Der Vertrag über das umfassende Verbot von Nuklearversuchen (Kernwaffenteststopp-Vertrag: CTBT) und seine Überwachung Der Vertrag über das umfassende Verbot von Nuklearversuchen ( CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Der CTBT wurde 1996 zur Unterzeichnung ausgelegt. Von den 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft treten kann, fehlen bis heute drei Länder, die den Vertrag noch unterzeichnen und ratifizieren müssen. Mit der De-Ratifizierung des Vertrages durch Russland Ende 2023 sind es nunmehr sechs Länder, die den Kernwaffenteststopp-Vertrag zwar unterschrieben, jedoch nicht ratifiziert haben. Die Organisation zur Überwachung des Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrags mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Mehrere Dutzend untereinander vernetzte Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das BfS beteiligt sich mit Radioaktivitätsüberwachungen an der Kontrolle und betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Der umfassende Kernwaffenteststopp-Vertrag ( engl. Comprehensive Nuclear-Test-Ban Treaty , CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Obwohl er noch nicht in Kraft getreten ist, wird seit über 2 Jahrzehnten ein weltweites Messnetz zu Überwachung des Teststopps aufgebaut und erfolgreich betrieben. Der Kernwaffenteststopp-Vertrag Überwachung des Kernwaffenteststopp-Vertrags Der Kernwaffenteststopp-Vertrag Anzahl der weltweit durchgeführten Kernwaffen-Versuche bis 2022. Seit 2017 wurden keine Kernwaffenversuche mehr durchgeführt. Beginn der Kernwaffentests Mit dem sogenannten "Trinity"-Test am 16. Juli 1945 in den USA wurde zum ersten Mal in der Menschheitsgeschichte eine Nuklearwaffe gezündet. Einen Monat später erfolgte der erste militärische Einsatz durch die Abwürfe der Nuklearwaffen über Hiroshima und Nagasaki am Ende des zweiten Weltkrieges. Trotz früher Überlegungen zu einer internationalen Kontrolle von spaltbarem Material für den Bau von Kernwaffen erlangten weitere Nationen die Fähigkeit zur Herstellung dieser Waffen (Sowjetunion: 1949, Vereinigtes Königreich: 1952). In den 1950er Jahren begannen die USA und die Sowjetunion mit dem Testen sogenannter thermonuklearer Waffen (umgangssprachlich "Wasserstoffbomben"), die eine höhere Sprengkraft besitzen und entsprechend größere Mengen an radioaktivem Fallout produzieren. Partieller Teststopp-Vertrag Unter anderem führte die Kritik an diesen Tests dazu, dass sich 1963 die USA , die Sowjetunion und das Vereinigte Königreich über ein Verbot von Tests in der Atmosphäre, unter Wasser und im Weltraum verständigten. Dies wurde in einem internationalen Vertrag, dem partiellen Teststopp-Vertrag niedergelegt ( engl. Partial Nuclear Test-Ban Treaty , PTBT). Frankreich (erster Test 1960) und China (erster Test 1964) unterschrieben diesen Vertrag jedoch nicht und führten noch bis 1980 Kernwaffentests in der Atmosphäre durch. Vom partiellen zum umfassenden Teststopp Das Internationale Messnetz IMS Quelle: CTBTO https://www.ctbto.org/map/ Die Unterzeichnerstaaten des PTBT hielten sich an die Vertragsregeln, wodurch die Zahl der atmosphärischen (oberirdischen) Tests, und der damit verbundene radioaktive Fallout verringert werden konnte. Die Gesamtzahl aller Atomwaffen-Tests verringerte sich jedoch nicht, sie wurden jetzt nur mehrheitlich unter der Erdoberfläche durchgeführt. Bis heute wurden über 2.000 Kernwaffentests gezählt. Auf diplomatischer Ebene wurde nach dem Inkrafttreten des PTBT über einen umfassenden Teststopp-Vertrag diskutiert und 1976 die sogenannte " Group of Scientific Experts " (GSE) eingerichtet. Ihre Aufgabe war es zu klären, ob und wie die Einhaltung eines solchen Vertrags geprüft werden kann, denn ein verlässliches Verifikationssystem ist eine entscheidende Voraussetzung dafür, dass sich Staaten völkerrechtlich an ein Verbot binden. Über die Möglichkeiten und Grenzen der Verifikation (wissenschaftliche Nachweisführung) liefen die Meinungen zunächst weit auseinander. Umfassender Kernwaffenteststopp-Vertrag Es dauerte bis zum Ende des Kalten Krieges, bis formelle Verhandlungen bei den Vereinten Nationen in der Genfer Abrüstungskonferenz aufgenommen wurde. Die Beratungen, an denen auch Experten des BfS maßgeblich beteiligt waren, konnten bereits zwei Jahre später abgeschlossen und der umfassende Kernwaffenteststopp-Vertrag (Comprehensive Nuclear-Test-Ban Treaty, CTBT ) 1996 zur Unterzeichnung ausgelegt werden. Die Verhandlungsparteien wollten sicherstellen, dass die Unterzeichner des Vertrags erst dann bindende Verpflichtungen eingehen, wenn alle Staaten mit nukleartechnischen Einrichtungen – und damit der theoretischen Fähigkeit zum Kernwaffenbau - beigetreten sind. Daher enthält das Dokument eine Liste mit 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft tritt. Bis heute fehlen von diesen 44 Staaten drei, die den Vertrag vor Inkrafttreten unterzeichnen und ratifizieren müssen (Indien, Nordkorea, Pakistan) sowie seit 2023, mit der De-Ratifizierung des Vertrages in Russland, sechs Länder, die den Vertrag zwar unterschrieben, jedoch noch nicht ratifiziert haben (Ägypten, China, Iran, Israel, USA, Russland). Umsetzung des Kernwaffenteststopp-Vertrags Wenn der Zeitpunkt des Inkrafttretens erreicht wird, muss die Verifikation des Verbots sofort möglich sein. Daher wurde in Wien die sogenannte Vorbereitende Kommission für den CTBT gegründet, deren Aufgabe insbesondere der Aufbau eines internationalen Monitoring-Netzwerks mit 337 Messstationen ist. Mit Hilfe dieses Messnetzes kann die Vertragseinhaltung verlässlich überwacht werden. Daneben bereitet die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) Vor-Ort-Inspektionen konzeptionell vor, entwickelt dafür Messmethoden und führt Übungen durch. Überwachung des Kernwaffenteststopp-Vertrags Die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrages mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Das Bundesamt für Strahlenschutz ( BfS ) beteiligt sich mit Messungen radiaktiver Stoffe in der Atmosphäre an der Kontrolle und unterstützt das Auswärtige Amt durch fachliche Auswertung und Bewertung der Daten. Überwachung des Internationalen Kernwaffenteststopp-Vertrags Die CTBTO ist als internationales Netzwerk darauf ausgerichtet, weltweit geheime Kernwaffentests aufzuspüren. Seismische Messungen können einen ersten Hinweis auf einen unterirdischen Atomwaffentest geben. Mit einer zeitlichen Verzögerung können bei einem Atomwaffentest entstehende radioaktive Edelgase durch das Erdreich in die Atmosphäre gelangen. Wenn dies geschieht, lassen sich diese Gase mit den hoch empfindlichen Radioaktivitätsmessstationen der CTBTO nachweisen und auf einen Atomwaffentest zurückführen. Mehrere Dutzend dieser untereinander vernetzten Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das Bundesamt für Strahlenschutz betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Weltweites Überwachungssystem Die Vertragsorganisation mit Sitz in Wien baut zurzeit mit Hilfe der Signatarstaaten ein weltweites Überwachungssystem mit einem Netz von 321 Messstationen und 16 Laboren auf. Es ist in der Lage, eine nukleare Explosion an jedem Ort der Erde mit hoher Wahrscheinlichkeit zu entdecken, zu identifizieren und auch zu lokalisieren. Dieses System beruht auf 170 Seismographen in der Erde, 11 Unterwassermikrophonen in den Ozeanen, 60 Infraschallmikrophonen in der Atmosphäre und 80 Spurenmessstationen für Radioaktivität in der Luft Eine dieser Spurenmessstationen ist die Station Schauinsland des BfS (Radionuklidstation RN33). Zur Qualitätssicherung werden die 80 Radionuklidstationen durch 16 Radionuklidlaboratorien ergänzt. Die Bedeutung von Radioaktivitätsmessungen Die drei geophysikalischen Techniken - Seismik , Infraschall und Hydroakustik - können zeitnah Explosionen mit einer Stärke über 1 Kilotonne Trinitrotoluol (TNT) Äquivalent (Maßeinheit für die bei einer Explosion freiwerdende Energie) registrieren und lokalisieren. Die Radionuklid -Messtechnik hat anschließend die Aufgabe, den nuklearen Charakter einer Explosion zweifelsfrei nachzuweisen. Detoniert ein nuklearer Sprengkörper, dann entsteht eine Vielzahl radioaktiver Spaltprodukte . Die meisten so gebildeten Radionuklide kommen in der Natur nicht vor und unterscheiden sich auch deutlich in ihrer Zusammensetzung von Radioaktivität aus Kernkraftwerken. Eine Eingrenzung von Freisetzungsort und Freisetzungszeit ist zusätzlich mit Hilfe von atmosphärischen Ausbreitungsrechnungen möglich. Was wird gemessen? An allen im Endausbau des Messnetzes vorgesehenen 80 Radionuklidmessstationen wird die Luft auf Spuren von an Luftstaub gebundenen Gammastrahlern untersucht. An 40 der 80 Stationen, darunter auch auf der Station Schauinsland, wird zusätzlich nach radioaktiven Isotopen des Edelgases Xenon (Xenon-131m, Xenon-133, Xenon-133m und Xenon-135) gefahndet. Mindestanforderungen an die technische Ausstattung der Messstationen Aerosole Edelgase (radioaktives Xenon) Messtechnik Reinstgermaniumdetektor Reinstgermaniumdetektor oder Beta-/Gamma-Koinzidenz Luftdurchsatz mindestens 500 Kubikmeter pro Stunde mindestens 0,4 Kubikmeter pro Stunde Nachweisgrenze 10 bis 30 Microbecquerel pro Kubikmeter Luft bezogen auf Barium-140 1 Millibecquerel pro Kubikmeter Luft bezogen auf Xenon-133 Radioaktive Edelgase wurden in das Messnetz einbezogen, weil diese auch bei unterirdischen und verdeckten Kernwaffentests in die Atmosphäre entweichen können und damit das Risiko für einen potentiellen Vertragsbrecher erhöhen, entdeckt zu werden. Wichtig ist hierbei, dass anhand der isotopenspezifischen Messungen zwischen Radioaktivität aus zivilen Quellen und aus eventuellen Kernwaffentests - die eine Vertragsverletzung darstellen würden - unterschieden werden kann. Auswertung der Daten Sämtliche Messdaten werden über VPN oder ein satellitengestütztes Kommunikationssystem an das Internationale Datenzentrum ( IDC ) der CTBTO in Wien übermittelt. Dort werden sie ausgewertet, an die Unterzeichnerstaaten verteilt und archiviert. Stand: 04.08.2025
Den seit 6 Monaten ausstehenden Bericht über Erschütterungs- und Geräuschmessung (→Infraschall, tieffrequente Geräusche, Vibrationen; Langzeitmessung 06.05.2024 - 16.05.2024) in unserem Wohnhaus. Trotz mehrmaliger schriftlicher Nachfragen werden Antworten zum Bericht aktuell verweigert.
Rocket launches for space missions are well-defined ground-truth events generating strong infrasonic signatures. This data set covers ground-truth information for 1001 rocket launches from 27 global spaceports between 2009 and mid-2020. Infrasound signatures from up to 73% of the launches were identified at infrasound arrays of the International Monitoring System. The detection parameters were obtained using the Progressive Multi-Channel Correlation (PMCC) algorithm. Propagation and quality parameters supplement the PMCC detection parameters in this dataset. The results are provided for further use as a ground-truth reference in geophysical and atmospheric research. The open-access publication “1001 Rocket Launches for Space Missions and their Infrasonic Signature” (Pilger et al., 2021, Geophys. Res. Letters, doi:10.1029/2020GL092262) provides further details on this data set. Data format: The data are provided both as ASCII files (separate lists of infrasound signatures and rocket launch events, plus README files) and as a comprehensive netCDF file.
Aus verschiedenen Fachdisziplinen und von Betroffenenseite wird die Befürchtung geäußert, dass langjährige niedrigschwellige Infraschallbelastung, die u.a. von Windenergieanlagen ausgehen kann, nachteilige Folgen auf die Gesundheit von Menschen in der Umgebung von derartigen Anlagen haben könnte. Bislang liegen vornehmlich Ergebnisse aus Querschnitt- und experimentellen Studien vor. Daher sind insbesondere für eine abschließende Bewertung möglicher gesundheitlicher Auswirkungen durch langjährige niedrigschwellige Belastung durch Infraschall zusätzlich aufwendige Langzeituntersuchungen mit Kohorten-Design notwendig. Das Vorhaben soll die Möglichkeiten für entsprechende Studien zur detaillierten Klärung komplexer Fachfragen aufzeigen. Im Rahmen einer Voruntersuchung sollen die inhaltlichen, methodischen sowie verfahrenstechnischen Grundlagen und Randbedingungen für eine umweltepidemiologische Langzeitstudie über die Wirkungen von anthropogenem Infraschall mit niedrigen Pegeln auf die Gesundheit der Bevölkerung erforscht werden. Eine an die Voruntersuchung anschließende Umsetzungsphase kann auf den erarbeiteten Grundlagen aufbauen und die methodischen und inhaltlichen Anforderungen an eine solche Langzeitstudie übernehmen.
This dataset comprises acoustic recordings of eruptive events at Strokkur Geyser, Iceland, collected during a field campaign from August 23–27, 2023. The data were recorded using four Chaparral M-60 UHP2 infrasound microphones with a flat frequency response from 0.05–200 Hz. The microphones were deployed in a semicircular array around the geyser pool, approximately 7.5 meters from its center. The signals were digitized using DiGOS Data-Cube3 digitizers with a sampling rate of 400 Hz, ensuring high-resolution capture of both low-frequency infrasound and high-frequency audio signals. Each recording spans approximately 2 ½ hours per day and is timestamped using GPS for precise temporal accuracy. The data are provided as miniSEED files with applied sensitivity, allowing direct calculation of sound pressure levels in Pascal (Pa). The exact locations for each sensor on each day are given below. The dataset highlights acoustic signals associated with the growth, rupture, and disintegration of the water bulge preceding Strokkur’s eruptions. Distinct features, such as "M-shaped" infrasound waveforms, are evident and provide insight into the dynamic processes driving geyser eruptions. The dataset offers a valuable resource for studying acoustic emissions during geyser activity, providing a high-resolution foundation for research on subsurface processes and fluid dynamics. It also facilitates comparative studies of geophysical signals in geysers and analogous volcanic systems. August 23 (Small array configuration): Recording times: 6:25 – 9:41 UTC (exact start times for each sensor may vary as they were started separately). Sensor C3H: 64.31299, -20.30095 Sensor C3G: 64.31308, -20.30089 Sensor C3F: 64.31311, -20.30064 Sensor C3C: 64.31303, -20.30070 August 24 (Half circle around the geyser, until 8:36 UTC): Recording times: 6:50 – 9:17 UTC (exact start times for each sensor may vary). Sensor C3H: 64.31276, -20.30093 Sensor C3G: 64.31280, -20.30073 Sensor C3F: 64.31273, -20.30066 Sensor C3C: 64.31267, -20.30062 August 24 (After 8:36 UTC, modified configuration): Sensor C3F moved to 64.313203, -20.301558 to record gas bubble sounds near another ground opening. Sensor C3H: 64.31276, -20.30093 Sensor C3G: 64.31280, -20.30073 Sensor C3C: 64.31267, -20.30062 August 25 (Half circle around the geyser): Recording times: 6:56 – 9:20 UTC (exact start times for each sensor may vary). Sensor C3H: 64.31276, -20.30093 Sensor C3G: 64.31280, -20.30073 Sensor C3F: 64.31273, -20.30066 Sensor C3C: 64.31267, -20.30062 August 26: No measurements were taken. August 27 (Line configuration, before 8:01 UTC): Recording times: 6:18 – 9:26 UTC (exact start times for each sensor may vary). Sensor C3H: 64.31276, -20.30072 Sensor C3G: 64.31283, -20.30071 Sensor C3F: 64.31288, -20.30071 Sensor C3C: 64.31292, -20.30062 August 27 (After 8:01 UTC, returned to half circle around the geyser): Sensor C3H: 64.31276, -20.30093 Sensor C3G: 64.31280, -20.30073 Sensor C3F: 64.31273, -20.30066 Sensor C3C: 64.31267, -20.30062
This dataset comprises unprocessed high-speed video recordings of eruptive events at Strokkur Geyser, Iceland, captured during a field campaign from August 23–27, 2023. The videos are provided as sequences of individual TIFF files for each frame, enabling detailed analysis of the geyser’s eruption cycle. These high-resolution recordings, made using a Chronos 2.1-HD high-speed camera at 500 frames per second with a resolution of 1920×1080 pixels, are specifically focused on capturing the growth and rupture of the water bulge, rather than the resulting geyser fountain. Each video is, on average, 4.29 seconds long, providing high temporal resolution of these rapid processes. The dataset includes 29 analyzed events, selected for their detailed capture of the water bulge dynamics. These videos document critical stages of the eruption process, including the bulge’s growth, rupture, and associated fluid dynamics. The recordings were synchronized with infrasound and audio data collected during the campaign, allowing for integrated analysis of acoustic signals and visual observations. This dataset provides a valuable resource for studying water bulge dynamics and associated acoustic emissions. It complements other geophysical data collected during the campaign and offers insights into surface and subsurface processes relevant to geysers and analogous volcanic systems.
The public often discusses infrasound as a threat to human health. This research project analysed, what the people know about infrasound. It developed a communication concept for different target groups, based on the scientific knowledge on risk communication. The goal was to provide appropriate information about infrasound and its possible health effects. The project results in this final report. Veröffentlicht in Texte | 112/2024.
In der Öffentlichkeit wird Infraschall häufig als Gefahr für die menschliche Gesundheit diskutiert. Dieses Forschungsprojekt analysierte, was die Menschen über Infraschall wissen. Es wurde ein Kommunikationskonzept für verschiedene Zielgruppen entwickelt, das auf den wissenschaftlichen Erkenntnissen zur Risikokommunikation basiert. Ziel war es, geeignete Informationen über Infraschall und seine möglichen gesundheitlichen Auswirkungen zu vermitteln. Die Projektergebnisse sind dieser Abschlussbericht und eine Informationsbroschüre. Veröffentlicht in Texte | 111/2024.
In der Öffentlichkeit wird Infraschall häufig als Gefahr für die menschliche Gesundheit diskutiert. Diese Broschüre basiert auf dem aktuellen Stand der Forschung und informiert anschaulich über die Entstehung und Beurteilung von Infraschall sowie die möglichen gesundheitlichen Auswirkungen. Darüber hinaus wird sowohl ein Faktencheck vorgenommen als auch Hinweise gegeben, wie mögliche Manipulationen wissenschaftlicher Fakten festgestellt werden können. Veröffentlicht in Broschüren.
Windenergie produziert nicht nur umweltfreundlichen Strom, sondern auch Infraschall. Infraschall, Teilbereich von tieffrequentem Schall, ist waffenfähig.(1) 2017 veröffentlichte das Umweltbundesamt die Broschüre: „Tieffrequente Geräusche im Wohnumfeld. Ein Leitfaden für die Praxis“.(2) Auf S. 20 wird im Kapitel Grenzwertsetzung auf dessen Fehlen hingewiesen und auch darauf, dass wissenschaftliche Grundlagen über den Wirkumfang von tieffrequentem Schall bzw. Infraschall fehlen. Wie wird der Infraschall-Ausstoß von Windparks und die Wirkung auf Menschen trotz fehlenden Grenzwerts und fehlender wissenschaftlicher Grundlagen erfasst und bewertet? Dazu erbitte ich Unterlagen. 1) https://fragdenstaat.de/a/196117 2) https://www.umweltbundesamt.de/publikationen/tieffrequente-geraeusche-im-wohnumfeld
| Origin | Count |
|---|---|
| Bund | 54 |
| Land | 26 |
| Wissenschaft | 9 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Förderprogramm | 26 |
| Text | 28 |
| unbekannt | 32 |
| License | Count |
|---|---|
| geschlossen | 41 |
| offen | 44 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 65 |
| Englisch | 26 |
| Resource type | Count |
|---|---|
| Archiv | 7 |
| Bild | 2 |
| Dokument | 14 |
| Keine | 46 |
| Webseite | 33 |
| Topic | Count |
|---|---|
| Boden | 55 |
| Lebewesen und Lebensräume | 50 |
| Luft | 86 |
| Mensch und Umwelt | 86 |
| Wasser | 37 |
| Weitere | 75 |