API src

Found 508 results.

Related terms

Machbarkeitsstudie zur Charakterisierung von Sedimentsystemen als Archive Flut-induzierten Schadstofftransports in sommerfeuchten subtropischen/ tropischen Flüssen und angrenzenden urbanen Bereichen

Hochwasserereignisse als Folge von Starkregen stellen generell ein Georisiko in Fließgewässersystemen dar. Die durch verschiedene Emissionsquellen (kommunale Abwässer, Industrieinleitungen, moderne Landwirtschaft) in die Flüsse eingetragene Schadstoffe mitsamt ihren (okö)toxikologsichen Effekten werden durch Hochwässer maßgeblich verteilt. Teilweise werden diese Belastungen, besonders als partikel-assoziierte Kontaminationen, in den Überflutungsflächen (z.B. Flussauen) abgelagert. Dadurch können sich hier unter geeigneten Bedingungen Sedimentarchive bilden, die die Belastungshistorie des Fließgewässersystem widerspiegeln. In Südost- und Südasien sind Oberflächengewässer bekanntermaßen häufig relativ stark belastet, dies gilt für die Wasserphase aber auch für das partikuläre Material. In diesen tropischen/sommerfeucht subtropischen Gebieten sind Flüsse stark durch Hochwässer betroffen, besonders auch durch den Monsun verursacht. Untersuchungen zur Rekonstruktion der Belastungshistorie in den korrespondierenden Sedimentarchiven der Überflutungsflächen sind hier aber bislang nicht erfolgt. Solche Untersuchungen müssen aber für eine erfolgreiche Durchführung einige Voraussetzungen erfüllen. Neben der Zugänglichkeit zu geeigneten Sedimentdepots müssen sedimentologische Charakterisierungen eine Eignung der Archive bestätigen. Weiterhin ist es wichtig, geeignete Indikatorsubstanzen (z.B. quellenspezifische lipophile, und umweltstabile Schadstoffe,) zu identifizieren. Daher ist diese Machbarkeitsstudie konzipiert worden, um die Voraussetzungen für eine erfolgreiche Erfassung der Belastungshistorie eines indischen Flusssystems (die Flüsse Cooum und Adyar) durch Analyse von geeignete Sedimentdepots auf Überflutungsflächen zu untersuchen.Im Wesentlichen sollen:(i) geeignete Sedimentdepots für eine Belastungsrekonstruktion identifiziert und beprobt werden.(ii) spezifische Kontaminanten erfasst werden, die geeignet sind als Indikatoren verschiedene Emissionsquellen zu reflektieren.

Making Energy-Efficiency Happen - From potential to reality

For WWF International Ecofys made an assessment of policies and measures in G8 plus 5 countries, with recommendations for decision makers at national and international level.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Charakterisierung der 'Tasman Leakage' seit dem mittleren Miozän

Die Ozeane der südlichen Hemisphäre sind eng miteinander gekoppelt. Der Verbindungen zwischen dem südpazifischen, dem indischen und dem südatlantischen Ozean durch Wärme- und Wasseraustausch sind für die globale thermohaline Zirkulation von großer Bedeutung. Die Maßgeblichkeit der Verbindung zwischen dem Pazifik und dem Indischen Ozean, gerade in mittleren Wassertiefen, wurde im aktuellen Ozeansystem jedoch erst vor kurzem festgestellt. Verschiedene moderne ozeanografische Modelle identifizieren einen signifikanten Energie- und Massentransport vom Pazifik in den Indischen Ozean bei ca. 1000 m Wassertiefe, der seinen Ursprung in der Tasmanischen See hat. Diese sogenannte 'Tasman Leakage' wurde zuvor noch nie in einem paläozeanographischen Kontext beschrieben. Dieser Antrag zielt darauf ab, den Anfang des Energie- und Massentransport mittels 'Tasman Leakage' zu bestimmen. Darüber hinaus soll die zeitliche Variabilität der Tasman Leakage ermittelt werden. Schließlich vermuten wir eine Veränderung der Intensität der Tasman Leakage als Reaktion auf klimatische (Nord-Süd-Migration von Klimagürteln) sowie tektonische Entwicklungen (Bewegung des australischen Kontinents nach Norden). Die Ocean Drilling Program (ODP) Sites 752 und 754 auf Broken Ridge (östlicher Indischer Ozean) bieten geeignete Sedimentarchive, um diese Fragen zu beantworten: Beide Standorte befinden sich mitten in der Bahn der 'Tasman Leakage' im Indischen Ozean, in einer heutigen mittleren Wassertiefe von ca. 1070 m. Die jüngsten geologischen Schichten dieser Standorte (Oligozän - Holozän) bestehen aus subhorizontalen pelagischen Karbonatsequenzen, welche die Verwendung verschiedener isotopischer und elementarer Proxys ermöglichen. Wir werden die Sites 752 und 754 mit bestehenden Sedimentarchiven aus dem südlichen Indischen Ozean und dem Südwestpazifik vergleichen. Die Kombination von bereits vorhandenen und neuen Daten bietet die einzigartige Gelegenheit, die Rolle der 'Tasman Leakage' in dem Energie-und Massentransport zwischen dem Pazifischen und dem Indischen Ozean seit dem späten Oligozän zu bestimmen.

Beeinflussung des Grundwassers durch einfache sanitaere Einrichtungen (Latrinen mit Versickerung) in Entwicklungslaendern

Dieses seit einiger Zeit laufende Projekt soll weitergefuehrt und in 2-3 Jahren abgeschlossen werden. Zur Zeit laufen diverse Felduntersuchungen in verschiedenen hydrogeologischen Verhaeltnissen in Indien, Bangladesh und Indonesien. Oertliche Institutionen fuehren diese Untersuchungen durch und werden dabei wissenschaftlich und z. T. auch finanziell unterstuetzt. Eine systematische Auswertung der Felddaten sowie der Daten aus der Literatur wird erlauben, verbesserte Richtlinien fuer die gegenseitige Beeinflussung von Faekalien-Entsorgungssanlagen (Latrinen) und Wasserversorgungsanlagen (Brunnen) bei verschiedenen Boden- und Grundwasserverhaeltnissen zu entwickeln.

Nutzung der Wasserkraft

<p>Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt.</p><p>Vom Wasser zum Strom</p><p>Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet.</p><p>Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet.</p><p>Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können.</p><p>Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie</p><p>Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a>⁠ ist bekannt, dass in 37 Prozent aller berichteten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserkrper#alphabar">Wasserkörper</a>⁠ – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen:</p><p>Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen.</p><p>Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz </p><p>Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft:</p><p>Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein <a href="https://www.umweltbundesamt.de/dokument/die-besondere-bedeutung-der-erneuerbaren-energien">Factsheet</a> erstellt.</p><p>Wasserkraftnutzung in Deutschland </p><p>Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten.</p><p>In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller.</p><p>Wasserkraftanlagen in Deutschland</p><p>Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen).</p><p>Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent.</p><p>Stromproduktion aus Wasserkraft in Deutschland</p><p>In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen.</p><p>Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Aktuelle Zahlen</a> zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die <a href="https://www.bmwk.de/Redaktion/DE/Downloads/S-T/schlussbericht-wasserkraft-231027.pdf?__blob=publicationFile&amp;v=6%20l">EEG-Erfahrungsberichte</a>. Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar.</p><p>Wasserkraftpotenzial in Deutschland</p><p>Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen.</p><p>Die Rolle der Wasserkraft bei der Energiewende</p><p>In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie "<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-projektionen/rescue-wege-in-eine-ressourcenschonende">RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität</a>" des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen ⁠Bruttostromerzeugung⁠ leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft.</p><p>Wasserkraft und Klimawandel</p><p>Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der ⁠Klimawandel⁠ mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft <a href="https://www.umweltbundesamt.de/publikationen/klimafolgen-fuer-wasserkraftnutzung-in-deutschland">untersuchen lassen</a>. Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden.</p><p>So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern.</p><p>Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert.</p><p>Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert.</p><p>Wasserkraftanlage in der Sieg (Unkelmühle).</p><p>Demonstration der Nutzung von Wasserkraft.</p><p>Wasserkraftanlage in der Saale bei Öblitz.</p><p>Wasserkraftanlage in der Saale unterhalb von Jena.</p><p>Wasserkraftnutzung im Bayerischen Wald.</p><p>Ausleitungswehr für die Wasserkraftnutzung bei Tübingen.</p><p>Literatur</p><p>Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227.</p><p>Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39.</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a>⁠ (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010.</p><p>Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht).</p><p>International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights.</p><p>Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18.</p><p>LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water &amp; Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017.</p><p>LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. <a href="https://www.energieatlas.bayern.de/thema_wasser/daten.html">https://www.energieatlas.bayern.de/thema_wasser/daten.html</a>. Zugriff am 04.05.2021.</p><p>MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg.</p><p>Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748.</p><p>Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870.</p><p>Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23.</p><p>Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011.</p><p>TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011.</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150.</p><p>UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.</p>

Renewable Energy Outlook 2030 Energy Watch Group Global Renewable Energy Scenarios

The objective of this study is to present an alternative and more realistic view of the chances of the future uses of renewable energies in the global energy supply. The scenarios in this study are based on the analysis of the development and market penetration of renewable energy technologies in different regions in the last few decades. The scenarios address the question of how fast renewable technologies might be implemented on a worldwide scale and project the costs this would incur. Many factors, such as technology costs and costreduction ratios, investments and varying economic conditions in the worlds regions, available potentials, and characteristics of growth have been incorporated in order to fulfil this task. Off course the scenarios describe two possible developments among other possibilities, but they represent realistic possibilities that give reason for optimism. The results of both scenarios show that - until 2030 - renewable capacities can be extended by a far greater amount and that it is much cheaper than most scientist and people actually think. The scenarios do explicitly not describe a maximum possible development from the technological perspective but show that much can be achieved with even moderate investments. The scenarios do not pay attention to the further development of Hydropower, except for incorporating the extensions that are planned actually. This is not done to express our disbelief in the existence of additional potentials or to ignore Hydropower, but due to the fact that reliable data about sustainable Hydropower potentials were not available. Consequently, the figures in this study show how much can be achieved, even if Hydropower remains on today's levels more or less. Higher investments into single technologies, e.g. Hydropower or Biomass, or in general than assumed in the REO 2030 scenarios will result in higher generating capacities by 2030. On the global scale scenario results for 2030 show a 29 percent renewable supply of the heat and electricity (final energy demand) in the High Variant . According to the Low Variant over 17 percent of the final electricity and heat demand can be covered by renewable energy technologies. Presuming strong political support and a barrier-free market entrance, the dominating stimulus for extending the generation capacities of renewable technologies is the amount of money invested. Within the REO scenarios we assume a growing 'willingness to pay' for clean, secure and sustainable energy supply starting with a low amount in 2010. This willingness to pay gets expressed as a target level for annual investments per inhabitant (capita) that will be reached by the year 2030. The targeted amounts differ for the various regions of the world. In global average 124 € 2006 are spent in 2030 per capita in the 'High Variant'. In the 'Low Variant' the target for 2030 is half that amount (62 € 2006 per capita and year). ...

Risiken des Computerbooms in Indien; das Beispiel Elektronikschrott

Das Forschungsvorhaben beschäftigt sich mit den sozialen und ökologischen Folgen der nicht-nachhaltigen Verwertung von Elektronikschrott in Indien

Mikroendemische Tausendfüßer der Western Ghats, Indien

Die Western Ghats in Südwest Indien sind ein Brennpunkt der Biodiversität und gehören zu den artenreichsten Regionen unseres Planeted. Besonders einzigartig sind die sogenannten 'Sholas', isolierte Nebelwälder der Hügelketten auf bis zu 2200 Metern Höhe. In diesem Projekt soll die Tausendfüßerfauna von verschiedenen Wäldern und Sholas der Western Ghats erfaßt und miteinander verglichen werden. Generell sind die Tasuendfüßer Indiens sehr wenig bekannt, obwohl diese als Bodentiere aufgrund ihrer fehlender Flugfähigkeit hervorragende INdikatoren für die biogeographische Geschichte ihrer Lebensräume sind. So haben einige Gattungen der Tasuendfüßer Südindiens ihre nächsten Verwandten auf Madagaskar, obwohl diese Insel 5.000 km entfernt ist, aber bis vor 80 Millionen Jahren noch mit Indien verbunden war. Diese Studie wird im Rahmen der Masterarbeit von Frau Pooja Anilkumar in unserem internationalem Masterprogramme OEP in zusammenarbeit mit der Universität Bonn durchgeführt.

Morphogenese und Morphodynamik im Westraum Indiens

Im Untersuchungsgebiet zwischen Dehli und der Suedspitze Indiens variiert die thermisch/hygrische Ausstattung zwischen Vollariditaet in der Tharr und Vollhumiditaet in den suedindischen Gebirgen. Diese lueckenlose Ariditaets- bzw. Humiditaetskette bietet optimale Vorraussetzungen zum Studium des Einflusses von Trockenheit bzw. Feuchte auf die Reliefentwicklung in Vergangenheit und Gegenwart. Sie gestattet zugleich die modifizierende Wirkung von Lithologie und Struktur des Untergrundes, der Vegetation und des Vorformenschatzes zu analysieren. Der grossraeumige Ueberblick steht dabei im Vordergrund.

Die genetische Kontrolle morphologischer und ionimscher Anpassung während der Kolonisation Indiens durch Körneramarant

Der Klimawandel und das rapide Bevölkerungswachstum stellen die Nahrungsmittelproduktion vor eine große Herausforderung. Kulturpflanzen mit hoher Nährstoffqualität, wie zum Beispiel Körneramarant, haben ein hohes Potential zur Ernährungssicherung der Zukunft beizutragen. Um zu verstehen wie Pflanzen sich an veränderte Umwelten anpassen können, ist detailliertes Wissen über die genetische Vielfalt und anpassungsrelevante Merkmale notwendig. Anpassungsmerkmale beinhalten nicht nur morphologische, sondern auch physiologische und intrinsische Merkmale, wie das Pflanzenionom. Die weltweite Ausbreitung von Kulturpflanzen ist ideal, um die Anpassung an neue Umwelten zu untersuchen. Auch vernachlässigte Kulturpflanzen haben sich im letzten Jahrtausend über ihr Donestikationszentrum hinaus ausgebreitet. Bevor Körneramarant sich ausbreitete, wurden drei Arten unabhängig voneinander vom gleichen Vorfahren domestiziert. Später kolonisierte Amarant auch Indien, wo sich in den letzten 400 Jahren lokale Landrassen, die gut an ihre neue Umwelt angepasst sind, entwickelten. Unsere Vorarbeiten deuten darauf hin, dass alle drei domestizierten Arten zu heutigen indischen Landrassen beitrugen. Darüber hinaus ist zu vermuten, dass lokale angepasste wilde Amarantarten adaptive genetische Variation zur Anpassung der Kulturpflanze an die neue Umwelt beisteuerten. In diesem Projekt verbinden wir Populations-, quantitative und molekulare Genetik, um die Anpassung während der Ausbreitung von Kulturpflanzen zu verstehen. Mit der Einführung von Amarant nach Indien, werden wir die morphologischen, ionomischen und genomischen Veränderungen untersuchen, um die Herkunft adaptiver genetischer Variation zu verstehen. Darüber hinaus werden wir die molekulare Basis agronomischer und qualitätsrelevanter Merkmale beleuchten. Wir haben vor, die Funktion von Schlüsselkandidatengenen mit Hilfe von Expressionsanalysen und Genomeditierung in Amarant zu validieren. Diese deutsch-indische Kollaboration bringt die Pflanzenzüchtungsforschung und ionomische Expertise des indischen Partners mit der evolutionsgenomischen Expertise des deutschen Partners zusammen, um Synergien dieser Felder zu nutzen. Im speziellen, werden wir 300 Körneramarantakzessionen an drei unterschiedlichen Standorten in Indian morphologisch und ionomisch vergleichen. Diese Daten werden wir mit genomweiten genetischen Markerdaten verbinden, um adaptive Variation zu detektieren und Gene, die für die Anpassung relevant sind, funktionell validieren. Der Vergleich mit genetischer Variation von lokalen Wildarten wird es erlauben, deren Beitrag zur Anpassung von Körneramarant zu verstehen. Durch dieses gemeinschaftliche Projekt werden wir zum Verständnis, wie Kulturpflanzen sich an neue Umwelten anpassen und welche Quellen adaptiver Variation vorhanden sind, beitragen. Wir planen Gene zu identifizieren, die den Nährstoffgehalt regulieren und deshalb zur Verbesserung der Amarantqualität und zu Ertragssteigerungen beitragen können.

1 2 3 4 549 50 51