API src

Found 75 results.

Related terms

Infrasound records of Stromboli eruptions on July 3 and August 28 2019

Two strong eruptions of Stromboli Volcano (38.789°N 15.213°E, 920 m) occurred on July 3rd and August 28th 2019. This data set provides the infrasound records in terms of raw pressure data in Pascal of both eruptions available at BGR’s infrasound array I26DE in Germany as well as infrasound arrays OHP and CEA in France. The publication “Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions” (Le Pichon et al., 2021, Scientific Reports) provides further details on this data set and its scientific application. Data format: The data are provided as ASCII files (separate file for each infrasound sensor and hour of measurement, plus a README file).

Global reference histograms of the IMS infrasound broadband detection lists

This data set builds upon the broadband detection lists of the International Monitoring System (IMS)’s infrasound stations. The infrasound data of these stations are regularly (re-)processed at the German National Data Centre at BGR (e.g., Ceranna et al., 2019; https://doi.org/10.1007/978-3-319-75140-5_13) using the Progressive Multi-Channel Correlation (PMCC) array processing method (Cansi, 1995; https://doi.org/10.1029/95GL00468). The latest reprocessing with 26 one-third octave spaced frequency bands in the IMS band of interest (0.01 to 4 Hz) included all 53 stations that were certified within the period 2003 to 2020. Based on the resulting broadband detection lists, this data set expands on former analyses of the coherent ambient noise. For each station with a data availability of at least one year (by the end of 2020), monthly reference histograms for the detection parameters back azimuth, apparent speed, and root-mean-squared amplitude are provided. The histograms provide a means to determine the deviation from nominal monthly behaviour and thus enable assessing the plausibility of detections and potential anomalies – without determining their cause – in the detected parameters. Overall, these quality metrics will be, among other applications, a useful supplement to the open-access IMS infrasound data products provided by Hupe et al., which are also available in BGR’s product centre. Further details of the reference histograms are described in the following publication by Kristoffersen et al.: "Updated global reference models of broadband coherent infrasound signals for atmospheric studies and civilian applications" (https://doi.org/10.1029/2022EA002222).

Infrasonic Signatures of 1001 Rocket Launches for Space Missions

Rocket launches for space missions are well-defined ground-truth events generating strong infrasonic signatures. This data set covers ground-truth information for 1001 rocket launches from 27 global spaceports between 2009 and mid-2020. Infrasound signatures from up to 73% of the launches were identified at infrasound arrays of the International Monitoring System. The detection parameters were obtained using the Progressive Multi-Channel Correlation (PMCC) algorithm. Propagation and quality parameters supplement the PMCC detection parameters in this dataset. The results are provided for further use as a ground-truth reference in geophysical and atmospheric research. The open-access publication “1001 Rocket Launches for Space Missions and their Infrasonic Signature” (Pilger et al., 2021, Geophys. Res. Letters, doi:10.1029/2020GL092262) provides further details on this data set. Data format: The data are provided both as ASCII files (separate lists of infrasound signatures and rocket launch events, plus README files) and as a comprehensive netCDF file.

Very low frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset, called the ‘maw’ product, covers a very low frequency range of infrasound (0.02-0.07 Hz). The temporal resolution (time step and window length) is 30 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022.

Higher frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, within the CTBT-relevant infrasound range (around 0.01-4 Hz), this dataset covers higher frequencies (1-3 Hz) and is therefore called the ‘hf’ product. The temporal resolution (time step and window length) is 5 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Microbarom low-frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers the dominant frequency range of microbaroms (0.15-0.35 Hz) and is therefore called the ‘mb_lf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Microbarom high-frequency data products of the International Monitoring System’s infrasound stations

This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers, among other phenomena, the upper frequency range of microbaroms (0.45-0.65 Hz) and is therefore called the ‘mb_hf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022

Informational concept on infrasound and its effects

The public often discusses infrasound as a threat to human health. This research project analysed, what the people know about infrasound. It developed a communication concept for different target groups, based on the scientific knowledge on risk communication. The goal was to provide appropriate information about infrasound and its possible health effects. The project results in this final report. Veröffentlicht in Texte | 112/2024.

Infraschall einfach erklärt

In der Öffentlichkeit wird Infraschall häufig als Gefahr für die menschliche Gesundheit diskutiert. Diese Broschüre basiert auf dem aktuellen Stand der Forschung und informiert anschaulich über die Entstehung und Beurteilung von Infraschall sowie die möglichen gesundheitlichen Auswirkungen. Darüber hinaus wird sowohl ein Faktencheck vorgenommen als auch Hinweise gegeben, wie mögliche Manipulationen wissenschaftlicher Fakten festgestellt werden können. Veröffentlicht in Broschüren.

Aufklärungskonzept zu Infraschall und dessen Wirkungen

In der Öffentlichkeit wird Infraschall häufig als Gefahr für die menschliche Gesundheit diskutiert. Dieses Forschungsprojekt analysierte, was die Menschen über Infraschall wissen. Es wurde ein Kommunikationskonzept für verschiedene Zielgruppen entwickelt, das auf den wissenschaftlichen Erkenntnissen zur Risikokommunikation basiert. Ziel war es, geeignete Informationen über Infraschall und seine möglichen gesundheitlichen Auswirkungen zu vermitteln. Die Projektergebnisse sind dieser Abschlussbericht und eine Informationsbroschüre. Veröffentlicht in Texte | 111/2024.

1 2 3 4 5 6 7 8