Hochwasserereignisse als Folge von Starkregen stellen generell ein Georisiko in Fließgewässersystemen dar. Die durch verschiedene Emissionsquellen (kommunale Abwässer, Industrieinleitungen, moderne Landwirtschaft) in die Flüsse eingetragene Schadstoffe mitsamt ihren (okö)toxikologsichen Effekten werden durch Hochwässer maßgeblich verteilt. Teilweise werden diese Belastungen, besonders als partikel-assoziierte Kontaminationen, in den Überflutungsflächen (z.B. Flussauen) abgelagert. Dadurch können sich hier unter geeigneten Bedingungen Sedimentarchive bilden, die die Belastungshistorie des Fließgewässersystem widerspiegeln. In Südost- und Südasien sind Oberflächengewässer bekanntermaßen häufig relativ stark belastet, dies gilt für die Wasserphase aber auch für das partikuläre Material. In diesen tropischen/sommerfeucht subtropischen Gebieten sind Flüsse stark durch Hochwässer betroffen, besonders auch durch den Monsun verursacht. Untersuchungen zur Rekonstruktion der Belastungshistorie in den korrespondierenden Sedimentarchiven der Überflutungsflächen sind hier aber bislang nicht erfolgt. Solche Untersuchungen müssen aber für eine erfolgreiche Durchführung einige Voraussetzungen erfüllen. Neben der Zugänglichkeit zu geeigneten Sedimentdepots müssen sedimentologische Charakterisierungen eine Eignung der Archive bestätigen. Weiterhin ist es wichtig, geeignete Indikatorsubstanzen (z.B. quellenspezifische lipophile, und umweltstabile Schadstoffe,) zu identifizieren. Daher ist diese Machbarkeitsstudie konzipiert worden, um die Voraussetzungen für eine erfolgreiche Erfassung der Belastungshistorie eines indischen Flusssystems (die Flüsse Cooum und Adyar) durch Analyse von geeignete Sedimentdepots auf Überflutungsflächen zu untersuchen.Im Wesentlichen sollen:(i) geeignete Sedimentdepots für eine Belastungsrekonstruktion identifiziert und beprobt werden.(ii) spezifische Kontaminanten erfasst werden, die geeignet sind als Indikatoren verschiedene Emissionsquellen zu reflektieren.
Die Gletscher Hochasiens, existentielle Ressource der Wasserversorgung von über einer Milliarde Menschen, reagieren ausgesprochen heterogen auf den Klimawandel. Die zugrunde liegenden Wirkmuster, Steuerungsfaktoren und Sensitivitäten sind jedoch bisher nur lückenhaft verstanden. Jüngste Studien zeigen die besondere Bedeutung topoklimatischer Effekte auf der Skale einzelner Täler und Höhenzüge, die auch ein großes Potential zu nicht-linearer Abschmelzdynamik implizieren. Zur Analyse dieser mesoskaligen Phänomene fehlen aber bislang adäquate Werkzeuge, die die big-data-kritische Datenlücke zwischen großräumigen Fernerkundungs- und feldbasierten Detailstudien schließen können. Die Höhe der Gletschergleichgewichtslinie (ELA) integriert alle am Gletscher wirkenden topographischen und klimatischen Faktoren und ist daher als Indikator eben dieser topoklimatischen Phänomene bestens geeignet. Im beantragten Projekt soll ein neuartiges Fernerkundungsverfahren für ganz Hochasien angewendet werden, das eigens entwickelt wurde, um für ganze Orogene Datensätze der ELA und multitemporaler ELA-Änderungen in präzedenzlos hoher Auflösung zu generieren. Durch ein künstliches neurales Netz werden dann die räumlichen Muster und ihnen zugrunde liegende Beziehungen im regional heterogenen Zusammenwirken klimatischer (Globalstrahlung, Temperatur, Niederschlag, Wind, etc.; aus Daten der High Asia Refined analysis, HAR) und topographischer (Exposition, Hangneigung, Gipfelhöhe, etc.; aus digitalen Geländemodellen, DGM) Faktoren zur Steuerung der ELAs in Hochasien aufgeschlüsselt. An für Teilräume repräsentativen Benchmark-Settings mit besonders guter Datensituation werden die steuernden Prozesse am Gletscher durch numerische Modellierung der Energie- und Massenbilanzen (MB) im Detail untersucht. Auf Basis der resultierenden MB-Daten wird zusätzlich die Sensitivität der MBs zu monatlichen Anomalien in Temperatur und Niederschlag (aus HAR) modelliert. Vorstudien zeigen, dass Verebnungsflächen in den Akkumulationsgebieten der Gletscher großes Potential zu nicht-linearer Abschmelzdynamik bei weiterem ELA-Anstieg bergen. Größe und Topographie dieser Verebnungen werden durch DGM-basierte GIS-Analysen für Gletscher ganz Hochasiens quantifiziert. Zur Identifizierung der zugehörigen Kipppunkte (ELA, ab der eine spezifische Verebnungsfläche zu Ablationsgebiet wird) werden jeweils aus Hochflächentopographie und ELA-Daten die verbleibenden Pufferhöhen berechnet. Die diesen Pufferhöhen entsprechenden Temperaturzu- oder Niederschlagsabnahmen werden auf Basis der zuvor erhobenen Sensitivitätsdaten abgeschätzt und die verbleibende Zeit zur Überschreitung der Kipppunkte für verschiedene Szenarien anthropogenen Klimawandels ermittelt. Die Resultate dieses interdisziplinär-polymethodischen Ansatzes werden erstmals eine Entschlüsselung der topoklimatischen Steuerung der Klimawandelresonanz von Gletschern in Hochasien und ihrer Potentiale zu nicht-linearer Abschmelzdynamik ermöglichen.
<p>Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt.</p><p>Vom Wasser zum Strom</p><p>Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet.</p><p>Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet.</p><p>Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können.</p><p>Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie</p><p>Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a> ist bekannt, dass in 37 Prozent aller berichteten <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserkrper#alphabar">Wasserkörper</a> – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen:</p><p>Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen.</p><p>Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz </p><p>Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft:</p><p>Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein <a href="https://www.umweltbundesamt.de/dokument/die-besondere-bedeutung-der-erneuerbaren-energien">Factsheet</a> erstellt.</p><p>Wasserkraftnutzung in Deutschland </p><p>Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten.</p><p>In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller.</p><p>Wasserkraftanlagen in Deutschland</p><p>Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen).</p><p>Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent.</p><p>Stromproduktion aus Wasserkraft in Deutschland</p><p>In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen.</p><p>Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Aktuelle Zahlen</a> zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die <a href="https://www.bmwk.de/Redaktion/DE/Downloads/S-T/schlussbericht-wasserkraft-231027.pdf?__blob=publicationFile&v=6%20l">EEG-Erfahrungsberichte</a>. Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar.</p><p>Wasserkraftpotenzial in Deutschland</p><p>Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen.</p><p>Die Rolle der Wasserkraft bei der Energiewende</p><p>In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie "<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-konzepte-fuer-die-klimaschutz/rescue-wege-in-eine-ressourcenschonende">RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität</a>" des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen Bruttostromerzeugung leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft.</p><p>Wasserkraft und Klimawandel</p><p>Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der Klimawandel mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft <a href="https://www.umweltbundesamt.de/publikationen/klimafolgen-fuer-wasserkraftnutzung-in-deutschland">untersuchen lassen</a>. Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden.</p><p>So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern.</p><p>Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert.</p><p>Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert.</p><p>Wasserkraftanlage in der Sieg (Unkelmühle).</p><p>Demonstration der Nutzung von Wasserkraft.</p><p>Wasserkraftanlage in der Saale bei Öblitz.</p><p>Wasserkraftanlage in der Saale unterhalb von Jena.</p><p>Wasserkraftnutzung im Bayerischen Wald.</p><p>Ausleitungswehr für die Wasserkraftnutzung bei Tübingen.</p><p>Literatur</p><p>Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227.</p><p>Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a> (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010.</p><p>Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht).</p><p>International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights.</p><p>Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18.</p><p>LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017.</p><p>LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. <a href="https://www.energieatlas.bayern.de/thema_wasser/daten.html">https://www.energieatlas.bayern.de/thema_wasser/daten.html</a>. Zugriff am 04.05.2021.</p><p>MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg.</p><p>Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748.</p><p>Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870.</p><p>Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23.</p><p>Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011.</p><p>TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150.</p><p>UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.</p>
The objective of this study is to present an alternative and more realistic view of the chances of the future uses of renewable energies in the global energy supply. The scenarios in this study are based on the analysis of the development and market penetration of renewable energy technologies in different regions in the last few decades. The scenarios address the question of how fast renewable technologies might be implemented on a worldwide scale and project the costs this would incur. Many factors, such as technology costs and costreduction ratios, investments and varying economic conditions in the worlds regions, available potentials, and characteristics of growth have been incorporated in order to fulfil this task. Off course the scenarios describe two possible developments among other possibilities, but they represent realistic possibilities that give reason for optimism. The results of both scenarios show that - until 2030 - renewable capacities can be extended by a far greater amount and that it is much cheaper than most scientist and people actually think. The scenarios do explicitly not describe a maximum possible development from the technological perspective but show that much can be achieved with even moderate investments. The scenarios do not pay attention to the further development of Hydropower, except for incorporating the extensions that are planned actually. This is not done to express our disbelief in the existence of additional potentials or to ignore Hydropower, but due to the fact that reliable data about sustainable Hydropower potentials were not available. Consequently, the figures in this study show how much can be achieved, even if Hydropower remains on today's levels more or less. Higher investments into single technologies, e.g. Hydropower or Biomass, or in general than assumed in the REO 2030 scenarios will result in higher generating capacities by 2030. On the global scale scenario results for 2030 show a 29 percent renewable supply of the heat and electricity (final energy demand) in the High Variant . According to the Low Variant over 17 percent of the final electricity and heat demand can be covered by renewable energy technologies. Presuming strong political support and a barrier-free market entrance, the dominating stimulus for extending the generation capacities of renewable technologies is the amount of money invested. Within the REO scenarios we assume a growing 'willingness to pay' for clean, secure and sustainable energy supply starting with a low amount in 2010. This willingness to pay gets expressed as a target level for annual investments per inhabitant (capita) that will be reached by the year 2030. The targeted amounts differ for the various regions of the world. In global average 124 € 2006 are spent in 2030 per capita in the 'High Variant'. In the 'Low Variant' the target for 2030 is half that amount (62 € 2006 per capita and year). ...
Das Forschungsvorhaben beschäftigt sich mit den sozialen und ökologischen Folgen der nicht-nachhaltigen Verwertung von Elektronikschrott in Indien
Die Western Ghats in Südwest Indien sind ein Brennpunkt der Biodiversität und gehören zu den artenreichsten Regionen unseres Planeted. Besonders einzigartig sind die sogenannten 'Sholas', isolierte Nebelwälder der Hügelketten auf bis zu 2200 Metern Höhe. In diesem Projekt soll die Tausendfüßerfauna von verschiedenen Wäldern und Sholas der Western Ghats erfaßt und miteinander verglichen werden. Generell sind die Tasuendfüßer Indiens sehr wenig bekannt, obwohl diese als Bodentiere aufgrund ihrer fehlender Flugfähigkeit hervorragende INdikatoren für die biogeographische Geschichte ihrer Lebensräume sind. So haben einige Gattungen der Tasuendfüßer Südindiens ihre nächsten Verwandten auf Madagaskar, obwohl diese Insel 5.000 km entfernt ist, aber bis vor 80 Millionen Jahren noch mit Indien verbunden war. Diese Studie wird im Rahmen der Masterarbeit von Frau Pooja Anilkumar in unserem internationalem Masterprogramme OEP in zusammenarbeit mit der Universität Bonn durchgeführt.
| Origin | Count |
|---|---|
| Bund | 491 |
| Kommune | 1 |
| Land | 17 |
| Wissenschaft | 6 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Ereignis | 28 |
| Förderprogramm | 365 |
| Lehrmaterial | 1 |
| Taxon | 6 |
| Text | 93 |
| unbekannt | 19 |
| License | Count |
|---|---|
| geschlossen | 76 |
| offen | 395 |
| unbekannt | 41 |
| Language | Count |
|---|---|
| Deutsch | 463 |
| Englisch | 111 |
| Resource type | Count |
|---|---|
| Archiv | 41 |
| Bild | 2 |
| Datei | 73 |
| Dokument | 93 |
| Keine | 294 |
| Multimedia | 1 |
| Unbekannt | 1 |
| Webseite | 144 |
| Topic | Count |
|---|---|
| Boden | 339 |
| Lebewesen und Lebensräume | 372 |
| Luft | 281 |
| Mensch und Umwelt | 504 |
| Wasser | 289 |
| Weitere | 512 |