Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.
Über dem Antarktischen Ozean findet man das am wenigsten vom Menschen beeinflusste Aerosol der Erde, aber es gibt so gut wie keine Aerosol bezogenen Messdaten aus dieser interessanten Region. Als Partner des Projekts -Study of Preindustrial-like-Aerosol Climate Effects- (SPACE) beteiligen wir uns an der beispiellosen Antarctic Circumnavigation Expedition (ACE), die uns die einmalige Gelegenheit bietet, hochwertige Aerosolmessungen in dieser abgelegenen Region durchzuführen. ACE-SPACE zielt auf eine detaillierte Charakterisierung des vorhandenen Aerosols, welches von anthropogener Verschmutzung unbeeinflusst ist und somit ein Aerosol darstellt, welches mit dem in einer vorindustriellen Atmosphäre vergleichbar ist. Im Rahmen von ACE-SPACE liegt der Schwerpunkt von TROPOS auf Aerosolpartikeln, welche an klimarelevanten Aerosol-Wolken-Wechselwirkungen beteiligt sind. Insbesondere Partikel, die als Wolkenkondensation (CCN) fungieren können, sowie Partikel, die in der Lage sind, zur Vereisung von Wolken zu führen, sind Untersuchungsgegenstand. Während der Antarktischen Umrundung werden wir 3 Monate lang kontinuierliche INP- und CCN-bezogene in-situ-Messungen an Bord des russischen Eisbrechers Akademik Tryoshnikov durchführen, ergänzt durch Aerosol Filterproben. Im Rahmen des ACE-SPACE Projekts wird TROPOS nur für die Durchführung der Messungen und die chemische Charakterisierung der Filterproben finanziert. Deshalb beantragen wir hiermit Mittel für die wissenschaftliche Auswertung, physikalische Analyse und Interpretation (hauptsächlich 1 Doktorand, 67% für drei Jahre) der gesammelten Proben und Daten.Wir werden einen einzigartigen Datensatz zu den physikalischen und chemischen Eigenschaften von Wolkenkondensationskernen (CCN) und Eis nukleierenden Partikeln (INP), sowie deren Quellen, über dem Antarktischen Ozean liefern. Der Datensatz beinhaltet sowohl CCN und INP-Anzahlkonzentrationen entlang der Route der Antarktischen Umrundung (ACE), als auch quantitative Informationen bzgl. des Aktivierungsverhaltens (Hygroskopizität) und Eisnuklerationsverhaltens (z.B. Gefriertemperaturen), der gesammelten CCN und INP. Der erhobene Datensatz ist repräsentativ für ein natürliches, von menschlichen Einflüssen quasi freies, vorindustrielles Aerosol und damit ein sehr wertvoller Beitrag zur Verbesserung der Vorhersage der Klimaveränderungen in der Antarktischen Region im Besonderen, und der globalen Atmosphäre im Allgemeinen. Die gewonnenen Daten werden innerhalb des SPP offen zur Verfügung gestellt aber auch von unseren Partnern im ACE-SPACE-Projekt zur Klimamodellierung und Validierung von Satellitenretrievals genutzt.
As part of PhytOakmeter (www.phytoakmeter.de), time-domain transmission, soil moisture and -temperature sensors with custom-made logger systems were used to measure time series of soil state variables. The aim of these investigations was to provide data on environmental properties used in a cross-disciplinary approach. The measurement device consisted of two sensors at three different depths. The dataset contains the values of time (UTC), relative permittivity, soil moisture (in % vol) derived from permittivity and soil temperature (in °C). Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensors with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the dataset and parameter comment.
Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.
Veränderungen der Ozeanwärme sind eng mit dem Wärmefluss an der Ozean-Atmosphärengrenze verbunden und spielen daher eine wic--htige Rolle bei der Regulierung des Erdklimas. Allerdings weisen in-situ-Messungen immer noch hohe Ungenauigkeiten auf und sind nur in wenigen Regionen in ausreichender Anzahl vorhanden. ROCSTAR wird neue Einsichten in das Energiebudget der Erde durch die verbesserten Schätzungen der ozeanischen Temperatur (T) und des Salzgehalts (S) liefern. Durch die Kombination der geodätischen Raumverfahren mit Argo-Profilen, werden gleichzeitig die Temperatur, der Salzgehalt und regional variierende Meeresspiegelbeiträge ermittelt. Die daraus resultierenden Schätzungen umfassen die gesamte Ozeansäule und die zugehörigen sterischen Änderungen werden sowohl mit dem beobachteten Meeresbodendruck als auch mit den Meeresspiegelanomalien konsistent sein. Vor diesem Hintergrund verfolgt das Projekt folgende Ziele:1. Erhöhung der Genauigkeit der in sich konsistenten T- und S-Felder und Bereitstellung von realistischen Fehlerschätzungen2. Ermittlung der T- und S-Schätzungen in Regionen mit wenigen Beobachtungen und in den Tiefen des Ozeans3. Quantifizierung der Rolle, welche die flachen und tiefen Schichten des Ozeans in der Energiebilanz der Erde und im Meeresspiegel-Budget spielen4. Identifizierung und Untersuchung von Ozeanwärmehotspots und deren Verbindung zum terrestrischen Wasserkreislauf im Südosten Asiens. ROCSTAR wird innerhalb des SPP1189-Schwerpunkts WPA (Ursprung der regionalen Meeresspiegeländerungen) angesiedelt sein. Das Projekt befasst sich mit globalen Beobachtungen, führt aber intensive Untersuchungen im indischen Ozean und Westpazifik durch, welche die Hauptquellen für Feuchtigkeit, Zyklon und Taifun Entwicklung in der südostasiatischen Region darstellen. Darüber hinaus wird ROCSTAR aktiv an den Öffentlichkeitsarbeiten des SPPs teilnehmen und ein konzeptionelles Brettspiel entwickeln, um Nicht-Wissenschaftlern das regionale Meeresspiegelbudget näher zu bringen.
Zahlreiche Prozesse sind an der Entwicklung von Wolkensystemen unter leicht unterkühlten Bedingungen bis zu -10°C beteiligt. Das Zusammenspiel von Thermodynamik, Wasserdampf und Aerosolpartikeln steuert die Verteilung von Flüssigwasser und Eis, die Niederschlagsbildung und die Strahlungseigenschaften. Das Projekt PolarCAP zielt darauf ab, die komplexen Zusammenhänge aufzulösen, indem die Entwicklung der Eisphase unter leicht unterkühlten Bedingungen in einer thermodynamisch und aerosol-kontrollierten natürlichen Umgebung mittels Radarpolarimetrie und Spectral-Bin Modellierung untersucht wird. Zielobjekt der Studie sind flüssigwasserdominierte, unterkühlte stratiforme Wolken, die sich im Winter häufig im Temperaturbereich von -10 bis 0°C über dem Schweizer Plateau bilden. Im Rahmen des externen ERC-Forschungsprojekts CLOUDLAB werden Drohnen eingesetzt, um diese Wolken mit definierten Mengen verschiedener Arten von eisnukleierenden Partikeln, wie Silberjodid oder Snowmax, zu impfen. Die anschließend gebildete Eisphase und die Auflösung der Flüssigphase werden im Rahmen von CLOUDLAB mit Hilfe von In-situ-Messungen und einem Standardsatz von Fernerkundungsinstrumenten wie Lidar und LDR-Wolkenradar charakterisiert. Konkretes Ziel von CLOUDLAB ist, die 1- und 2-Momenten-Parametrisierungen der Eisphase des Wettervorhersagemodells ICON zu verbessern. PolarCAP wird mit dem CLOUDLAB-Projekt zusammenarbeiten, um diesen einzigartigen Datensatz durch die Anwendung modernster polarimetrischer Radar- und Lidar-basierter Fernerkundungstechniken zur Bestimmung der mikrophysikalischen Eigenschaften von Wolken sowie durch die Anwendung wolkenauflösender Spektral-Bin Modellierung zu verbessern und zu nutzen. Synergistische, mehrwellenlängen- und polarimetrische bodengebundene Fernerkundung mit scannendem Radar und Lidar wird eingesetzt, um den Übergang von unterkühlten flüssigen stratiformen Wolken in Mischphasenwolken zu beobachten. Begleitet von wolkenauflösenden Modellsimulationen und Radar-Forward-Operatoren wird PolarCAP die Entwicklung und die beteiligten mikrophysikalischen Prozesse zwischen -10 und 0°C erfassen. Die kombinierten Beobachtungen werden neue Erkenntnisse über das Zusammenspiel von Kontakt- und Immersionsgefrieren, sekundärer Eisbildung und Eisvervielfachung liefern, indem Wolken in verschiedenen Temperaturregimen untersucht werden, von denen angenommen wird, dass sie entweder von spezifischen Eisphasenprozessen beeinflusst bzw. unbeeinflusst sind. PolarCAP wird das derzeitige Verständnis wolkenmikrophysikalischer Prozesse und deren Darstellung in atmosphärischen Modellen herausfordern und die wolkenauflösende Modellierung und deren Kopplung an Radarvorwärtsoperatoren vorantreiben. Insgesamt wird PolarCAP Fortschritte in unseren Fähigkeiten erzielen, die Effizienz verschiedener eisbildender Substanzen besser einschätzen zu können und die Zeitskalen von mikrophysikalischen Prozessen und dem Lebenszyklus von Stratusbewölkung zu verknüpfen.
Zweck und Ziel: Aufgabe ist es, die verkehrswasserwirtschaftlichen Rahmenbedingungen fuer die Umlagerung von Baggermaterial im Tidebereich (Ems-Weser-Aestuar) und im Brackwasser der Ostsee durch gezielte Untersuchungen zu quantifizieren und insbesondere Vorschlaege fuer eine Risikominderung zu formulieren. Ausfuehrung: Fuer die Frage nach der Auswirkung einer Umlagerung von Baggermaterial auf den Sauerstoffhaushalt sind folgende systematische Untersuchungen erforderlich: 1. Kartierung der zur Baggerung anstehenden Sedimente hinsichtlich ihrer Zehrungseigenschaften; 2. Bestimmung des Sauerstoffverbrauchs von Baggermaterial in Suspension im Saug-Baggerbetrieb, einschliesslich der Sauerstoffzehrung des ueberfliessenden Spuelwassers; 3. In-situ-Messungen (Sauerstoffgehalt, Truebungskonzentration) bei der Baggerung und Umlagerung; 4. Erfassung der stoffwechseldynamischen Situation und Berechnungen zum Sauerstoffhaushalt im Tidebereich. Ergebnisse: Eine Reihe weiterer Sedimentuntersuchungen im Weser-Aestuar und an der Ostseekueste (Flensburger Foerde, Kieler Foerde, Hafen Neustadt) wurden gutachterlich bearbeitet. Es zeigt sich immer deutlicher, dass feinkoernige Sedimente aus dem inneren Teil der Ostseefoerden vielfach stark anaerob sind und dementsprechend eine hohe Sauerstoffzehrung aufweisen. Im Falle einer Umlagerung dieser Baggersedimente wird zur Minimierung negativer Auswirkungen auf den Sauerstoffhaushalt eine moeglichst kompakte Ablagerung empfohlen. Feinkoernige Sedimente aus dem Weser-Aestuar zwischen Brake und Bremerhaven sind hingegen weniger zehrungsintensiv und durchweg aerob.
POLICE trägt zum ersten übergeordneten Ziel eines Projektes bei, der Nutzung von Polarimetrie für quantitative Prozess- und Modellevaluierung. Bereits existierende und neu geplante in-situ Messungen in der Schicht mit bevorzugtem Dendritenwachstum (DGL) und darunter werden verwendet um Hypothesen über die Ursache von Bändern erhöhter differentieller Phase KDP in der DGL zu evaluieren und verschiedene Indikatoren für die Unterscheidung von Riming und Aggregationsprozessen zu quantifizieren. Letzteres erlaubt einen ausschliesslich auf polarimetrischen Radarmessungen basierenden Diskriminierungsalgorithmus aufzusetzen. Sowohl die Erklärung von KDP-Bändern als auch die Fähigkeit Aggregation von Riming zu unterscheiden ist für die Datenassimilation als auch die Modellphysik über der Schmelzschicht von großer Bedeutung. POLICE verwendet die verfügbaren in-situ Messungen weiterhin um polarimetrische Retrieval von Partikelanzahlkonzentration Nt, mittleren Partikeldurchmesser Dm und Eiswassergehalt IWC zu evaluieren und die Representierung von Hydrometeortypen und ihrer Größenverteilung in ICON-LAM zu verifizieren. Die Verwendung von spektralen mikrophysikalischen Schemata im Wolkenmodel der Hebrew University (HUCM) in Kombination mit gemessenen polarimetrischen Profilen erlaubt es schlecht representierte Prozesse, welche für potentielle Modellschwächen verantwortlich sind, zu identifizieren und ermöglicht letztendlich eine bessere Repräsentierung der Hydrometeore in ICON.
As part of PhytOakmeter (www.phytoakmeter.de), time-domain transmission, soil moisture and -temperature sensors with custom-made logger systems were used to measure time series of soil state variables. The aim of these investigations was to provide data on environmental properties used in a cross-disciplinary approach. The measurement device consisted of two sensors at three different depths. The dataset contains the values of time (UTC), relative permittivity, soil moisture (in % vol) derived from permittivity and soil temperature (in °C). Determination of soil moisture was done using the formula of Topp et al. (1980). As sensors, the SMT100 soil moisture sensors with integrated temperature measurement were used. All sensors were installed within the upper 50cm below ground. The exact depths for each sensor are listed in the dataset and parameter comment.
Große Unsicherheiten in der Klimavorhersage gehen auf den derzeitig eingeschränkten Wissensstand bezüglich Zirruswolken zurück. Dies unterstreicht die Bedeutung von mehr quantitativen Information durch Beobachtungen von Zirruswolken und gilt insbesondere für Zirren in der Tropopausen-Region, wo diese eine große Wärmewirkung im Vergleich zu darunter liegenden und optisch dickeren Zirren haben und nur sehr eingeschränkte Informationen vorliegen. Bodengestützte LIDAR-Beobachtungen und satellitengestützten IR Limb Messungen zeigen zudem eine neue Klasse von Zirruswolken in der sogenannten Lowermost Stratosphere (LMS). Dieser Wolkentyp ist bisher nicht gut durch Messungen charakterisiert und ist insbesondere in globalen Klimamodell-Studien noch nicht berücksichtigt. Die vorgeschlagenen Studie CiTroS steht für Cirrus cloud in the extratropical tropopause and LMS region und beschäftigt sich mit exakt diesen Wolken anhand von Messungen, die während der vorgeschlagenen WISE Kampagne des Forschungsflugzeugs HALO im September/Oktober 2017 stattfinden sollen. Besonderer Schwerpunkt der vorliegenden Studie soll auf der Analyse und Auswertung der Wolkenmessungen der neuartigen GLORIA Instruments liegen. Durch die Imaging Technik und der Schwenkvorrichtung von GLORIA ist es möglich tomographische Messungen von Luftvoluminna im Wellenlängenbereich 780 bis 1400 cm-1 durchzuführen, die eine dreidimensionale Rekonstruktion der beobachteten Wolkenstrukturen ermöglichen. IR Limb Sounder zeichnen sich durch eine extrem hohe Empfindlichkeit zur Messung optisch dünnen Zirruswolken aus, die in der langen optischen Pfadintegration begründet ist. Die Kombination von GLORIA mit dem LIDAR Instrument WALES erlaubt eine der empfindlichsten Fernerkundungsmessungen zur Charakterisierung von mikro- und makrophysikalischen Eigenschaften von Zirruswolken. Zusammen mit den in-situ-Messung für Wasserdampf und Eiswassergehalt eignet sich Nutzlast der HALO-WISE Kampagne hervorragend für Vermessung von Wolken in der LMS. Ein größerer Teil der Studie ist für die Entwicklung neuer Analysetechniken für die Auswertung der neuartigen IR-Imager GLORIA Messungen von Zirren vorgesehen. Die tomographischen Messungen werden es erstmalig ermöglichen mikrophysikalische Eigenschaften wie Eis Wassergehalt oder Partikelradius aus IR Limb-Messungen abzuleiten. Simulationen und Vorhersagen des Chemical Lagrangian Model for the Stratosphere (CLaMS) stehen nach der Kampagne für detaillierte Studien zur Verfügung. Diese sollen gezielt genutzt werden um die meso- und synoptisch-skaligen dynamischen Prozesse, die die Bildung von Zirren bei mittleren und hohen Breiten möglicherweise verantworten, zu untersuchen. Das neu entwickelte CLaMS-Ice-Modul mit einen mikrophysikalische zwei-Momenten-Schema mit den wichtigsten Bildungsprozessen von Zirren, wird im Anschluss für detaillierte Fallstudien zur Entstehung und Entwicklung der beobachteten Zirruswolken genutzt.
Origin | Count |
---|---|
Bund | 118 |
Land | 4 |
Wissenschaft | 12 |
Type | Count |
---|---|
Förderprogramm | 104 |
Messwerte | 11 |
Strukturierter Datensatz | 12 |
Text | 7 |
unbekannt | 10 |
License | Count |
---|---|
geschlossen | 17 |
offen | 116 |
Language | Count |
---|---|
Deutsch | 118 |
Englisch | 27 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 12 |
Dokument | 2 |
Keine | 95 |
Multimedia | 1 |
Webseite | 25 |
Topic | Count |
---|---|
Boden | 133 |
Lebewesen & Lebensräume | 86 |
Luft | 83 |
Mensch & Umwelt | 133 |
Wasser | 133 |
Weitere | 125 |