Das Projekt "Abiotischer Abbau und Diffusion chlorierter Lösemittel in Fe2+-haltigen ungestörten Kalksteinen und Tonsteinen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Zentrum für Angewandte Geowissenschaften, Arbeitsgruppe Hydrogeochemie.Langsame Diffusionsprozesse von Schadstoffen in geringdurchlässigen wasser-gesättigten Gesteinen sind ein wesentlicher Grund für den beschränkten Erfolg vieler Untergrundsanierungen. Zu den immer noch wichtigsten Schadstoffen im Grundwasser zählen die chlorierten Lösemittel, die trotz jahrzehntelanger Sanierungsanstrengungen inzwischen lange Fahnen im urbanen Raum ausbilden. Eine langsame Diffusion bedingt aber auch lange Aufenthaltszeiten in der Gesteinsmatrix und damit können langsame abiotische Abbaumechanismen zum Tragen kommen, die auf Fe2+-haltige Mineralien wie z.B. Eisensulfide, Magnetit oder Phyllosilikate zurückgehen, und bei der Einschätzung des natürlichen Abbaupotentials berücksichtigt werden sollten. Ziel dieses Vorhabens ist es daher, die Transformation von Tri- und Perchlorethen während der Diffusion in Gesteinsproben geklüfteter Aquifere und Aquitarde zu quantifizieren. Weil die Reaktionsraten der Ausgangssubstanzen sehr wahrscheinlich zu klein sind, um im Labor gemessen werden zu können, liegt der Fokus auf der Bestimmung von Transformations- und Abbauprodukten (bspw. teil-chlorierte Ethene, Azetylen, Ethan). Die Experimente zur reaktiven Diffusion müssen mit intakten Gesteinsproben durchgeführt werden, da beim Zerkleinern reaktive Mineralober-flächen (z.B. bei Quarz und Pyrit) entstehen könnten, die zur Dehalogenierung der Ausgangssubstanzen führen könnten. Im Unterschied zu früheren Studien sollen hier die für die Reaktivität verantwortlichen spezifischen Minerale in der Gesteins-matrix identifiziert werden. Die Ergebnisse sind nicht nur für das Langzeitverhalten von chlorierten Lösemitteln im Grundwasser, sondern generell auch für die Endlagerung von radioaktiven Abfällen oder die chemische Verwitterung (Oxidation) von reduzierten Gesteinen relevant.
Das Projekt "Identification of groundwater nitrogen point source contribution through combined distribute temperature sensing and in-situ UV photometry" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschafts-, Wasser- und Stoffhaushalt.Agriculture is the major contributor of nitrogen to ecosystems, both by organic and inorganic fertilizers. Percolation of nitrate to groundwater and further transport to surface waters is assumed to be one of the major pathways in the fate of this nitrogen. The quantification of groundwater and associated nitrate flux to streams is still challenging. In particular because we lack understanding of the spatial distribution and temporal variability of groundwater and associated NO3- fluxes. In this preliminary study we will focus on the identification and quantification of groundwater and associated nitrate fluxes by combining high resolution distributed fiber-optic temperature sensing (DTS) with in situ UV photometry (ProPS). DTS is a new technique that is capable to measure temperature over distances of km with a spatial resolution of ca1 m and an accuracy of 0.01 K. It has been applied successfully to identify and quantify sources of groundwater discharge to streams. ProPS is a submersible UV process photometer, which uses high precision spectral analyses to provide single substance concentrations, in our case NO3-, at minute intervals and a detection limit of less than 0.05 mg l-1 (ca.0.01 mg NO3--Nl-1). We will conduct field experiments using artificial point sources of lateral inflow to test DTS and ProPS based quantification approaches and estimate their uncertainty. The selected study area is the Schwingbach catchment in Hessen, Germany, which has a good monitoring infrastructure. Preliminary research on hydrological fluxes and field observations indicate that the catchment favors the intended study.
Das Projekt "Methane Emissions from Impounded Rivers: A process-based study at the River Saar" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften.Methane emissions from inland water bodies are of growing global concern since surveys revealed high emissions from tropical reservoirs and recent studies showed the potential of temperate water bodies. First preliminary studies at the River Saar measured fluxes that exceed estimates used in global budgets by one order of magnitude. In this project we will investigate the fluxes and pathways of methane from the sediment to the surface water and atmosphere at the River Saar. In a process-based approach we will indentify and quantify the relevant environmental conditions controlling the potential accumulation of dissolved methane in the water body and its release to the atmosphere. Field measurements, complemented by laboratory experiments and numerical simulations, will be conducted on spatial scales ranging from the river-basin to individual bubbles. We will further quantify the impact of dissolved methane and bubble fluxes on water quality in terms of dissolved oxygen. Special emphasize will be put on the process of bubble-turbation, i.e. bubble-mediated sediment-water fluxes. The project aims at serving as a reference study for assessing methane emissions from anthropogenically altered river systems.
Das Projekt "Nachhaltige Ansätze zur Minimierung von Arsen in Trinkwasser und Reis in Vietnam" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften.Arsen-kontaminiertes Grundwasser stellt eine große Gefahr für zig Millionen von Menschen dar, insbesondere in Süd- und Südost-Asien, durch seine Verwendung als Trinkwasser und für die Bewässerung von Reisfeldern. Das Hauptziel dieses Projekts ist es gemeinsam mit Wissenschaftlern der Stanford University die Menge an giftigem Arsen in den beiden wichtigsten Expositionsquellen, Wasser und Reis, zu reduzieren und zu bestimmen wie i) Arsen effizient mit Wasserfiltern aus dem Trinkwasser entfernt und ii) die Arsenaufnahme durch Reis während der Nasskultivierung reduziert werden kann. Im ersten Teilprojekt planen wir in Vietnam zu untersuchen, unter welchen Bedingungen Wasserfilter Arsen effizient entfernen, wie lange die Filter verwendet werden können und ob gesundheits-schädigende Konzentrationen von Nitrate in den Filtern gebildet werden. Wir werden einen visuell sichtbaren Indikator in den Filtern entwickeln, der es der breiten Bevölkerung erlaubt, ohne analytische Verfahren oder besonderen Bildungsstand zu bestimmen, wann die Effizienz des Filters aufgrund der Sättigung mit Arsen verschwindet und das Filtermaterial ersetzt werden muss. Darüber hinaus werden wir untersuchen, wie das Arsen-verschmutzte Filtermaterial ohne weitere Risiken entsorgt werden kann. Im zweiten Teilprojekt werden wir untersuchen, ob die Stimulation von nitrat-reduzierenden, eisenoxidierenden Bakterien in Reisfeldböden die Arsenaufnahme in Reis reduziert durch die Bindung von Arsen an die gebildeten Minerale. Wir werden bestimmen, wie die Zugabe definierter Mengen an Nitrat helfen kann, gleichzeitig die Arsenaufnahme in den Reis und die Emission des Treibhausgases N2O zu minimieren. Dieses Projekt wird für die Bevölkerung in Arsen-betroffenen Ländern praktische Lösungen bieten, um mögliche Schädigungen durch Arsen und Nitrat zu reduzieren und ihre Gesundheit und Lebenssituation zu verbessern.
Das Projekt "Die Rolle von Viren beim mikrobiellen Schadstoffabbau" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Institut für Virologie.Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.
Das Projekt "Geogenes Molybdän in Grundwasser und Trinkwasser" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Fachgebiet Geochemie und Hydrogeologie.Im Allgemeinen sind die Molybdän (Mo) Werte im Trinkwasser deutlich unterhalb der als Gesundheitsrisiko eingestuften Konzentrationen. Daher hat die Weltgesundheitsorganisation (WHO) noch keine Grenzwerte festgelegt, veröffentlichte jedoch eine Empfehlung, wonach 70 Mikro g/L nicht überschritten werden sollten. In diesem Zusammenhang sind kürzlich im Grundwasser Zentral Floridas gemessene Molybdän-Konzentrationen von über 5.000 Mikro g/L besorgniserregend. Molybdän tritt in dieser Region natürlich auf (geogen) und wird aufgrund von anthropogen bedingter Störung der physikalisch-chemischen Bedingungen im Grundwasserleiter freigesetzt. Diese Art der anthropogen-induzierten Kontamination durch geogene Elemente stellt weltweit ein Problem für die öffentliche Gesundheit dar. Die andauernden Probleme mit Arsen (As) in Bangladesch und Westbengalen sind Thema unzähliger Beiträge in Presse und wissenschaftlichen Zeitschriften. Wenngleich Molybdän weniger toxisch ist als Arsen, könnte es sich als ein ähnliches Problem erweisen. Besonders dann, wenn Trinkwasser aus Grundwasserleitern marinen Ursprungs gewonnen wird in denen Mo von Natur aus erhöht vorhanden ist. Um die Möglichkeit der anthropogen-induzierten Kontamination durch geogenes Mo in Grundwasserleitern marinen Ursprungs besser zu verstehen, wird ein multidisziplinärer Ansatz vorgeschlagen. Ziel ist ein besseres Verständnis der Mo-Mobilisierung durch eine Kombination aus (geo)chemischen und hydrogeologischen Arbeiten, sowie deren Quantifizierung im Rahmen eines reaktiven Transportmodels.
Das Projekt "Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Marburg , Fachgebiet Boden- und Hydrogeographie.Zwischenabfluss (ZA) ist ein bedeutender Abflussbildungsprozess in gebirgigen Einzugsgebieten der feucht-gemäßigten Klimazonen. Obwohl ZA bereits seit den 1970er Jahren intensiv untersucht wird, ist es ein noch immer schwer zu erfassender Prozess in der Einzugsgebietshydrologie. Es ist unklar, welche wesentlichen Faktoren dessen räumliche und zeitliche Verteilung steuern und wie dieser Prozess in Niederschlag-Abfluss-Modellen parametrisiert werden kann. Um diese Forschungslücke zu schließen, wird das wissenschaftliche Netzwerk, Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie, gegründet, in dem aktuelle Probleme zur1) Identifizierung maßgeblicher Einflussfaktoren des ZA,2) Parametrisierung des ZA in N-A-Modellen sowie3) zu bestehenden Ansätze der Kalibrierung und Validierung des ZA diskutiert werden. Das Netzwerk setzt sich aus den Nachwuchswissenschaftler/innen Sophie Bachmair, Theresa Blume, Katja Heller, Luisa Hopp, Ute Wollschläger, Thomas Graeff, Oliver Gronz, Andreas Hartmann, Bernhard Kohl, Christian Reinhardt-Imjela, Martin Reiss, Michael Rinderer und Peter Chifflard (PI) zusammen. Sie werden die genannten Probleme kritisch reflektieren und Forschungsdefizite als Basis für ein gemeinsames Forschungsprojekt erarbeiten, das als Forschergruppe realisiert und bei der Deutschen Forschungsgemeinschaft eingereicht wird. Das Arbeitsprogramm des Netzwerkes wird in insgesamt 6 Workshops umgesetzt, die jeweils etwa 3 Tage dauern und als moderierte, problemlösungsorientierte Workshops organisiert sind. Spezifische Fragestellungen werden zuerst in Kleingruppen erörtert und anschließend in der gesamten Gruppe diskutiert und dokumentiert. Das Ziel eines jeden Workshops ist die Erarbeitung von Hypothesen, die die Grundlage des Forschungsantrages darstellen. In den ersten vier Workshops werden die Themen 1) Zwischenabfluss: Warum? Wann? Wo? 2)Identifizierung maßgeblicher Einflussfaktoren, 3) (Boden-) hydrologische Modellkonzepte und 4) Kalibrierungs- und Validierungsansätze bearbeitet. Die international ausgezeichneten Wissenschaftler/innen Nicola Fohrer, Ilja van Meerveld, Doerthe Tetzlaff, Axel Bronstert, Olaf Kolditz, Gunnar Lischeid, Brian McGlynn und Markus Weiler nehmen an den ersten vier Workshops als Gäste teil und tragen zu den Diskussionen und der Hypothesenbildung bei. Im fünften und sechsten Workshop wird eine Projektskizze, die zur Beantragung einer Forschergruppe bei der DFG notwendig ist, verfasst und fertiggestellt. Die insgesamt sechs Workshops werden durch wissenschaftliche Exkursionen in experimentelle Untersuchungsgebiete, in denen der ZA ein maßgebende Prozess ist, ergänzt und an den Instituten der Mitglieder des Netzwerkes durchgeführt: Universitäten Marburg, Trier, Dresden, Durham (USA), UFZ Leipzig und BfW Innsbruck. Dadurch bestehen zusätzliche Kooperationen mit M. Casper, J. Fleckenstein, A. Kleber, G. Markart,F. Reinstorf, H.-J. Vogel, H. Zepp, und E. Zehe.
Das Projekt "Der Einfluss von Licht auf die mikrobielle Eisen(II)-Oxidation in Süßwassersedimenten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Geomikrobiologie.Der biogeochemische Eisenkreislauf stellt ein wichtiges Reaktionsnetzwerk dar, welches einen direkten Einfluss auf umweltrelevante Prozesse in Sedimenten hat. Eisen(II)-oxidierende und Eisen(III)-reduzierende Bakterien kontrollieren zu großen Teilen die (Im)Mobilisierung von Eisen in Sedimenten. Unser klassisches Verständnis vom sedimentären Eisenkreislauf beschreibt, dass die Hauptsubstratquelle (Eisen(II) für Eisen(II)-oxidierende Bakterien die mikrobiellen Eisen(III)-reduktion ist, welcher typischerweise in tieferen Zonen von Redox-stratifizierten Sedimenten ansässig ist. Bislang wurde der Prozess der Eisen(III)-Photoreduktion nicht als signifikante Eisen(II) Quelle in limnische Sedimente betrachtet. In dem beantragten Forschungsprojekt, stellen wir die Hypothese auf, dass die Photoreduktion von Eisen(III) in limnischen Sedimenten eine zusätzliche Eisen(II)-Quelle für Eisen(II)-oxidierende Bakterien in den obersten (teilweise) oxischen und Lichtdurchfluteten Sedimentschichten darstellt. Zu diesem Zweck werden wir hochaufgelöste Licht und geochemische Messungen (O2, gelöstes Fe(II), pH, H2O2) mit Mikrosensoren durchführen und die Eisenmineralogie als Funktion der Lichtqualität (Wellenlänge) und Lichtquantität (Intensität) in Süßwassersedimenten bestimmen. Darüber hinaus werden wir den Einfluss von natürlichen organischen Material auf die Eisen(III)-Photoreduction untersuchen. Zusätzlich werden wir die Rolle von reaktiven Sauerstoffspezies auf die Bioverfügbarkeit von produzierten Eisen(II) in oxischen Sedimenten bestimmen. Dieses Forschungsprojekt untersucht einen Prozess der bislang in Sedimenten vernachlässigt wurde und öffnet die Türen zu einem neuen Verständnis des biogeochemischen Eisenkreislaufs und den assoziierten Eisen(II) Stoffflüssen entlang sedimentärer Redoxgradienten.
Das Projekt "Quecksilber (Hg) in marinen Flachwasser-Hydrothermal Systemen - eine übersehene Quelle für Hg im globalen Zyklus" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Fachgebiet Geochemie und Hydrogeologie.Mit der Unterzeichnung des UNEP Minamata Vertrages in 2013 haben Regierungen weltweit die Gefahr und Toxizität von Quecksilber (Hg) anerkannt und Maßnahmen zur Kontrolle und Reduzierung von Hg festgelegt. Obwohl Quecksilber in der Umweltforschung schon seit Jahrzehnten ein wichtiges Thema ist, gibt es noch offene Fragen zu den grundlegendsten Prozessen im globalen Hg Kreislauf und auch bezüglich der Transformation von Hg Spezies. Der Anteil von Hg aus hydrothermalen Quellen könnte einer der bedeutsamsten, natürlichen Beiträge zum globalen Hg Kreislauf sein, jedoch unterscheiden sich die Schätzungen um mehrere Größenordnungen von 20 bis 2000 t pro Jahr. Es gibt, wenngleich widersprüchliche, Daten über Hg Konzentrationen in hydrothermalen Quellen in der Tiefsee, wogegen hydrothermale Quellen in flacher, küstennaher Umgebung bisher jedoch ignoriert wurden. Gerade diese haben jedoch einen großen Einfluss auf die chemische Zusammensetzung der biologisch wichtigen Küstengewässer. Hydrothermale Quellen setzen nicht nur giftige Verbindungen frei, wie z.B. Schwefelwasserstoff und Arsenverbindungen, sondern liefern auch Nährstoffe wie Eisen und Kohlenstoffverbindungen und sind dadurch eine ökologische Nische für Organismen. Obwohl einige Studien diese hydrothermalen Systeme im Flachwasser als eine mögliche Quelle für Hg thematisierten waren die Ergebnisse nicht zufriedenstellend. Ein Grund könnte die herausfordernde Matrix der hydrothermalen Lösungen sein, sowie eine unzureichende Datenlage um Aussagen über den Gesamteintrag von Hg zu treffen. Noch wichtiger als die Gesamtmenge des Hg Eintrages ist die Verteilung der individuellen Hg-Spezies. Eine fundamentale Transformation ist die Methylierung von Quecksilber (MeHg) und die daraus resultierende Verstärkung der Toxizität. MeHg bioakkumuliert und biomagnifiziert sich innerhalb der marinen Nahrungskette und damit auch letztlich im Menschen. Die Methylierung von Quecksilber ist ein ozeanweites Phänomen. Die niedrigen Konzentrationen von Hg im offenen Gewässer machen das genaue Erforschen dieser biologisch-chemischen Reaktion jedoch schwierig. Hier können hydrothermale Quellen im Flachwasser als natürliche Laboratorien genutzt werden um die Umwandlungsraten von Hg-Spezies und deren Abhängigkeit von Umwelt Faktoren zu bestimmen. Dementsprechend schlagen wir vor, die Speziierung und den Eintrag von Hg für Flachwasser-Hydrothermalsysteme zu bestimmen, um damit bessere Schätzungen für den globalen Quecksilber Kreislauf zu bekommen. Die geplante Arbeit besteht aus 4 Teilen: (1) Probenahme an ausgewählten Standorten, (2) Vollständige Charakterisierung der freigesetzten Hg-Spezies (anorganisches Hg, MeHg und elementares Hg), (3) Bestimmung der Methylierungsrate und (4) eine Schätzung der mengenmäßigen Freisetzung von totalem und methyliertem Hg.
Das Projekt "Forschergruppe (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE), Teilprojekt: Von kleinen zu extremen Hochwassern" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Ziel unseres Projekts ist es zu verstehen wie sich extreme Hochwasser von kleinen Hochwassern unterscheiden und wie ausgehend von kleinen Hochwassern extrapoliert werden kann. Wir untersuchen Mechanismen und Prozessinteraktionen die 'heavy tail' Hochwasserwahrscheinlichkeitsverteilungen generieren. Außerdem untersuchen wir Schwellwertprozesse und andere Mechanismen die zu Nichtlinearitäten führen wenn sich die Größenordnung des Hochwassers ändert. Insbesondere werden auch die Vorbedingungen und Konsequenzen von Hochwasserwellenänderungen, z.B. Überlagerungen untersucht. Die Analysen beinhalten die gesamte Hochwasserprozesskaskade. Wir werden die Charakteristika der größten Hochwasser denen der restlichen, kleineren Hochwasser gegenüberstellen um zu verstehen, ob große Hochwasser durch spezifische Prozesse ausgelöst und beeinflusst werden oder durch große Varianten derselben Prozesse. Die folgenden Forschungsfragen sollen beantwortet werden: Auf welche Weise steht das 'upper tail' Verhalten von Hochwasserwahrscheinlichkeitsverteilungen in Beziehung zu Einzugsgebiets- und Ereignischarakteristika? Welche Mechanismen und Prozessinteraktionen führen zu 'heavy tails' (endlastigen Hochwasserwahrscheinlichkeitsverteilungen)? Wie führen hochwasserauslösende Bedingungen (raum-zeitliche Niederschlagsmuster, Topographie, Hochwassertypen) und Interaktionen zwischen Flusslauf und Überschwemmungsflächen (Abflussverhalten, Rückhaltung, Deichbrüche) zu unterschiedlichen Hochwasserwellencharakteristika hinsichtlich Spitzenabfluss, Volumen, Wellenablaufzeiten, und zu verschiedensten Wellenveränderungen? Wie entwickeln sich oder verflüchtigen sich solche Muster von kleinen zu großen Hochwassern? Entstehen große Hochwasser durch andere Mechanismen als kleine Hochwasser? Wie verändern sich das Ausmaß und die Ursachen von Nichtlinearitäten der Prozesse mit steigender Hochwasserstärke? Was ist die spezifische Rolle von Schwellwertprozessen für die Entwicklung von extremen Hochwassern?
Origin | Count |
---|---|
Bund | 634 |
Type | Count |
---|---|
Förderprogramm | 634 |
License | Count |
---|---|
offen | 634 |
Language | Count |
---|---|
Deutsch | 434 |
Englisch | 432 |
Resource type | Count |
---|---|
Keine | 19 |
Webseite | 615 |
Topic | Count |
---|---|
Boden | 623 |
Lebewesen & Lebensräume | 546 |
Luft | 403 |
Mensch & Umwelt | 634 |
Wasser | 626 |
Weitere | 634 |