API src

Found 4 results.

Schwerpunktprogramm (SPP) 1144: Vom Mantel zum Ozean: Energie-, Stoff- und Lebenszyklen an Spreizungsachsen, Temporal evolution of hydrothermal systems at the Mid-Atlantic Ridge (14 45 - 15 05N)

Hydrothermal activity at mid-oceanic ridges is an important factor for the heat and mass transfer between the mantle and the ocean. Little information is available on the life-span of hydrothermal systems, their temporal variability or changes of the chemistry of hydrothermal solutions with time. Based on age determinations of hydrothermal deposits by means of natural radionuclides, the duration and periodicity of hydrothermal activity shall be investigated in the Logatchev field and, for the first time, in hydrothermal fields at 15 degree N at the Mid-Atlantic Ridge, which are due to serpentinization of ultramafic rocks. Based on the geochemistry and the ages of the hydrothermal deposits information on the variability of the hydrothermal fluids during the geological past will be obtained. The importance of the residence time of hydrothermal fluids in the crust for their chemical composition will be investigated for the different fluids venting at the Logatchev field. These studies are based on sampling of fluids and hydrothermal precipitates which will be conducted during the FS Meteor cruise M60/3 along the Mid-Atlantic Ridge between 14 degree 45 N and 15 degree 05 N.

Critical Limits and Effect Based Approaches for Heavy Metals

Heavy metals are emitted in the atmosphere by industrial activities, transported through long distances, they deposit and accumulate in terrestrial ecosystems. The problem of Long-Range Transboundary Air Pollution of Terrestrial Ecosystems (LRTAP) includes cadmium (Cd), mercury (Hg) and lead (Pb) and are priority metals in the United Nations / Economic Commission for Europe (UN/ECE) Convention from 1998. Increased accumulation of Cd, Hg and Pb from anthropogenic and geogenic sources in soils especially of forest soils has led to exceedances of the current guide values defined by the environmental legislation. Especially, Hg as a global pollutant is of high ecotoxicological concern. However, little information is available on rates of atmospheric deposition, distribution, mobility of Hg compounds (methylmercury) in soils and their transfer functions in the biosphere (bioaccumulation). An impact of current Hg (Cd and Pb) concentrations on the soil ecosystem is possible but still unknown. Aims: This study is part of a comprehensive investigation to determine Hg (Cd and Pb) levels in the soil matrix, soil solution, fungi, earthworms and their food sources (soil, leaf and root litter) and to evaluate the ecotoxicological effects of Hg on the soil microbial communities. What is the current situation of Cd, Hg and Pb in Swiss forest soils? What are the transfer functions of Cd, Hg and Pb from soil to earthworms and mushrooms? Which microbial parameters (microbial activities and/or bacterial community structures) are most suitable to reveal effects of Cd, Hg and Pb on forest soils? Which heavy metal species in soil can be considered as appropriate predictors of Cd, Hg and Pb bioavailability to microbial communities in soils? Which soil bacterial groups are affected by Cd, Hg and Pb? Are the current critical limits for the total dissolved Cd, Hg and Pb, suggested by the UN/ECE, in accordance with the values estimated for Swiss forest soils? Methods: - Determination of reactive heavy metal pool in soil: Water-extractable HM; Heavy metal specific bacterial biosensors (quantification of lux-gene); Modeling of free ions (WHAM 6). - Determination of microbial activity: - Soil respiration; Nitrification; Phosphatase, beta-Glycosidase. - Changes of total bacterial communities: T-RFLP and DGGE fingerprinting of 16S rRNA gene; Cloning and sequencing; Design of specific primers for detecting HM tolerant bacterial groups.

FP6-POLICIES, Improved Methods for the Assessment of the Generic Impact of Noise in the Environment (IMAGINE)

For the production of strategic noise maps as required under the EU Directive 2002/49/EC, improved assessment methods for environmental noise will be required. Noise from any major source, be it major roads, railways, airports or industrial activities in agglomerations, needs to be included in the noise mapping. For road and rail, improved methods will be developed in the 5th frame work Harmonoise project. These methods will be adopted to develop methods for aircraft and industrial noise in the IMAGINE project proposed here. Noise source databases to be developed in IMAGINE for road and rail sources will allow a quick and easy implementation of the methods in all member states. Measured noise levels can add to the quality of noise maps because they tend to have better credibility than computed levels. In the project proposed here, guidelines for monitoring and measuring noise levels will be developed, that can contribute to a combined product (measurement and computation) that has high quality and high credibility. Noise action plans shall be based on strategic noise maps. The IMAGINE project will develop guidelines for noise mapping that will make it easy and straightforward to assess the efficiency of such action plans. Traffic flow management will be a key element of such action plans, both on a national and a regional level. Noise mapping will be developed into a dynamic process rather than a static presentation of the situation. IMAGINE will provide the link between Harmonoise and the practical process of producing noise maps and action plans. It will establish a platform where experts and end users can exchange their experience and views. This platform should continue after the project and provide a basis for exploitation to the IMAGINE results. me Contractor: Detalrail B.V.; Utrecht; Netherlands.

FP6-SUSTDEV, EURopean network of excellence for OCean Ecosystems ANalysiS (EUR-OCEANS)

EUR-OCEANS aims to achieve lasting integration of European research organisations on global change and pelagic marine ecosystems, and to develop models for assessing and forecasting the impacts of climate and anthropogenic forcing on food-web dynamics (structure, functioning, diversity and stability) of pelagic ecosystems in the open ocean. The NOE will favour the progressive integration of research programmes and facilities of major research Institutes all over Europe. The long-term goal of the NOE is to create a multi-site Institute for European Research on Ocean Ecosystems under Anthropogenic and Natural forcings. The international context is provided by Global Ocean Ecosystem Dynamics (GLOBEC), and the forthcoming Integrated Marine Biogeochemistry and Ecosystem Research (IMBER) of the International Geosphere Biosphere Programme (IGBP).EUR-OCEANS' Joint Programme of Activities (JPA) comprises: (1) Integrating activities on: networking (data and model integration); (2) Jointly executed research, organised around four broad modelling tasks (together with observations and experiments) on: pelagic ecosystems end-to-end, biogeochemistry, ecosystem approach to marine resources and within-system integration; (3) Activities to spread excellence, including training of researchers, and spreading excellence to socio-economic users and to the European public (through the Association of Aquaria for EUR-OCEANS public outreach); (4) Management Activities. Administrative and Financial Coordinator: Institut Oceanographique. Governing bodies: General Assembly (Member Organisations); Executive Committee (incl. Scientific Director and the Deputy); Steering Committee (incl. Work Packages Leaders). Councils: Scientific, Intellectual, Gender Equality, and EUR-OCEANS Institute. Composition: 69 Member Organisations, from 25 states (incl. 7 Third countries); 160 PIs selected for their capacity and excellence. Close cooperation with the USA, Australia, Canada, Namibia and Japan. Prime Contractor: France Innovation Scientifique et Transfert; Paris; France.

1