Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
Die Gesellschaft fuer Elektrischen Strassenverkehr mbH betreibt Forschung, Entwicklung und Erprobung auf dem Gebiet elektrischer Strassenfahrzeuge und deren Versorgungskomponenten in Zusammenarbeit mit der einschlaegigen Industrie. Im Rahmen von Grossversuchen werden Batterie-elektrische MAN-Standardlinienbusse (z.Z. 22 Fahrzeuge) sowie 20 Daimler Benz Hybridbusse im praxisnahen Linienbetrieb und auf Versuchsgelaenden getestet. Parallel hierzu werden an Elektrotransportern der Firma Daimler-Benz AG und Volkswagenwerk AG in einem Experimental-Forschungsprogramm Untersuchungen durchgefuehrt sowie erste Schritte der Elektrifizierung von Pkw eingeleitet. Bei den laufenden Programmen stehen neben den Fahrzeugen mit ihren Antriebskomponenten die Entwicklung leistungsfaehiger Energie-Speicher (Batterie) und einer auf die Besonderheiten des Fahrzeuges zugeschnittenen Versorgungstechnik (Batterie-Wechsel, Service- und Ladeeinrichtung) sowie eine Optimierung des Gesamtsystems im Vordergrund.
Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
Im SPP 2451 werden Material- und Biotechnikingenieure zusammenarbeiten, um das Potenzial der synergistischen Integration von nicht-lebenden und lebenden Komponenten in neuen Materialien zu erschließen. Durch interdisziplinäre Zusammenarbeit wird diese multidisziplinäre Gemeinschaft dazu beitragen (i) das grundlegende Verständnis bezüglich der Anforderungen für eine funktionale Verbindung von nicht-lebenden Materialien mit lebenden Komponenten zu erlangen und (ii) das Potenzial adaptiver lebender Materialien zur Vereinigung von Technologie- und Nachhaltigkeitsanforderungen in zukünftigen materialbasierten Technologien in Laborprototypen zu demonstrieren. Das Koordinationsprojekt des SPP wird zur Vernetzung, Zusammenarbeit und Sichtbarkeit des SPP-Themas und der Wissenschaftsgemeinschaft beitragen, indem es SPP-Treffen und Konferenzen organisiert. Es wird auch zur Organisation spezialisierter Schulungen und zur beruflichen Entwicklung von 30 Nachwuchswissenschaftlern auf Promotions- und Postdoc-Ebene beitragen und ihr Netzwerk in der Wissenschafts Community stärken. Das Koordinationsprojekt wird sich auch mit drei ELM-spezifischen Themen von zentraler Bedeutung für die SPP-Gemeinschaft befassen: (i) die Ausarbeitung von Dokumentations-, Berichts- und Datenmanagementstandards, die die Bereitstellung von FAIR-Daten für die Entwicklung von ELMs im SPP erleichtern können; (ii) die Förderung der Diskussion über Umweltsicherheitsaspekte von ELMs; (iii) die Verbreitung von Informationen über ELMs, um Akzeptanz für sichere, auf ELMs basierende Technologien in der Industrie und der Gesellschaft zu gewinnen. Das SPP bietet eine Gelegenheit, diese Fragen bereits in dem sehr frühen Entwicklungsstadium der lebenden Materialien anzugehen. Diese vorteilhafte Position wird dem SPP erhebliche Sichtbarkeit verschaffen und seine Auswirkungen weltweit verstärken.
Vattenfall Allianz Umweltstiftung Berlin Hyp AG Berliner Verkehrsbetriebe meetyoo conferencing BTB Blockheizkraftwerks- Träger- und Betreibergesellschaft mbH Berlin Rüdi Net e.V. Feuersozietät Berlin Brandenburg Versicherung AG Grieneisen Bestattungen Klaus-Eberhard Kießling, Bauingenieur S-Bahn Berlin / Bio Company / Marktzeit-Ökomärkte Haus in Ordnung Verwaltungsgesellschaft mbH Hans-Joachim Hoster Stiftung Uniper SE Initiative Berliner Eichentor IKEA Berlin-Lichtenberg Team Europe Ventures GROTH-Gruppe degewo Rechtsanwalt Roland Exner Imkerverein Zehlendorf TIB Molbiol Berliner Stadtgüter Cargill GmbH Deutsche Gesellschaft für Orthopädie und Unfallchirurgie Fernheizwerk Neukölln AG Deka Bank Deutsche Girozentrale Siemens Energy Global GmbH & Co. KG Deutsche Bahn Stiftung Baugenossenschaft IDEAL ES EnviroSustain GmbH Visual Meta GmbH NBB Netzgesellschaft Berlin-Brandenburg mbH & Co. KG Ing. Büro für Tragwerksplanung, Dr.-Ing Christian Müller Berliner Stadtwerke GmbH DIE SCHULKÖCHE Industrie und Handelskammer zu Berlin – IHK Berlin Lignum-Stiftung Imkerverband Berlin e. V. radioBerlin 88,8 Dr. Arend Oetker Siemens AG Deutscher Franchise-Verband e.V. (DFV) BSH Hausgeräte GmbH Losito Kressmann-Zschach Foundation HEJ Holding GmbH Primus Immobilien AG DSK Die Schulköche GmbH milaa gGmbH SC Falco Subbuteo e. V STADT UND LAND Berliner Volksbank Architektenkammer Berlin Berliner Wasserbetriebe atene KOM GmbH Ingenieurbüro für Tragwerksplanung WISTA Management GmbH UMI Urban Mobility International GmbH Bürgerverein Friedrichshagen e.V. Soroptimist International of Europe Berliner Sparkasse Investa Ahmadiyya Muslim Jamaat COMPLEVO GmbH Archigon Bouchéstraße 39 GmbH & Co. KG Zimmermann Holding AG IKEA Berlin-Spandau GESOBAU AG Gurdwara Sri Guru Singh Sabha Berlin e. V. Deutsche Stadt- und Grundstücksentwicklungsgesellschaft mbH & Co. KG (DSK) Bundesinnungsverband für Orthopädie.Technik Interessengemeinschaft Heerstraße Bundesdruckerei GmbH LaWa Landschafts- und Wasserbau GmbH DAHM Architekten + Ingenieure Mafilm Martens Film- und Fernsehproduktions GmbH Carl-Gotthard-Langhans-Gesellschaft Berlin e.V. bito aktiengesellschaft Investitionsbank Berlin (IBB) Coca-Cola Deutschland AVM Computersysteme Vertriebs GmbH Sparda Bank Porsche NL Berlin GmbH Gewerbesiedlungs-Gesellschaft mbH (GSG) Bürger für das Quartier Meyerinckplatz e.V. B. & S. U. Beratungs-und Service Gesellschaft Umwelt mbH Quentic GmbH HOWOGE Wohnungsbaugesellschaft mbH Promos Consult Berliner Energieagentur GmbH AUGUST STORCK KG LAT Fernmelde-Montagen und Tiefbau GmbH Leben in Wilhelmsruh e.V.
<p>Die wichtigsten Fakten</p><p><ul><li>Wie effizient eine Volkswirtschaft Energie einsetzt, kann durch den <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Endenergieproduktivität“ gemessen werden.</li><li>Zwischen 2008 und 2024 ist die Endenergieproduktivität um 31 % gestiegen.</li><li>Wichtiger als die Erhöhung der Endenergieproduktivität ist die Senkung des Energieverbrauchs.</li><li>Die europäische „Energieeffizienzrichtlinie“ sowie das deutsche „Energieeffizienzgesetz“ geben anspruchsvolle Ziele für die Senkung des Endenergieverbrauchs vor.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Energieproduktivität ist ein Maß, das angibt, wie effizient eine Wirtschaft, Industrie oder Gesellschaft Energie einsetzt, um wirtschaftlichen Wert zu erzeugen. Sie wird berechnet, indem man das Bruttoinlandsprodukt (BIP) durch den Energieverbrauch teilt. Eine höhere Energieproduktivität bedeutet, dass für die Produktion einer Einheit wirtschaftlichen Wertes weniger Energie benötigt wird. Dies ist ein <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> für eine effiziente und nachhaltige Nutzung von Energie. Ein geringerer Energieeinsatz ist auch gut für die Umwelt, da das Energiesystem eine Reihe negativer Umweltauswirkungen mit sich bringt. Hier wird der <a href="https://www.umweltbundesamt.de/indikator-endenergieverbrauch"><em>End</em>energieverbrauch</a> als Bezugsgröße verwendet, somit wird der Indikator als „<em>End</em>energieproduktivität“ bezeichnet.</p><p>Im „Energiekonzept“ des Jahres 2010 setzte sich die Bundesregierung langfristige jährliche Wachstums-Ziele für die Endenergieproduktivität. Inzwischen steht die absolute Senkung des Energieverbrauchs im Fokus der Politik. Eine zentrale Rolle spielen die europäische Energieeffizienz-Richtlinie sowie das deutschen Energieeffizienzgesetz (EnEfG), das 2023 verabschiedet wurde. In diesem Gesetz ist festgeschrieben, dass der Endenergieverbrauch bis 2030 auf 1.867 <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a> zu senken ist.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Zwischen 2008 und 2024 ist die Endenergieproduktivität um 31 % gestiegen. Treiber des Produktivitätsanstiegs war vor allem die Zunahme des Bruttoinlandsproduktes. Dieses ist seit 2008 um 15 % gewachsen, der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> im gleichen Zeitraum um 13 % gesunken. Diese sogenannte Entkopplung zwischen Verbrauch und Wirtschaftsleistung kann einerseits durch eine höhere Energieeffizienz, andererseits auch durch einen Strukturwandel hin zu weniger energieintensiven Wirtschaftsaktivitäten erklärt werden.</p><p>Im „<a href="https://www.umweltbundesamt.de/publikationen/projektionsbericht-2023-fuer-deutschland">Projektionsbericht 2023 für Deutschland</a>“ wurde auf der Basis von Szenarioanalysen untersucht, ob Deutschland seine Energie- und Klimaziele im Jahr 2030 erreichen kann: Wenn alle von der Regierungskoalition geplanten Maßnahmen umgesetzt werden, ist im Jahr 2030 mit einem Rückgang des EEV von etwa 16 % gegenüber dem Jahr 2008 zu rechnen (Mit-Maßnahmen-<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Szenario#alphabar">Szenario</a>). Damit wäre das Ziel des Energieeffizienzgesetzes eines Rückgangs des Endenergieverbrauchs über 25 % bis 2030 deutlich verfehlt. Weitere Maßnahmen zur Senkung des EEV sind also erforderlich, um die Ziele des Energieeffizienzgesetzes zu erreichen.</p><p>Wie wird der Indikator berechnet?</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Endenergieproduktivität “ wird als Verhältnis des realen Bruttoinlandsproduktes und des Endenergieverbrauchs Deutschlands berechnet. Das Bruttoinlandsprodukt wird vom Statistischen Bundesamt im Rahmen der volkswirtschaftlichen Gesamtrechnungen berechnet und veröffentlicht. Der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> wird regelmäßig von der Arbeitsgemeinschaft Energiebilanzen (AGEB) ermittelt. Methodische Hinweise zur Berechnung veröffentlicht die AGEB in den <a href="https://ag-energiebilanzen.de/wp-content/uploads/2021/11/vorwort.pdf">Erläuterungen zu den Energiebilanzen</a> (pdf).</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/energie/energieproduktivitaet">"Energieproduktivität"</a>.</strong></p>
Zielsetzung: Plastik ist überall! Kunststoffe finden sich nicht nur in Einweg-Verpackungen, sondern auch in Smartphones, ICEs und Operationssälen. Leider landet Plastik oft dort, wo es nicht hingehört. Für einen verantwortungsvollen Umgang sind Gesellschaft, Industrie und Politik gefordert. Kunststoffprodukte müssen zukünftig so gestaltet werden, dass sie gut recycelt und wiederverwendet werden können. Bildung spielt dabei eine wichtige Rolle, besonders bei der jungen Generation. 2021 haben wir am KUZ den RecyclingDay für GrundschülerInnen entwickelt, um ihnen spielerisch Ressourcenschonung und Recycling nahe zu bringen. Der Erfolg war überwältigend, und es gab zahlreiche Anfragen von Schulen zur Durchführung des Projekttages. Neben Grundschulen meldeten sich auch zahlreiche Sekundarschulen, Förderschulen, Gymnasien sowie studentische Gruppen. Dies zeigte den großen Bedarf und die Relevanz unserer Inhalte. Nun möchten wir den Projekttag weiterentwickeln und auf die nächste Stufe heben. Ziel des Projektes ist es, neue Lehrinhalte für Kinder und Jugendliche von weiterführenden Schulen der Sekundarstufe I und II sowie Lehrlinge und StudentInnen für den Projekttag 'RecyclingDay' zu den Themen Kreislaufwirtschaft (Recycling) und nachhaltiger Umgang mit Kunststoffen zu erarbeiten und eine entsprechende Plattform für das praktische Erleben und selbst Entdecken dieser Inhalte zu bieten, um das Erlernte für einen sensiblen Umgang mit Kunststoffen zu nutzen. Es soll den Kindern, Jugendlichen und jungen Erwachsenen demonstrativ und praktisch erlebbar das Thema Ressourcenschonung und damit auch die Reduktion klimaschädlicher Emissionen sowie die Reduzierung von Umweltbelastungen nähergebracht werden. Ein Fokus soll auf der Auseinandersetzung mit dem Plastikverbrauch in der heutigen Gesellschaft und der Notwendigkeit der Prävention liegen und damit ein Bewusstsein für die Problematik der Kunststoffverwendung schaffen. Ziel ist es den Kindern, Jugendlichen und jungen Erwachsenen Lösungsansätze für die Müllvermeidung zu bieten, diese mit Ihnen zu diskutieren und auch neue Ansätze mit Ihnen gemeinsam zu entwickeln. Kreatives Tüfteln, Forschen und Experimentieren sollen die Kinder und Jugendlichen an MINT-Wissen heranführen und eine lösungsorientierte Herangehensweise geweckt und geschult werden.
Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
| Origin | Count |
|---|---|
| Bund | 182 |
| Land | 16 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 140 |
| Lehrmaterial | 1 |
| Text | 38 |
| Umweltprüfung | 5 |
| unbekannt | 13 |
| License | Count |
|---|---|
| geschlossen | 52 |
| offen | 145 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 191 |
| Englisch | 33 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 1 |
| Dokument | 25 |
| Keine | 129 |
| Unbekannt | 2 |
| Webseite | 51 |
| Topic | Count |
|---|---|
| Boden | 120 |
| Lebewesen und Lebensräume | 124 |
| Luft | 114 |
| Mensch und Umwelt | 198 |
| Wasser | 88 |
| Weitere | 181 |