The European Green Deal and the German Resource Efficiency Programme both aim at decoupling resource consumption and associated environmental burdens from economic growth. Monitoring the progress of such policies requires robust estimates of environmental pressures and impacts, both from a domestic and a footprint perspective. Building on the life cycle assessment-based consumption footprint (CoF) indicator, developed by the European Commission Joint Research Centre, we assess the environmental impacts of Germany's consumption in the areas of food, mobility, housing, household goods, and appliances during the period 2010â€Ì2018. A comparison between European and national consumption statistics revealed some differences in terms of data composition, granularity, consumption intensities, and calculated environmental impacts. Using national data sources results in slightly lower environmental impacts (e.g., due to differences in the assessment scope of national statistics) and requires some data preparation to match the CoF indicator. Emerging consumption trends can be highlighted using national data. Both data sources converge on main trends: Germany transgresses the safe operating space for several impact categories, with consumption of food, household goods, and mobility being the main drivers. Domestic impacts have decreased over time at the expense of outsourcing environmental pressures and impacts to other countries. The CoF indicator could complement resource monitoring frameworks and might be further aligned to the national context using country-level consumption statistics and life cycle inventory data. Quelle: Wiley
The term downcycling is often used anecdotally to describe imperfections in recycling. However, it is rarely defined. Here, we identify six meanings of the term downcycling as used in scientific articles and reports. These encompass the material quality of reprocessed materials, target applications, product value, alloying element losses, material systems, and additional primary production. In a proposal for harmonized and more specific terminology, we define downcycling as the phenomenon of quality reduction of materials reprocessed from waste relative to their original quality. We further identify that the reduced quality can express itself thermodynamically, functionally, and economically, covering all perspectives on downcycling. Dilution, contamination, reduced demand for recycled materials, and design-related issues can cause those downcycling effects. We anticipate that this more precise terminology can help quantify downcycling, keep materials in the loop longer, use materials more often and at higher quality, and therefore assist in reducing material-related environmental impacts. © 2022 The Authors
Global demand for tellurium has greatly increased owing to its use in solar photovoltaics. Elevated levels of tellurium in the environment are now observed. Quantifying the losses from human usage into the environment requires a life-cycle wide examination of the anthropogenic tellurium cycle (in analogy to natural element cycles). Reviewing the current literature shows that tellurium losses to the environment might occur predominantly as mine tailings, in gas and dust and slag during processing, manufacturing losses, and in-use dissipation (situation in around 2010). Large amounts of cadmium telluride will become available by 2040 as photovoltaic modules currently in-use reach their end-of-life. This requires proper end-of-life management approaches to avoid dissipation to the environment. Because tellurium occurs together with other toxic metals, e.g. in the anode slime collected during copper production, examining the life-cycle wide environmental implication of tellurium production requires consideration of the various substances present in the feedstock as well as the energy and material requirements during production. Understanding the flows and stock dynamics of tellurium in the anthroposphere can inform environmental chemistry about current and future tellurium releases to the environment, and help to manage the element more wisely. Quelle: http://www.publish.csiro.au
Die Entwicklung einer serviceorientierten Modellarchitektur zur Lösung gekoppelter verteilter Simulations-, Optimierungs- und Energiemanagementaufgaben in urbanen Energiesystemen ist ein essentielles Ziel des ENsource Verbunds. Für urbane Energiesysteme werden innovative Simulations-, Optimierungs-, Energie- und Ressourcenmanagementstrategien sowie neue Geschäfts- und Wertschöpfungsmodelle entwickelt und in fünf Fallstudien validiert.
Urbane Energiesysteme lassen sich systemisch als hochkomplexe Strukturen charakterisieren, die durch eine zunehmend dezentralisierte und fluktuierende Erzeugung sowie die verstärkte Vernetzung von Erzeugern, Wandlern, Speichern, Verteilern und Verbrauchern intelligente Kommunikations- und Steuerungssysteme benötigen, um möglichst hohe Anteile erneuerbarer Energien bei maximaler Energieeffizienz zu ermöglichen und sowohl auf kurzfristige Lastschwankungen als auch auf mittelfristig abnehmende Bedarfe durch erhöhte Energie- und Ressourceneffizienz reagieren zu können. Die zunehmende Kombination von elektrischen und thermischen Netzen und Speichern sowie die Aktivierung von Flexibilisierungsoptionen bei den Verbrauchern erfordert die Entwicklung von innovativen systemübergreifenden Ansätzen und Prozessanalysen, um zukunftsfähige und (ressourcen-)effiziente Lösungen bereitzustellen und Umsetzungsbarrieren abzubauen. Acht forschungsstarke HAWs kooperieren mit (außer) universitären Partnern, Firmen und Kommunen, um urbane Simulations-, Automatisierungs- und Optimierungstools mit zugehörigen Geschäftsmodellen zu entwickeln und diese in Praxis-Fallstudien aus dem industriellen, gewerblichen und kommunalen Bereich einzusetzen und exemplarisch zu erproben.
Der Schwerpunkt des Instituts für Industrial Ecology liegt auf der Bewertung der Energie- und Ressourceneffizienz im Gesamtzusammenhang. Bei der Beurteilung komplexer urbaner Systeme sind neben dem Energieeinsatz und seinen ökologischen Auswirkungen auch der Einsatz anderer natürlicher Ressourcen zu berücksichtigen. Energie ist auch in Materialströmen, der Güterproduktion und in der Infrastruktur gebunden ('Embodied Energy'). Dies spielt im Metabolismus von urbanen Systemen eine wichtige Rolle. Daraus folgen mehrere wichtige Aspekte: Energieeinsparpotenziale oder der Beitrag zum Klimaschutz können oft nur ganzheitlich im Kontext des gesamten Energie- und Stoffmetabolismus beurteilt werden. Gleichzeitig werden Methoden erforderlich, die komplexe technische Systeme und deren Umweltwirkung multikriteriell beurteilen und optimieren. Die ganzheitlichen Bewertungsansätze und die Optimierungsmethoden sollen in dem Vorhaben konkret auf die Fallbeispiele angewendet werden und eine übergeordnete Beurteilung von Handlungsoptionen bieten.
Wood2CHem: A computer-aided platform for developing bio-refinery concepts The bio-refinery concept offers the timber industry numerous development opportunities by integrating the production of value-added products made from biomass. The computer-aided platform Wood2CHem, developed within the scope of this project, will help to devise innovative means for promoting wood as a resource using a holistic and integrated approach. Background Due to its composition and complex chemical structure, wood can be used to make a large number of value-added products. The bio-refinery concept proposes to widen the range of products derived from wood while adopting a systemic approach aimed at promoting synergies in the production of various products by integrating different processes. It therefore offers an enormous development potential for the wood sector and opens up many new markets. The development of bio-refinery concepts poses a significant challenge. A large number of processes that integrate studies and technologies of innovative transformation need to be evaluated, integrated and optimised using a holistic approach before the most promising concepts can be identified. Aim By applying techniques from process engineering, energy integration and multi-objective optimisation, the consortium of the Wood2CHem project proposes to develop a computer-aided platform for systematically generating the most promising bio-refinery models and evaluating their thermodynamic, economic and environmental performance. This integrated platform will be developed by combining expertise in chemical engineering and process engineering. It is aimed at integrating technological developments of wood transformation and will be validated in industrial case studies. Significance The Wood2CHem project concerns the development of industrial concepts and will therefore primarily interest experts and engineers in the field who wish to develop integrated and innovative concepts for a rational promotion of wood. It will allow them to envisage and compare inegrated process chains. The platform will integrate all the actors wishing to assume the perspective of industrial ecology.