteilung erfolgte nach 18.BImSchV, Angabe von Koordinaten (x, y und z) und für die Berechnung benötigten Eingangsdaten der einzelnen Stätten, Lärmrelevante Sport- und Freizeitanlagen wurden mittels Messung beurteilt, andere erhielten Standarddaten aus der Fachliteratur zu 4.) Emissionsberechnung erfolgte nach RLS-90, Angabe von Koordinaten (x, y und z) und für die Berechnung benötigten Emissionsdaten (Regelqerschnitt, DTV, p, Straßenoberfläche, Steigung, Straßengattung) der Steckenabschnitte, die Zähldaten liegen für alle Städte für den Istzustand, für ausgewählte auch für verschiedene Prognosevarianten 2010 vor. Die Emissionsdaten können mit einem Editor aktualisiert werden. zu 5) Emissionsberechnung erfolgte mit Schall 03. Die Zähldaten liegen für alle Städte für den Istzustand und für den Prognosezustand 2010 vor. Rangierverkehr teilweise mit Akustik 04, sonst über FBS nach DIN18005. zu 6.) Emissionsberechnung über FBS nach DIN 18005 bzw. für Motorboote als Linienquelle, Eingangsdaten abgeschätzt zu 7.) Berechnung der Emissionen ausschließlich über FBS Folgende Projekte wurde in den einzelnen Jahren bearbeitet bzw. sind geplant: 1992 Güstrow (SIP) 1993 Rostock (V), Schwerin (V), Greifswald 1994 Stralsund, Wismar, Neubrandenburg, Grevesmühlen 1995 Bützow, Ludwigslust 1996 Güstrow (SIP, LMP), Waren 1997 Neustrelitz, Ribnitz-Damgarten, Laage, Malchin 1998 Malchow, Bad Doberan, Wolgast (SIP), Anklam, Pasewalk, Parchim 1999 Neubukow, Wittenburg, Wolgast (LMP) 2000 Hagenow, Bergen, Kaiserbäder (Ahlbeck, Her.-dorf, Bansin) 2001 Teterow, Boizenburg, Neustadt-Glewe, Amt Krakow am See

Immissionsbelastung 2016

Im Auftrag der LUBW wurden mittels Ausbreitungsrechnungen mit einem chemischen Transportmodell und unter Verwendung des landesweiten Emissionskatasters 2016 der LUBW sowie unter Berücksichtigung von gemessenen Immissionsdaten die durchschnittlichen Belastungen für die Luftschadstoffe Stickstoffdioxid (NO2), Feinstaubpartikel PM10, Ozon (O3) und Ammoniak (NH3), die sogenannte Immissionsbelastung, für das gesamte Gebiet von Baden-Württemberg ermittelt. Das Bezugsjahr für die dargestellte Immissionsbelastung ist 2016. Dieses Jahr wurde ausgewählt, da es sowohl bezüglich der Emissions- und Immissionssituation für die Luftschadstoffe Stickstoffdioxid (NO2), Feinstaubpartikel PM10, Ozon und Ammoniak (NH3), als auch für die meteorologische Situation als repräsentativ anzusehen ist. Weitere Informationen im Internet, siehe https://www.lubw.baden-wuerttemberg.de/luft/immissionsbelastung

Immissionsbelastung Prognose 2025

Im Auftrag der LUBW wurden mittels Ausbreitungsrechnungen mit einem chemischen Transportmodell und unter Verwendung des landesweiten Emissionskatasters 2016 der LUBW sowie unter Berücksichtigung von gemessenen Immissionsdaten die durchschnittlichen Belastungen für die Luftschadstoffe Stickstoffdioxid (NO2), Feinstaubpartikel PM10, Ozon (O3) und Ammoniak (NH3), die sogenannte Immissionsbelastung, für das gesamte Gebiet von Baden-Württemberg ermittelt. Die Immissionsbelastung wurde flächendeckend als Prognose für das Jahr 2025 bestimmt. Weitere Informationen im Internet, siehe https://www.lubw.baden-wuerttemberg.de/luft/immissionsbelastung

Stadt Gelsenkirchen: Synthetische Klimafunktionskarte

Die synthetische Klimafunktionskarte stellt eine bewertende, flächenhafte Übersicht der klimatischen und lufthygienischen Verhältnisse im Stadtgebiet dar. Dies ist erstens die flächenhafte klimatische Differenzierung anhand verschiedener Klimatope. Zweitens nachgewiesene Funktionen wie Kaltluftproduktions- und sammelgebiete sowie Kaltluftflüsse und Inversionsgefahr. Drittens die lufthygienischen Verhältnisse bestimmter Straßenabschnitte in Hinsicht auf vergleichsweise hohe Immissionskonzentrationen von Spurenstoffen CO,NO, NO2 PM10

Straßenverkehr - Emissionen und Immissionen 2018

In Berlin ist der Kraftfahrzeugverkehr seit Jahren ein erheblicher Verursacher nicht nur der Lärmimmissionen, sondern auch der Luftverschmutzung, insbesondere seit die anderen Verursachergruppen in ihrem Beitrag zur Luftbelastung in Berlin wesentlich reduziert wurden. In der Nähe hoher Schadstoffemissionen, wie z.B. in verkehrsreichen Straßenschluchten, treten auch hohe Immissionskonzentrationen auf. Anders als in den meisten Industriegebieten sind in verkehrsreichen Straßen viele Menschen – ob als Anwohner, Kunden oder Beschäftigte – einer erhöhten Schadstoffbelastung ausgesetzt. Um den Vorgaben der EU-Richtlinie 2008/50 sowie insbesondere der 39. BImSchV – Verordnung über Luftqualitätsstandards und Emissionshöchstmengen – nach Einhaltung der Grenzwerte am Ort der höchsten Exposition Rechnung zu tragen, ist eine möglichst lückenlose Quantifizierung der Schadstoffbelastung notwendig. Dazu werden in Berlin seit langem die kontinuierlichen Messungen der Luftgüte mit Modellrechnungen in allen verkehrsreichen Straßen, in denen Grenzwerte potenziell überschritten werden, ergänzt. Allerdings spielt selbst in einer verkehrsbelasteten Straßenschlucht der Anteil der durch die übrigen Quellen in der Stadt oder durch Ferntransport von Schadstoffen erzeugten Vorbelastung eine wichtige Rolle. Deshalb wurde für die Planung von Maßnahmen zur Verbesserung der Luftqualität in Berlin ein System von Modellen angewandt, das über die Ebenen Straßenschlucht, städtische und regionale Hintergrundbelastung sowohl den großräumigen Einfluss weit entfernter Quellen als auch den Beitrag aller Emittenten im Stadtgebiet bis hinein in verkehrsreiche Straßenschluchten berechnen kann. Die Ergebnisse der Messungen der vergangenen Jahre und die für das Jahr 2015 durchgeführten umfangreichen Modellrechnungen lassen u.a. folgende Schlussfolgerungen zu: Die gemessene NO 2 -Belastung sowohl in den Berliner Vororten als auch in Wohngebieten und an Hauptverkehrsstraßen ist nur geringfügig zurückgegangen und liegt in Straßenschluchten fast durchgängig über dem Grenzwert zum Schutz der menschlichen Gesundheit von 40 µg/m³. Im Mittel wurden im Jahr 2015 an Hauptverkehrsstraßen Jahresmittelwerte zwischen 41 und 73 µg/m³, in innerstädtischen Wohngebieten von 27 µg/m³ und am Stadtrand von 14 µg/m³ gemessen. Auch 2017 lagen die Jahresmittel an Hauptverkehrsstraßen durchgängig noch über dem Grenzwert vom 40 µg/m³ zwischen 41 und 63 µg/m³. Trotz Verbesserung der Abgastechnik der Fahrzeuge und trotz einer leichten Abnahme des Kfz-Verkehrs in Berlin zwischen 2010 und 2015 hat sich die erwartete starke Abnahme der NO 2 -Immissionen bis jetzt nicht eingestellt. Der stärkste Rückgang ist am Hardenbergplatz zu verzeichnen. Die dort vorwiegend verkehrenden BVG-Busse sind in den letzten Jahren sukzessive mit Stickstofffiltern nachgerüstet oder durch neue saubere Busse ersetzt worden. Wurde 2014 dort noch ein NO 2 -Jahresmittelwert von 62 µg/m³ gemessen, so sank dieser 2015 auf 53 µg/m³ und 2017 auf 45 µg/m³. Einer der Gründe für den allgemein geringen Rückgang der NO 2 -Werte ist die starke Zunahme der Dieselfahrzeuge in Berlin. Hatten im Jahr 2002 noch ca. 14 % aller PKW und leichten Nutzfahrzeuge Dieselmotoren, so stieg der Anteil im Jahr 2015 auf ca. 35 %. Dieselfahrzeuge stoßen wesentlich mehr Stickoxide aus als Benzinfahrzeuge. Auch der Anteil von NO 2 im Abgas hat sich in den letzten 10 Jahren von unter 10 % auf über 40 % erhöht. Damit tragen Diesel-Kfz überproportional zur NO 2 -Belastung an Hauptverkehrsstraßen bei. Zudem hat sich gezeigt, dass Dieselfahrzeuge des neueren Abgasstandards EURO 5 zum Teil höhere NO x -Emissionen erzeugen als Dieselfahrzeuge mit dem älteren EURO 4-Standard. Prognose für 2020 und 2025: Zur Berechnung der für 2020 und 2025 prognostizierten Emissionen wurde das Emissionskataster unter Berücksichtigung der wachsenden Stadt, der verbesserten Heizungstechnik, des Umstieges von Kohle auf andere Energieträger und der Effizienzsteigerung bei den Großfeuerungsanlagen sowie der normalen Kfz-Flottenerneuerung fortgeschrieben. Alle bis 2017 beschlossenen Maßnahmen im Verkehrssektor (z.B. geplante Erweiterung des Busangebotes, Fertigstellung von Straßenbahnlinien, Fertigstellung von neuen Straßenabschnitten, Förderung des Fahrradverkehrs etc.) wurden berücksichtigt. Für die Berechnung der verkehrsbedingten Emissionen wurde das Verkehrsmodell auf die Jahre 2020 und 2025 angepasst. Da zur korrekten Ermittlung der Emissionen aus dem Verkehrssektor der Stauanteil einen wesentlichen Faktor bildet, wurde eine neue Methode entwickelt, ausgehend von der Ist-Situation unter Berücksichtigung der prognostizierten Fahrleistungen auf die zukünftig zu erwartenden Stauanteile zu schließen. Die so ermittelten Verkehrskennzahlen für 2020 und 2025 wurden verwendet, um die verkehrsbedingten Emissionen zu berechnen. Hierbei wurde auch die Wirksamkeit der „Software-Updates“ für Euro-5- und Euro-6-Diesel-Pkw berücksichtigt. Aufgrund der Flottenerneuerung gehen die NO x -Emissionen aus dem Verkehrssektor um durchschnittlich ca. 26 % bis 2020 zurück, bei annähernd gleichbleibender bzw. leicht gestiegener Fahrleistung und etwas schlechteren Verkehrszuständen. Die höchsten NO x -Emissionsminderungen im Verkehrssektor werden mit 56 % für die Linienbusse vorhergesagt, schwere Lkw werden ca. 31 %, Reisebusse ca. 26 %, Pkw ca. 20 % und leichte Nutzfahrzeuge ca. 11 % weniger NO x in Berlin ausstoßen. Hierbei wurden die Erneuerung der BVG-Busflotte und die Nachrüstung berücksichtigt, was zu den erheblichen Emissionsminderungen geführt hat. Die Immissions-Prognose für 2020 hat ergeben, dass weiterhin an ca. 3,5 km Straßenzügen NO 2 -Konzentrationen über 40 µg/m³ vorhergesagt werden, an denen ca. 4.000 Menschen leben. Geht man von einer Unsicherheit von ca. 4 µg/m³ aus, u.a. weil das Rechenmodell im Vergleich zu Messwerten tendenziell etwas unterschätzt oder die Emissionseigenschaften der Fahrzeuge gegebenenfalls zu optimistisch eingeschätzt werden, sind 2020 ca. 15 km Straßenabschnitte noch von Grenzwertüberschreitungen betroffen, an denen ca. 16.000 Menschen leben . Noch nicht berücksichtigt sind Maßnahmen wie die gerade laufende/geplante Anordnung von Tempo 30, Flottenverbesserungen durch verstärkten Kauf von Elektrofahrzeugen, eine Hardware-Nachrüstung von Diesel-Pkw und leichten Lkw und sonstige nicht-infrastrukturelle Maßnahmen, wie z.B. die Förderung des Umweltverbundes. Die höchst belasteten Straßenabschnitte liegen mit für 2020 prognostizierten 61 µg/m³ an der Leipziger Straße zwischen Wilhelmstraße und Bundesrat, mit 56 µg/m³ zwischen Charlottenstraße und Friedrichstraße und mit 51 µg/m³ zwischen Friedrichstraße und Leipziger Straße 21. Auch an der Stadtautobahn zwischen Neuer Kantstraße und Spandauer Damm werden ähnlich hohe Werte simuliert. Allerdings ist das hier verwendete einfache, für Simulationen im gesamten Hauptverkehrsstraßennetz vorgesehene Berechnungsmodell nicht geeignet, um die dort vorhandene komplexe Straßenraumsituation mit der Stadtautobahn in Troglage und den 5 m oberhalb angrenzenden Gebäuden korrekt abbilden zu können. Oberhalb 50 µg/m³ wird voraussichtlich auch die Brückenstraße zwischen Köpenicker Straße und Rungestraße liegen. Die übrigen von Grenzwertüberschreitungen betroffenen Straßenabschnitte liegen zwischen 40 und 50 µg/m³. Ursachen der hohen NO 2 -Belastung an der Leipziger Straße sind: 81 % der Belastung stammen aus dem Berliner Straßenverkehr, davon 92 % aus Dieselfahrzeugen und nur 8 % aus Ottofahrzeugen; etwas mehr als die Hälfte der vom Kfz-Verkehr stammenden NO 2 -Belastung wird von Diesel-Pkw verursacht, zusammen mit leichten Nutzfahrzeugen macht der Anteil sogar mehr als 70 % aus; Linienbusse an der Leipziger Straße tragen nur noch ca. 11 % zur NO 2 -Zusatzbelastung bei. Damit ist der Beitrag der Linienbusse an der NO 2 -Belastung stark gesunken, was sich messtechnisch am Hardenbergplatz bereits abzeichnet und somit bestätigt wird. Zusätzliche nicht-infrastrukturelle Maßnahmen, wie beispielsweise die im Mobilitätsgesetz vorgesehene verstärkte Förderung des Umweltverbundes und die neue Tarifstruktur des ÖPNV, werden als Szenario in einem weiteren Schritt hinsichtlich ihrer Auswirkungen auf den Kfz-Verkehr sowie auf die Luftschadstoffsituation bis 2020 bewertet. Im Jahr 2025 werden voraussichtlich alle Luftschadstoffgrenzwerte eingehalten. Bewertung anhand eines Indexes Die aus den Modellrechnungen abgeleitete Karte präsentiert die räumliche Verteilung der verkehrsverursachten Luftbelastung für NO 2 und PM 10 für das Prognosejahr 2020. Für beide Stoffe wurde eine zusammenfassende Bewertung vorgenommen. Der ermittelte Index gewichtet die berechneten Konzentrationen anhand der jeweiligen Grenzwerte in dem für diesen Zweck auf rund 12.000 Straßenabschnitte erweiterten Hauptverkehrsnetz und addiert die Quotienten. Ein Index von 1,00 ergibt sich z.B. dann, wenn beide Komponenten 50 % des Grenzwertes erreichen. Alle Abschnitte, die einen Indexwert größer 1,8 (über 90 % Ausschöpfung des jeweiligen Grenzwertes) aufweisen, erfordern zukünftig ein besonderes Augenmerk.

1 2 3 4 553 54 55