API src

Found 613 results.

Related terms

Mehr und weniger: Wechselhafte Ökonomien des Stickstoffs

Das hier beantragte Projekt widmet sich der gesellschaftlichen Dimension von Stickstoff. Reaktiver Stickstoff, der in der Lage ist, Verbindung mit anderen Elementen einzugehen, ist eine unverzichtbare Grundlage für pflanzlichen und tierischen Stoffwechsel - und damit auch der Landwirtschaft und der Welternährung. Gemessen an der Gesamtmenge des Stickstoffs auf der Erde, des häufigsten Elements in der Atmosphäre, ist die Menge an reaktivem Stickstoff extrem limitiert. Zugleich stellt reaktiver Stickstoff aber auch ein erhebliches ökologisches Problem dar. Auf Äckern und in Ställen reagiert er zu Stickoxiden wie Lachgas, einem bedeutenden Treiber der Klimaerwärmung. Er gelangt über Oberflächengewässer und Kanalisationen ins Trinkwasser, wo er in Form von Nitrit eine Bedrohung für die menschliche Gesundheit darstellt. Stromabwärts sammelt er sich schließlich in Senken wie Seen und Meeren. Dort führt seine übermäßige Verfügbarkeit zur Eutrophierung, massenhaftem Algenwachstum und damit zur Zerstörung von aquatischen, vor allem küstennahen Ökosystemen. Die fortschreitende Zunahme von reaktivem Stickstoff in Gewässern und auf ökologisch sensiblen Magerflächen gilt als eines der drängendsten Umweltprobleme unserer Zeit: Die ökologisch verkraftbare Menge an reaktivem Stickstoff weltweit gilt als längst überschritten. Seit einiger Zeit haben es sich Industrienationen daher nicht mehr allein zur Aufgabe gemacht, die Verfügbarkeit von reaktivem Stickstoff zu erhöhen, um für Ernährungssicherheit zu sorgen. Sie versuchen heute zugleich auch, sie umgekehrt wieder einzudämmen, um Schäden für Mensch und Umwelt zu minimieren. Dabei werden verschiedene Akteurinnen, Akteure und Instanzen mit in die Pflicht genommen: kommunale Wasserwerke, landwirtschaftliche Betriebe, staatliche Messstellen und Umweltbehörden. Ihnen wird aufgetragen, sinnvoll mit Stickstoff zu wirtschaften, um seine negativen Auswirkungen auf Mensch und Natur zu minimieren. Dabei agieren die in der Stickstoffwirtschaft Involvierten auf Basis unterschiedlicher Interessen, Anreize, Wissensbestände und Handlungsspielräume, was die Stickstofffrage zu einem klassischen Untersuchungsfall für sozialwissenschaftliche Analyse macht. Trotz der gesellschaftlichen Bedeutung von Stickstoff und der Tragweite der mit ihm verbundenen Probleme hat es in Deutschland in den vergangenen 30 Jahren nur wenig Forschung aus Soziologie oder anderen Sozialwissenschaften zu seiner sozialen Zirkulation gegeben. Das hier vorgestellte Projekt möchte dies beheben. Auf Basis einer empirischen Untersuchung der zeitgenössischen Stickstoffwirtschaft und -regulierung soll es eine Übersicht über den Stand der Debatten und Probleme liefern, einen soziologischen Zugriff auf Stickstoff und seine Rolle in modernen Gesellschaften erarbeiten sowie einen Beitrag zur Umweltsoziologie im Allgemeinen leisten.

Ultraeffiziente metallische Korrosionsschutzbeschichtungen, Teilvorhaben: Industrielle Erprobung

Korrosion ist ein wesentlicher Aspekt im Umgang mit Gebrauchs- und Investitionsgütern. Die Kosten, die in den Industrieländern durch Korrosion entstehen, betragen drei bis vier Prozent des BIP, ohne Korrosionsschutzsysteme wäre diese erheblich höher. Korrosionsschutz ist differenziert in organische und metallische Schichten. Dominierende im Bereich des kathodischen Schutzes mit metallischen Schichten sind Zink/-legierungsschichten. Im Bereich der Feuerverzinkung bestehen dabei mit der klassischen Stückverzinkung, dem Dünnschichtverfahren sowie der Hochtemperaturverzinkung verschiedene Verfahrensweisen, die im Hinblick auf den Korrosionsschutz und den dafür notwendigen Energie- und Ressourceneinsatz unterschiedliche Vor- und Nachteile mit sich bringen. Im Projekt wird eine Lösung erarbeitet, mit der die Eigenschaften des Zinküberzugs im Hinblick auf die Einstellbarkeit der Schichtdicke und Leistungsfähigkeit des Überzugs bei gleichzeitig möglichst geringem Energieeinsatz erreicht wird. Basis bildet das von ZINQ entwickelte Legierungssystem microZINQ®, welches zeigt, dass durch Optimierung der Schmelzenzusammensetzung positive Effekte auf die Effizienz des Überzuges und des Verzinkungsprozesses erzielt werden können.

Ultraeffiziente metallische Korrosionsschutzbeschichtungen, Teilvorhaben: Wissenschaftliche Entwicklung

Korrosion ist ein wesentlicher Aspekt im Umgang mit Gebrauchs- und Investitionsgütern. Die Kosten, die in den Industrieländern durch Korrosion entstehen, betragen drei bis vier Prozent des BIP, ohne Korrosionsschutzsysteme wäre diese erheblich höher. Korrosionsschutz ist differenziert in organische und metallische Schichten. Dominierende im Bereich des kathodischen Schutzes mit metallischen Schichten sind Zink/-legierungsschichten. Die Hochtemperatur- (HT-)verzinkung ist ein Verfahren, dass im Temperaturbereich von 530 - 560 Grad C für Schrauben im Schleuderverfahren und für Stückgut bei 560 - 630 Grad C im Tauchverfahren betrieben wird. Nachteilig dabei ist der hohe Energiebedarf durch die Prozesstemperatur. Im Projekt wird eine Lösung erarbeitet, mit der die Eigenschaften der HTV bei reduzierter Temp. erreicht wird. Basis bildet das von ZINQ entwickelte Legierungssystem microZINQ®. Dies zeigt, dass durch Optimierung der Schmelzenzusammensetzung positive Effekte auf die Effizienz des Überzuges und des Verzinkungsprozesses erzielt werden können.

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt B

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt C

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt A

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt D

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Ultraeffiziente metallische Korrosionsschutzbeschichtungen

Korrosion ist ein wesentlicher Aspekt im Umgang mit Gebrauchs- und Investitionsgütern. Die Kosten, die in den Industrieländern durch Korrosion entstehen, betragen drei bis vier Prozent des BIP, ohne Korrosionsschutzsysteme wäre diese erheblich höher. Korrosionsschutz ist differenziert in organische und metallische Schichten. Dominierende im Bereich des kathodischen Schutzes mit metallischen Schichten sind Zink/-legierungsschichten. Die Hochtemperatur- (HT-)verzinkung ist ein Verfahren, dass im Temperaturbereich von 530 - 560 Grad C für Schrauben im Schleuderverfahren und für Stückgut bei 560 - 630 Grad C im Tauchverfahren betrieben wird. Nachteilig dabei ist der hohe Energiebedarf durch die Prozesstemperatur. Im Projekt wird eine Lösung erarbeitet, mit der die Eigenschaften der HTV bei reduzierter Temp. erreicht wird. Basis bildet das von ZINQ entwickelte Legierungssystem microZINQ®. Dies zeigt, dass durch Optimierung der Schmelzenzusammensetzung positive Effekte auf die Effizienz des Überzuges und des Verzinkungsprozesses erzielt werden können.

Biodiversität, Maschinelles Lernen und Agrarwirtschaft, Monitoring, Kommunikation und Koordination

1 2 3 4 560 61 62