API src

Found 2031 results.

Related terms

Naturschutzgebiete (Landkreis Göttingen)

Rechtsgrundlage: Naturschutzgebiet § 23 BNatSchG und § 16 NAGBNatSchG. Schutzintensität: hoch. Naturschutzgebiete sind rechtsverbindlich festgesetzte Gebiete, in denen ein besonderer Schutz von Natur und Landschaft in ihrer Ganzheit oder in einzelnen Teilen erforderlich ist 1. Zur Erhaltung, Entwicklung oder Wiederherstellung von Lebensstätten, Biotopen oder Lebensgemeinschaften bestimmter wild lebender Tier- und Pflanzenarten, 2. aus wissenschaftlichen, naturgeschichtlichen oder landeskulturellen Gründen oder 3. wegen ihrer Seltenheit, besonderen Eigenart oder hervorragenden Schönheit. Verordnete Naturschutzgebiete (NSG) im Landkreis Göttingen sind: NSG "Bachtäler im Kaufunger Wald" als Kernzone für die Umsetzung eines Teils des gleichnamigen FFH-Gebiets Nr. 143; NSG "Butterberg und Hopfenbusch bei Bartolfelde" als Umsetzung des FFH-Gebiets Nr. 405 "Butterberg/Hopfenbusch"; NSG "Ballertasche" als Umsetzung des gleichnamigen FFH-Gebiets Nr. 141; NSG "Finnenbruch, Großes Butterloch und Schwimmende Insel"; NSG "Gipskarstgebiet bei Bad Sachsa "; NSG "Gipskarstlandschaft bei Ührde"; NSG "Gipskarstlandschaft Hainholz" als Umsetzung des FFH-Gebiets Nr. 133 "Gipskartsgebiet bei Osterode"; NSG "Göttinger Wald" als Umsetzung des gleichnamigen FFH-Gebiets Nr. 138; NSG "Großer Leinebusch"; NSG Oderaue"; NSG "Ossenberg-Fehrenbusch"; NSG "Rhumeaue, Ellerniederung, Schmalau und Thiershäuser Teiche" als Umsetzung des FFH-Gebiets Nr. 134 "Sieber, Oder, Rhume"; NSG "Seeanger, Retlake, Suhletal" als Umsetzung des gleichnamigen FFH-Gebiets Nr. 139 und eines Teils des Vogelschutzgebiets V 19; NSG "Seeburger See" als Umsetzung des gleichnamigen FFH-Gebietes Nr. 140 und eines Teils des Vogelschutzgebiets V 19; NSG "Siebertal"; NSG "Staufenberg"; NSG "Steinberg bei Scharzfeld"; NSG "Teufelsbäder"; NSG "Totenberg"; NSG "Weper, Gladeberg und Aschenburg" als Kernzone für die Umsetzung eines Teils des gleichnamigen FFH-Gebiets Nr. 132; NSG "Bratental" (Stadt GÖ nachrichtlich); NSG "Stadtwald Göttinger u. Kerstlingeröder Feld" (Stadt GÖ nachrichtlich). Für die NSG, die der Umsetzung von FFH-Gebieten dienen, wurden teilweise Lebensraumtypen (LRT), Erhaltungszustände (EHZ) und Fortpflanzungs- und Ruhestätten (F+R) definiert, die Bestandteil des jeweiligen Schutzzwecks sind.

Schutzgebiet Nationalpark Hamburgisches Wattenmeer

Die Schutzgebietsgrenzen des Nationalparks werden als Vektorkoordinaten gemäß Koordinatensystem EPSG::25832 bereitgestellt. Der Nationalpark Hamburgisches Wattenmeer ist mit seinen 13.750 Hektar der kleinste der drei Wattenmeer-Nationalparks. Er wurde 1990 ausgewiesen, um die besonderen Naturschönheiten und den natürlichen Prozessen unter dem Motto "Natur Natur sein lassen" freien Lauf zu sichern. Mit der Anerkennung als Biosphärenreservat durch die UNESCO im Jahr 1992 gewann die naturverträgliche Ausrichtung der auf Teilen der Insel Neuwerk stattfindenden Nutzungen immer mehr an Bedeutung. Das UNESCO-Welterbe-Komitee hat am 27.06.2011 in Paris beschlossen, auch den Nationalpark Hamburgisches Wattenmeer als Teil des Weltnaturerbe Wattenmeer in die Liste der Welterbestätten der Menscheit einzuschreiben.

Distribution of pingos from topographic maps, permafrost region, Siberia (RU)

A detailed attributed point feature shapefile of 6059 pingo locations in a 3.5 × 10⁶ km² region of northern Asia was manually assembled from 1:200 000 scale Russian topographic maps. These medium-scale maps are based on detailed mapping efforts at 1:50 000 and 1:100 000 scales, which in turn are derived from aerial photography acquired in the 1970-1980s (Soviet Military Topographic Survey or Voenno-Topograficheskoe Upravle-nie General'nogo Shtaba, VTU GSh). A first order analysis of pingo distribution was carried out with respect to permafrost, landscape characteristics, surface geology, hydrology, climate, and elevation datasets using a Geographic Information System. The study area comprises the North Asian lowland regions of North, Northeast, Far East and Central Siberia and adjacent mountain ranges from 60.0° N to 76.3° N latitude and 60.0° E to 180.0° W longitude. The geographic re-gions covered in this study are the northern part of the West Siberian Lowlands including the Yamal and Gydan peninsulas, Taymyr Peninsula, Putorana Plateau, Khatanga-Anabar-Olenek Lowlands, Lena River Delta, Lena River Valley, central Yakutian Lowlands around Yakutsk; Yana-Indigirka-Kolyma Lowlands, New Siberian Islands, and the far east Siberian Chukotka region.

Luftdaten der Station Ostfries. Inseln (DENI058) in Norderney

Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Nickel im Feinstaub (Ni), Kohlenmonoxid (CO), Cadmium im Feinstaub (Cd), Blei im Feinstaub (Pb), Feinstaub (PM₁₀). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.

Early Miocene intensification of the North African hydrological cycle: multi-proxy evidence from the shelf carbonates of Malta - Geochemical data

A total of 140 samples were collected from the il-Blata section outcropping on the Mediterranean Island of Malta (base of section at 35.9004˚N, 14.3309˚E, top of section at 35.9000˚N, 14.3314˚E). 16 of these samples were selected to determine the 87Sr/86Sr in the bulk sediment and used to generate numerical ages using the LOWESS FIT for Sr-Stratigraphy (McArthur et al., 2012). All 87Sr/86Sr measurements conducted at the University of Geneva using a Thermo Neptune PLUS Multi-Collector inductively coupled plasma mass spectrometer. Data and numerical age model presented in table S1. The εNd data from (Bialik et al., 2019) were recalibrated to fit the new age model and presented in table S2. The percentage carbonate matter was measured using a FOGl digital calcimeter at the University of Malta (table S3). Dry powders were used to generate a stable isotope (δ18O & δ13C) record (table S4), all measurements were conducted on a Gasbench II coupled to a Thermo Delta V Advantage isotope ratio mass spectrometer at the School of Earth and Environmental Sciences, Cardiff University. Dry bulk sediment powders were also used to obtain major element composition and calculate element ratios Sr/Ca, Ti/Al, K/Al, Zr/Al, Si/Ti. All element measurements were conducted at The School of Earth and Environmental Sciences, Cardiff University using a hand-held Olympus Delta Innov-X XRF gun. Element data presented in table S5. Mean values of the ratios Sr/Ca, Ti/Al, K/Al, Zr/Al and Si/Ti were obtained for three different parts in the section in order to determine regime changes (table S6).

BAW seit sechs Jahren auch 'offshore' aktiv - Die Sicherheit der Windenergieanlagen auf dem Meer muss gewährleistet sein

Da beim Bau von Offshore-Windenergieanlagen großenteils technisches Neuland betreten wird, gilt es, dafür den 'Stand der Technik' zu entwickeln und in Standards und Normen festzuhalten. Den Anteil der erneuerbaren Energien zu steigern, ist ein wichtiges energiepolitisches Ziel der Bundesregierung. Dabei soll die Windenergie auf dem Meer einen wesentlichen Teil der zukünftigen Energieversorgung sicherstellen. Im Vergleich zu den Bedingungen an Land (onshore) treten auf dem Meer (offshore) hohe stetige Windgeschwindigkeiten auf, sodass hohe Erträge zu erwarten sind. Offshore-Windparks sollen von der Küste und den Inseln aus nicht sichtbar sein, und sie sollen außerhalb der Küsten-Nationalparks Wattenmeer und Boddengewässer liegen. Deshalb werden Windpark-Projekte vorwiegend in großer Entfernung zur Küste und in großen Wassertiefen geplant. Sie liegen damit in der sogenannten 'ausschließlichen Wirtschaftszone' (AWZ) der Bundesrepublik Deutschland. Dies ist das Gebiet außerhalb der 12-Seemeilen-Zone bis zu einer Entfernung von 200 Seemeilen. Die Windenergieanlagen müssen dort in Wassertiefen bis zu 50 m errichtet werden. Aufgrund der anspruchsvollen Bedingungen - große Wassertiefen, starke Wind- und Wellenbelastungen, weite Entfernungen von der Küste - ist die in Deutschland geplante und begonnene Errichtung von Offshore-Windenergieanlagen (OWEA) weltweit einmalig. Diese schwierigen Randbedingungen machen eine sorgfältige Planung notwendig. Das zuständige Bundesamt für Seeschifffahrt und Hydrographie (BSH) hat bisher 28 Windparks unter der Auflage genehmigt, dass die Antragsteller planungsbegleitend bis zur Baufreigabe die Einhaltung des Standes der Technik nachweisen müssen. Da hier aber großenteils technisches Neuland betreten wird, musste und muss ein solcher Stand der Technik überhaupt erst geschaffen werden. Das BSH gibt Standards als technische Regelwerke für Offshore-Windenergieanlagen heraus, die unter Mitwirkung von Expertengruppen erarbeitet und weiterentwickelt werden. In diesen Standardisierungsprozess bringt die BAW ihr vorhandenes wasserbauliches und geotechnisches Expertenwissen ein und berät das BSH bei den technischen Fragen während des Genehmigungsprozesses. So sind im Rahmen der Freigabeprozesse umfangreiche technische Unterlagen der Antragsteller zu bearbeiten. Dabei werden immer wieder wesentliche fachliche Risiken für die Errichtung und den sicheren Betrieb deutlich, die in aufwändigen Fachgesprächen und Fachbeiträgen behoben werden müssen. Sie resultieren aus der Komplexität der Aufgabenstellung und der Randbedingungen, die nachfolgend beispielhaft betrachtet werden.

Vertikale Verteilung von Wolkenkondensationskernen in marinen und kontinentalen Luftmassen in Europa und ihre Verbindung zur Wolkentropfenanzahlkonzentration in warmen Wolken

Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.

Sanierungsrahmenplan Tagebau Espenhain

Titel: Braunkohlenplan als Sanierungsrahmenplan für den stillgelegten Tagebau Espenhain Planungsstand: fortgeschriebene Fassung wurde am 25.09.2003 durch das Sächsische Staatsministerium des Innern genehmigt, verbindlich seit 15.04.2004 Inhalt: * Die bergbauliche Sanierung mit Tagebau-Großgeräten (Kippenrückgewinnung und Verkippung des Randschlauches) wurde im Mai 2001 abgeschlossen. Arbeiten an den Nord- und Nordostböschungen von Markkleeberger und Störmthaler See, die Ostböschung der ehemaligen Tagebauausfahrt, die Bereiche Göhrener und Getzelauer Insel sowie am Dammbauwerk zwischen den Restseen bildeten die verbliebenen Handlungsschwerpunkte. * Maßnahmen zur Landschaftsgestaltung konzentrieren sich auf die Nordböschung des am 15.07.2006 in öffentliche Nutzung übergebenen Markkleeberger Sees (Uferpromenade im Bereich Bornaische Straße mit archäologischer Fundstätte), das Dammbauwerk zwischen den Seen (Wildwasserstrecke "Kanu-Park", Gewässerverbund), das Steilufer im Bereich Störmthal-Güldengossa (Erhalt "geologischer" und "ökologischer Fenster) sowie das Umfeld des künftigen Wassersportzentrums Gruna (Regattastrecke, Hafen, Strand). * Schwerpunkte bei der Sanierung von Altlasten bilden die Altablagerungen an der B 2/95 (Schutz des Grundwassers, Fassung und Behandlung von Deponiegasen, niveaugleiche Verfüllung) sowie die industrielle Absetzanlage zur Ascheverspülung im östlichen Teil der Halde Trages (Begrünung, Sukzession). Der Betrieb der Zentraldeponie Cröbern soll so erfolgen, dass Grundwasserschutz (Basisabdichtung) und Sichtschutz (Schutzwaldgürtel) gewährleistet werden. * Im Zuge der Restlochflutung unter Einleitung von Sümpfungswässern aus dem aktiven Bergbau entstehen der 2,5 km² große Markkleeberger See (Flutung 1999-2006) sowie der 7,3 km² große Störmthaler See (2003-2011). Die Vorflutgestaltung schließt einen Verbund zwischen beiden Seen, die Anbindung des Markkleeberg Sees über die Kleine Pleiße an die Pleiße, die Bespannung des Gösel-Altlaufes zwischen Pötzschau und Dreiskau-Muckern sowie die Renaturierung der Pleiße ein. * Die in den Altkippenbereichen etablierte Landwirtschaft verfügt über einen Bestandsschutz (Anlage von Alleen und Flurgehölzen zur Landschaftsaufwertung). Prioritäre Handlungsfelder der Forstwirtschaft bestehen in der Waldmehrung (naturnahe, standort- und funktionsgerechte Aufforstungen mit Schwerpunkt Alt- und Neukippenbereiche) sowie im Umbau von Pappel-Reinbeständen (Altkippen und Halde Trages). * Die Entwicklung von Natur und Landschaft schließt die gezielte Belassung von Sukzessionsflächen mit Beschränkung von Sanierungsmaßnahmen auf den Abbau örtlicher Gefährdungspotenziale (Südufer Markkleeberger See mit Getzelauer Insel, Westufer Störmthaler See mit Göhrener Insel), den Erhalt bestehender Formen und Lebensräume (Erosionsformen Halde Trages, Göselaue, Steilufer Störmthal-Güldengossa) sowie gezielte Vernetzungen mit dem Tagebauumfeld (Oberholz) ein. * Freizeit und Erholung werden sich am Markkleeberger See auf das Nord- und Ostufer (Uferpromenade, Wachauer und Auenhainer Strand, Wildwasserstrecke, Segelstützpunkt) und am Störmthaler See auf das Wassersportzentrum Gruna auf der Magdeborner Halbinsel (Kanuregattastrecke, Segelhafen, Strand) konzentrieren. Beide Seen werden untereinander mit einem auch für Segelboote befahrbaren, mit einer Schleuse versehenen Kanal verknüpft und mittelfristig in einen "Gewässerverbund Region Leipzig" eingebunden. * Das Verkehrsnetz wird mit dem im August 2006 fertig gestellten Neubau der Autobahn A 38, der A 72 (Leipzig-Chemnitz) und der K 7924 (Dreiskau-Muckern - Störmthal) schrittweise ausgebaut. Damit werden neben der Verbesserung der regionalen Verkehrsinfrastruktur Voraussetzungen zur Erschließung der Bergbaufolgelandschaft geschaffen. Bei der Herstellung des Wegenetzes bilden Querungen von Pleiße und B 2/95 im Bereich Gaschwitz/Großdeuben Schwerpunkte. * Die Revitalisierung der bis 1993 vom Abbau bedrohten Ortslage Dreiskau-Muckern (EXPO-Dorf 2000) ist weit fortgeschritten (1993 50, 2001 300 Einwohner). Im Sanierungsgebiet entstanden im Rahmen der Initiative "Kunst statt Kohle" mehrere Landschaftskunstwerke (Butterfly am Südufer des künftigen Störmthaler Sees), die in Zukunft ergänzt werden sollen. Der Dispatcherturm (Magdeborner Halbinsel) und der Aussichtsturm (Rundwanderweg Halde Trages) bieten markante Ausblicke.

Abschätzung des Beitrags des Ozeans zum Massenverlust Grönländischer periphärer Gletscher – ein skalenübergreifender Ansatz

Grönland beheimatet, abgesehen von seinem großen Eisschild, eine Vielzahl von weitaus kleineren peripheren Gletschern. Der Anteil dieser Gletscher am gesamten Eismassenverlust Grönlands geht weit über den Anteil hinaus, den diese Gletscher an der gesamten Eismasse und –fläche einnehmen. Da sie sich meist in gebirgigem Gelände entlang der Küsten befinden, erfordern numerische Modelle dieser Eismassen geeignete räumliche Auflösungen, die nicht von Eisschildmodellen erreicht werden können. Kalbende Gletscher tragen in besonderem Maße zum Gesamtmassenverlust bei. Über den Zeitraum 2003-2008 trugen die peripheren Gletscher 14% zum grönlandweiten Eismassenverlust bei. Ihr Beitrag zum Meeresspiegelanstieg wird Prognosen zufolge in Zukunft weiter ansteigen, wobei aktuell verfügbare Projektionen unter Annahme einer Klimaentwicklung entlang des RCP 8.5 einen Eismassenverlust von bis zu ~50% im 21. Jahrhundert vorhersagen. Es existiert eine deutliche regionale Variabilität, die eine komplexe Kombination von atmosphärischen und ozeanischen Antriebsmechanismen widerspiegelt. Nichtsdestotrotz ist keines der aktuell verfügbaren regionalskaligen Gletschermodelle in der Lage, ozeanische Einflüsse auf die Frontalablation an den kalbenden Gletscherzungen explizit aufzulösen. Abgesehen von zwei Modellen wird Frontalablation sogar vollständig ignoriert. Folglich existieren auch bisher keinerlei Abschätzungen bezüglich der Mengen von Frontalablation an Grönlands peripheren Gletschern, weder für Vergangenheit, Gegenwart, noch Zukunft.Das Ziel des Projektes ist die Erstellung von CMIP6-basierten Projektionen der zukünftigen Entwicklung von Grönlands peripheren Gletschern im 21. Jahrhundert unter besonderer Berücksichtigung von kalbenden Gletschern. Wir werden sowohl Schmelzwasserabflüsse als auch Beiträge zum Meeresspiegelanstieg quantifizieren. Wir werden das Open Global Glacier Model (OGGM) dahingehend weiterentwickeln, dass es in seinem Frontalablationsmodul ozeanische Antriebsmechanismen berücksichtigt. Dies wird durch spezielle Downscaling-Routinen für Klima- und Ozeandaten unterstützt werden. Wir werden die Modelperformance von OGGM in Abhängigkeit von verschiedenen räumlichen Auflösungen der Antriebsdaten im Detail evaluieren, um herauszufinden, ob und inwieweit die Anwendung optimierter Skalenübergänge von der großen synoptischen hinunter auf die kleinere, lokale Skala der peripheren Gletscher dazu beiträgt, die Modelperformance zu steigern. Die Ergebnisse des Projektes werden ein gesteigertes Maß an Verständnis bezüglich der atmosphärischen und ozeanischen Einflüsse auf die Entwicklung der peripheren Gletscher Grönlands liefern. Weiterhin werden wird Empfehlungen bezüglich der optimalen Komplexität zukünftiger, regionalskaliger Gletschermodellierungen abgeben und dabei besonders kalbende Gletscher berücksichtigen.

Methanproduktion durch Mikrophytobenthos und dessen Beitrag am benthischen Methanfluss in der Küstenzone der Ostsee

Der Anstieg natürlicher Emissionen des Treibhausgases Methan haben einen bedeutenden Einfluss auf das Klima der Erde. Als Methanquelle nehmen küstennahe Gewässer eine besondere Stellung ein, da die Methankonzentration im Wasser hier wesentlich höher ist als im offenen Ozean. Trotz der Bedeutung der Küstengebiete ist bisher nur wenig bekannt über die hier zu findenden Methanemittenten und ihr jeweiliger Beitrag am atmosphärischen Methanfluss. Zudem zeigen eine Reihe aktueller Untersuchungen, dass Methan nicht nur unter anoxischen Bedingungen mikrobiell gebildet werden kann, sondern dass dies auch in einer oxischen Umgebung möglich ist. Eine solche Methanproduktion nahe der Meeresoberfläche würde den Weg zwischen Methanquelle und Atmosphäre wesentlich verkürzen und damit den Methanfluss in die Atmosphäre verstärken. Aufgrund einiger Untersuchungen, die eine Verknüpfung zwischen Primär- und Methanproduktion aufzeigen, stellen wir die Hypothese auf, dass Mikrophytobenthos (MPB)-Gemeinschaften eine wichtige, aber bisher nicht bearbeitete Stellung in der Flachwasser-Methandynamik zukommen. MPB-Gemeinschaften nehmen eine herausragende Rolle in der Primärproduktion von Küstensedimenten ein. Um die Bedeutung der MPB-assoziierten Methanproduktion besser einordnen zu können, werden wir das Potential dieser Methanquelle in Inkubationsexperimenten detailliert untersuchen. Zur Bestimmung der hierbei wichtigen Effektoren und Mikrophytobenthosarten werden wir an verschiedenen axenischen und xenischen klonalen Kulturen benthischer Diatomeen-Spezies die Primär- und Methanproduktion unter kontrollierten Temperatur- und Lichtbedingungen bestimmen. Mit Hilfe einer neuen Cavity-Ring-Down-Spektroskopie basierten Methode planen wir an geschlossenen Inkubationen die Methankonzentrationsentwicklung in hoher zeitlicher Auflösung über Tag/Nacht Zyklen zu erfassen. Zusätzliche Inkubationen mit 13C-markierten Substraten werden es uns erlauben, den Weg der Methanproduktion in den Diatomeen einzugrenzen. Bisher wurde der Prozess der oxischen Methanproduktion nur in Kulturexperimenten untersucht. Ob die hier ermittelten Raten auch in die natürliche Umgebung übertragbar sind, wurde hingegen nicht geprüft. Um diese Wissenslücke zu schließen, planen wir neben den Experimenten an klonalen Kulturen auch Studien an natürlichen MPB-Gemeinschaften durchzuführen. Diese Gemeinschaften werden wir im Flachwasser vor der Insel Askö (schwedische Ostseeküste) und dem inneren Küstengewässer vor Zingst (Darßer-Zingst-Bodden, deutsche Ostseeküste) beproben, um ein möglichst breites Spektrum an Sedimenten, hydrodynamischen Bedingungen und MPB-Gemeinschaften abzudecken. Um die in unseren Experimenten ermittelten Methanproduktionsraten in die benthischen und atmosphärischen Methanflüsse besser einordnen zu können, werden wir in beiden Untersuchungsgebieten die Methanflüsse zwischen Sediment, dem Wasser und der Atmosphäre bestimmen.

1 2 3 4 5202 203 204