Zielsetzung und Anlass des Vorhabens: Das Europäische Klimaforum (European Climate Forum e. V.) ist ein neugegründetes Forum, das verschiedene Akteure im Klima- und Energiebereich zusammenbringt, um einen neuen integrierten Ansatz in der Klimaforschung und -Debatte voranzubringen. Mitglieder sind führende wissenschaftliche Institutionen in Europa, Vertreter der Industrie sowie international aktive Umweltverbände. Die Konferenz in Berlin am 14.-15. Dezember war das Hauptereignis im Jahr 2002 und gehört zu einer Serie von kleineren und größeren ECF-Veranstaltungen. Angesichts der bisherigen Trennung zwischen akademischen Studien im Klimabereich und konkreten Bemühungen der Wirtschaft und der Verbände Lösungen für das Klimaproblem zu finden, ist ein stetiger und strukturierter Dialog wichtig. Die Konferenz hat einen Beitrag zur Zusammenbringung dieser zwei Bereiche geleistet. Fazit: Die Konferenz und die Diskussionen wurde sowohl von den Teilnehmern als auch Veranstalter als höchst interessant und erfolgreich eingestuft. Anregungen zu zukünftigen Forschungsprojekten wurden geliefert. Der Dialogprozess wird weitergeführt. Es wurde deutlich, dass in Zukunft kleinere Studien und Positionspapiere geeignet sind um gezielt bestimmte Klimarelevanten Fragen zwischen Unternehmen, Nichtregierungsorganisationen und Wissenschaftlern zu diskutieren. Die jährlichen ECF Konferenzen werden fortgeführt werden und die nächste wird am 8.-10. September 2003 am Tyndall Centre/UEA (Norwich) stattfinden. Die ECF Konferenz wird als teil der dritten Nachhaltigkeitstage stattfinden.
Darstellung der NOx, PM10 und PM2, 5-Emissionen der Verursachergruppen Industrie, Hausbrand und Kfz-Verkehr, Stand 2015
<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>
Ziel des Forschungsvorhabens ist die Untersuchung und die Weiterentwicklung von Konzepten fuer das betriebliche Abfallmanagement in der chemischen Industrie. Die Erfahrungen in mehreren internationalen Standorten eines Pharmaunternehmens werden ausgewertet. Die Konzepte werden in einer Anzahl von Schritten zerlegt: Ist-Analyse, Schwachstellenanalyse, Entwicklung von Sollkonzepten, Entwicklung von Standardanweisungen usw. Die Erfahrungen zeigen, dass das Abfallmanagement eine besondere Stellung im Umweltmanagement einnimmt. Es setzt lange vor der Entstehung des Abfalls an, z.B. beim Einkauf und bei der FuE, und schafft die notwendige Transparenz, um die Umwelt zu schonen und Kosten zu sparen.
Die Industrie schätzt die Entwicklung des internationalen Windenergiemarktes in den kommenden Jahren als sehr positiv ein - das ist das wichtigste Ergebnis der WindEnergy-Studie 2006, die die Hamburg Messe und Congress GmbH im Vorfeld der WindEnergy 2006 - International Trade Fair in Auftrag gegeben hat. So wird für das Jahr 2010 weltweit mit 132.000 MW (derzeit: 59.000 MW) installierter Leistung gerechnet. Ergänzt werden diese Zahlen durch ein Szenario des deutschen Windmarktes bis zum Jahr 2030. Dazu wurden vom beauftragten Deutschen Windenergie-Institut im Dezember 2005 in der Windenergie international tätige Firmen zu deren mittelfristiger Markteinschätzung befragt und deren Antworten ausgewertet. Das Umfrageergebnis signalisiert eine positivere langfristige Einschätzung als vor zwei Jahren. Die in der WindEnergy-Studie 2004 veröffentlichte Wachstumsprognose bis 2010 kann um bis zu 12 Prozent nach oben korrigiert werden. Auf diesen Zahlen aufbauend ergäbe sich bis zum Jahr 2014 eine weltweite Installation von rund 210.000 MW.
Ziel des Vorhabens ist die Reduktion der Anzahl von Farbwechseln in Lackierstraßen von Automobilwerken. Dadurch sollen einerseits die Produktionskosten gesenkt, andererseits die bei jedem Farbwechsel durch die notwendige Reinigung der Lackierroboter anfallenden Abwasserbelastungen vermindert werden. Die Realisierung dieses Vorhabens erfordert die Festlegung einer geeigneten Produktionssequenz. Dazu muss zunächst das Layout des jeweiligen Automobilwerkes modelliert werden können, so dass der Produktionsfluss simuliert werden kann. Durch ein vom Benutzer kontrollierbares Regelwerk können anschließend Anforderungen an die Produktionssequenz formuliert werden. Neben den Anforderungen für die Lackierstraße sind hierbei insbesondere auch Anforderungen aus allen anderen Produktionsabschnitten zu beachten. Als Lösungsverfahren kommen aufgrund der Komplexität des Problems lediglich heuristische Verfahren in Betracht, mit deren Hilfe sequentiell eine Produktionssequenz bestimmt wird. Das Verfahren wird vom Kooperationspartner seit Dezember 2003 europaweit eingesetzt.
Zielsetzung und Anlass des Vorhabens: Ziel der letzten Projektphase war es, mit einer Langzeit-Praxiserprobung das zweistufige biologische Verfahren zur Deponiesickerwasserreinigung als Stand der Technik zu etablieren und zu bilanzieren. Nach der Inbetriebnahme des Technikums am Deponiestandort Schöneiche ging es in der zwölfmonatigen Laufzeit des Projektes AZ 14996/04 in den Langzeitversuchen um die Validierung der Laborergebnisse im technischen Maßstab, die verfahrenstechnische Optimierung der Anlage und um eine damit verbundene mögliche Kostenreduzierung des Systems. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem ersten Technikums-Probebetrieb wurde eine Reihe von Optimierungsmaßnahmen durchgeführt: - der Umbau des Rohsickerwasserzulaufs, - die Verwendung von Soda statt Bicarbonat für die Ammoniumoxidation in Reaktor 2, - der Einsatz von Membrandosierpumpen mit integrierten Rückschlagventilen für die Zugabe von Soda und Essigsäure, - der Einbau von zusätzlichen Polyurethan-Festbetten zur Vergrößerung der Oberfläche für die Besiedlung mit Mikroorganismen, - die Einstellung des Sollwerts für Reaktor 4 auf einen pH-Wert von 6,5, - ein Update der SPS-Steuerung der Nanofiltration zur freien Programmierung der Spülzyklen, - der Einbau eines Absperrhahns vor den Nanofiltrations-Vorfilter - und die Trennung des Nanofiltrationsablaufs vom Reaktoren-Sammelablauf zur Behälterleerung. Es wurde sowohl Rohsickerwasser der MEAB-Deponie Schöneiche als auch Sickerwasserkonzentrat der Deponie Vorketzin behandelt. Fazit: Wegen der durchgeführten Optimierungsmaßnahmen ist es prinzipiell gelungen, das Schöneicher Rohsickerwasser gemäß Anhang 51 der Abwasserverordnung aufzureinigen. In Vorketzin wurde die organische Belastung über 70% und Stickstoff über 80% reduziert. Nach Rückgang der Calciumfracht sollte es zukünftig möglich sein, mit der Zweistufen-Biologie das Sickerwasserkonzentrat ausreichend zu reinigen, da organische Belastung und Stickstoffgehalt geringer als im Schöneicher Rohsickerwasser sind. Um das Verfahren als Stand der Technik, vor allem für die Behandlung von Sickerwasserkonzentraten, zu etablieren, müssten die Laborvorgaben mit den Erfahrungen des Technikumsbetriebs kombiniert und in einer weiteren Versuchsreihe unter optimierten Bedingungen verifiziert werden.
Standorte mit Altablagerungen haeuslicher, industrieller und gewerblicher Abfaelle sowie Flaechen ehemaliger Industrie- und Gewerbebetriebe, bei denen der begruendete Verdacht besteht, dass von ihnen Gefahren bzw. Beeintraechtigungen fuer die menschliche Gesundheit oder Umwelt ausgehen koennen, werden Altlasten genannt. Aktuellen Schaetzungen zufolge gibt es in der Bundesrepublik Deutschland mehr als 100000 Altlasten, von denen etwa 20000 als sanierungsbeduerftig angesehen werden. Es ist damit zu rechnen, dass in den naechsten 10-20 Jahren fuer die Sicherung und Sanierung von Altlasten ein zweistelliger Milliardenbetrag aufgewendet werden muss. In verschiedenen Bundeslaendern laufen Programme, um die Altlasten systematisch zu erfassen und hinsichtlich ihrer Umweltgefaehrdung zu untersuchen und zu beurteilen. Um die mit der Untersuchung und Beurteilung befassten Fachleute zu unterstuetzen, wird vom Institut fuer Angewandte Informatik des Kernforschungszentrums Karlsruhe und vom Institut fuer Boden, Abfall, Altlasten der Landesanstalt fuer Umweltschutz Baden-Wuerttemberg (LfU) in einem gemeinsamen Vorhaben das Expertensystem Umweltgefaehrlichkeit von Altlasten (XUMA) entwickelt (1)(2),(3). Seit Anfang 1993 beteiligt sich das Forschungszentrum Rossendorf an der Weiterentwicklung des Systems. Das Expertensystem XUMA unterstuetzt Fachleute in Behoerden und Ingenieurbueros als intelligenter Assistent und entlastet sie von Routinearbeiten. Das Wissen der wenigen Fachexperten auf diesem Gebiet wird den Sachbearbeitern leichter zugaenglich und die Erfahrungen aus den Sanierungen sowie andere neue Erkenntnisse koennen unverzueglich in die Beurteilungen einfliessen. Daneben traegt das System zur Vereinheitlichung des Vorgehens sowie der Beurteilungskriterien bei.
Ziele der Studie 'Bestandsaufnahme Umweltschutzpotentiale im IHK-Bezirk Muenster' sind - die Darstellung der realisierten und latenten Umweltschutzpotentiale in der Region, - die Identifizierung von Defiziten und Hemmissen der regionalen Umweltschutzaktivitaeten, - die Identifizierung von potentiellen Netzwerkpartnern, Kooperationspartnern und Transfereinrichtungen. - die Erarbeitung von Vorschlaegen zu deren Ausschoepfung an die Adresse der regionalen Wirtschaftsfoerderer - sowie Handlungsempfehlungen zur Verbesserung des betrieblichen Umweltschutzes. Regionale Umweltschutzpotentiale werden definiert als - das bestehende Niveau (realisierte Potentiale) - bei der Entwicklung, Produktion und Vermarktung von Umweltschutzprodukten und -dienstleistungen durch in der Region ansaessige private und nicht-private Anbieter (Angebot im Umweltschutz) - bei der Anwendung von umweltvertraeglichen Technologien und Produkten in der Region (Nachfrage im Umweltschutz) - bei der Anwendung von Umweltmanagementsystemen und der Umsetzung von Massnahmen im betriebliche Umweltschutz.
| Origin | Count |
|---|---|
| Bund | 4111 |
| Europa | 44 |
| Kommune | 13 |
| Land | 139 |
| Wirtschaft | 1 |
| Wissenschaft | 8 |
| Zivilgesellschaft | 12 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 3955 |
| Gesetzestext | 1 |
| Hochwertiger Datensatz | 24 |
| Repositorium | 1 |
| Taxon | 9 |
| Text | 105 |
| Umweltprüfung | 20 |
| unbekannt | 143 |
| License | Count |
|---|---|
| geschlossen | 167 |
| offen | 4034 |
| unbekannt | 58 |
| Language | Count |
|---|---|
| Deutsch | 3660 |
| Englisch | 862 |
| andere | 2 |
| Resource type | Count |
|---|---|
| Archiv | 14 |
| Bild | 5 |
| Datei | 27 |
| Dokument | 94 |
| Keine | 2950 |
| Unbekannt | 4 |
| Webdienst | 40 |
| Webseite | 1243 |
| Topic | Count |
|---|---|
| Boden | 2724 |
| Lebewesen und Lebensräume | 3261 |
| Luft | 2186 |
| Mensch und Umwelt | 4259 |
| Wasser | 1899 |
| Weitere | 4219 |