API src

Found 653 results.

Sonderforschungsbereich (SFB) 1253: Catchments as Reactors: Schadstoffumsatz auf der Landschaftsskala (CAMPOS); Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS), Teilprojekt P07: Stochastischer Modellansatz für den reaktiven Stofftransport auf der Landschaftsskala

In dem Projekt wird ein stochastischer Modellieransatz für den reaktiven Stofftransport im Landschaftsmaßstab entwickelt. Prozesse an der Landoberfläche und in Böden werden durch stochastische Boden-Pflanzen-Modelle beschrieben, die an ein stochastisches 3-D Strömungsmodell des Untergrunds unterhalb der Wurzelzone sowie an fließ- bzw. kontaktzeitbasierte reaktive Stofftransportmodelle für Nitrat und Pestizide gekoppelt sind. Als Ergebnis statistisch verteilter Parameter und Randbedingungen, ergeben sich statistische Verteilungen der Zielgrößen, wie z.B. Wasserstände und -flüsse, Konzentrationen reaktiver Spezies. Diese Verteilungen werden anschließend anhand gemessener Daten mittels Ensemble-Kalman-Filtermethoden konditioniert.

Surrogate-basiertes aktives Lernen für Parameter Inferenz in Geowissenschaften via Bayes'sche sparse2 Multi-Adaptivität verbessert durch Informationstheorie

Wasser-Nahrungsmittel-Energie Nexus ist zentral für eine nachhaltige Entwicklung. Deswegen benötigt die Gesellschaft ein besseres Umweltverständnis, um eine effiziente und sichere Interaktion bereitzustellen und Allgemeinwohl und Nachhaltigkeit im Ressourcenmanagement zu maximieren. Simulationen der genau kalibrierten Modelle bieten eine einzigartige Möglichkeit das Verhalten der nicht linearen Strömungen in geologischen Formationen, wie z.B. Multi-Phasen Fluss im zerklüfteten porösen Medium, gekoppelte Hydrosystem Modelle und Multi-Komponenten reaktive Transport im porösen Medium vorherzusagen. Aufgrund der Rauheit oder Fehlen der vorhandenen Daten und hohen Kosten der numerischen Simulation stellt diese Problemklasse nach wie vor eine Herausforderung auch für moderne Methoden der Quantifizierung der Unsicherheiten und maschinellen Lernens (ML) dar. Das vorliegende Projekt beabsichtigt sich mit dieser Herausforderung am Beispiel der Modellierung von Kohlenstoffdioxidspeicherung (CO2) in geologischen Formationen zu befassen. Die Problematik der CO2-Speicherung ist äußerst repräsentativ für eine große Klasse von Untergrundproblemen aufgrund der Struktur der involvierten Mehrphasenströmung. Weit verbreiteten ML Methoden scheinen geeignet zu sein, solche nicht linearen Probleme zu lösen. Klassische ML Methoden erfordern jedoch immense Datenmengen, sowohl die der Modelparameter als auch die der Model Response. Unglücklicherweise können viele Anwendungen in den Geowissenschaften nur eine limitierte Anzahl an Datensätzen bereitstellen. Im aktuellen Projekt beabsichtigen wir eine ML Methode zu entwickeln, welche dazu in der Lage sein wird die lokale Nichtlinearität des physikalischen Problems auch im Falle der nur geringen Menge der verfügbaren Daten adaptiv zu approximieren. Das Projekt beabsichtigt die Relation zwischen der Bayes'schen Inferenz und Informationstheorie in ihrer Zielorientierten Ausprägung zu nutzen, um die Nichtlinearität des physikalischen Problems unter Verwendung der Beobachtungsdaten und Simulationsergebnisse adaptiv zu lokalisieren. Dabei folgen wir dem aktuellen Trend in der stochastischen Modellreduktion und trainieren eine mathematisch optimale Response Surface unter Verwendung von limitierten Informationsmenge von dem ursprünglichen CO2 Modell in Bezug auf Beobachtungsdaten. Wir beabsichtigen eine Multi-Adaptivität Methode für polynomielles Chaos zu entwickeln, welche eine sparse, auf Bayes'schen Theorie basierende Rekonstruktion mit informationstheoretischen Argumenten erweitert. Kombination von Bayes'schen Inferenz mit Informationstheorie wird helfen die Response Surface adaptiv zu verbessern, dabei werden die relevanten Informationen iterativ in die adaptive Response Surface integriert. Wir erwarten, dass die vorgeschlagene Bayes'sche sparse2 Multi-Adaptivität Konzept einen physikalisch-basierten Weg für andere ML Methoden eröffnet, und äußerst nützlich für verschiedene umweltwissenschaftliche Probleme sein wird.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt B 03: Verhalten von Mikroplastik im System Fließgewässer - Grundwasser

Fließgewässer gelten als Haupteintragspfad von Mikroplastik (MP) in marine Ökosysteme. Allerdings ist über das Transportverhalten und den Verbleib von MP in Flüssen und Bächen nur sehr wenig bekannt. Ebenso bestehen große Wissenslücken bezüglich der Migration von MP an der Schnittstelle zwischen Oberflächenströmung und der hyporheischen Zone (HZ, Grenzzone zwischen Fließgewässern und angrenzenden Grundwasserleitern), sowie der Mobilität von MP innerhalb der HZ. In B03 wollen wir das hydrodynamische Transportverhalten von MP in fluvialen Systemen einschließlich der HZ erforschen. Darüber hinaus soll auch der Einfluss biotischer Tranportmechanismen auf das Sedimentationsverhalten von MP erforscht werden. In der ersten Phase des SFB wollen wir diesen Themenbereich zunächst für einfache Modellsysteme untersuchen.

Natürliche Nanopartikel und Kolloide in bewaldeten Europäischen Quellgebieten: Neue Erkenntnisse über raumzeitliche Dynamiken und potentielle Herkunft

Natürliche Nanopartikel (NNP) und bodenstämmige Kolloide werden zunehmend als hoch relevante Transportform von Elementen in wässrigen Phasen von Ökosystemen anerkannt. Zur elementaren Zusammensetzung dieser Partikel und deren Größenspanne liegen erste Erkenntnisse vor, jedoch fehlen weiterhin wichtige fundamentale Informationen über deren zeitliche Dynamiken und deren Herkunft. Die Ziele dieses Projektes sind (i) die zeitlichen Dynamiken von NNP und Kolloiden aufzudecken, (ii) den Einfluss von signifikant erhöhten Abflussereignissen auf den Export von NNP und Kolloid-bedingtem Transport aufzuklären und (iii) die potentielle Herkunft von Bachwasser-NNP und Kolloiden zu erklären. Um eine Vorstellung über die Validität der Ergebnisse (iv) auf europäischer Skala und durch verschiedene Ökosysteme zu bekommen, werden die Analysen an Bachwasserproben von verschiedenen Dauerbeobachtungsflächen durch Europa durchgeführt. Diese Standorte, mit denen ich bereits erste eigene wissenschaftliche Kooperationen etablieren konnte, bieten Daten über die Böden, die Gewässerchemie und Stoffflüsse innerhalb des Ökosystems. Die Analytik wird mit Hilfe von Kombinationsverfahren der Feld Fluss Fraktionierung (FFF) durchgeführt. Für ausgewählte Proben wird größen- und elementspezifische Analytik von NNP und Kolloiden mit der Analyse von Lignin Phenolen, der natürlichen Häufigkeitsermittlung von 13C, Radiokarbondatierung und zusätzlicher d56Fe Analytik kombiniert. Durch die Kombination der Daten sollte es möglich sein das Vorkommen und die Variabilität von NNP und Kolloiden als vorherrschende Elementtransportform, sowie deren Herkunft aus verschiedenen Bodenhorizonten und die generelle Validität meiner Ergebnisse auf unterschiedliche Standorte in Europa besser verstehen zu können.

Der Einfluss von Licht auf die mikrobielle Eisen(II)-Oxidation in Süßwassersedimenten

Der biogeochemische Eisenkreislauf stellt ein wichtiges Reaktionsnetzwerk dar, welches einen direkten Einfluss auf umweltrelevante Prozesse in Sedimenten hat. Eisen(II)-oxidierende und Eisen(III)-reduzierende Bakterien kontrollieren zu großen Teilen die (Im)Mobilisierung von Eisen in Sedimenten. Unser klassisches Verständnis vom sedimentären Eisenkreislauf beschreibt, dass die Hauptsubstratquelle (Eisen(II) für Eisen(II)-oxidierende Bakterien die mikrobiellen Eisen(III)-reduktion ist, welcher typischerweise in tieferen Zonen von Redox-stratifizierten Sedimenten ansässig ist. Bislang wurde der Prozess der Eisen(III)-Photoreduktion nicht als signifikante Eisen(II) Quelle in limnische Sedimente betrachtet. In dem beantragten Forschungsprojekt, stellen wir die Hypothese auf, dass die Photoreduktion von Eisen(III) in limnischen Sedimenten eine zusätzliche Eisen(II)-Quelle für Eisen(II)-oxidierende Bakterien in den obersten (teilweise) oxischen und Lichtdurchfluteten Sedimentschichten darstellt. Zu diesem Zweck werden wir hochaufgelöste Licht und geochemische Messungen (O2, gelöstes Fe(II), pH, H2O2) mit Mikrosensoren durchführen und die Eisenmineralogie als Funktion der Lichtqualität (Wellenlänge) und Lichtquantität (Intensität) in Süßwassersedimenten bestimmen. Darüber hinaus werden wir den Einfluss von natürlichen organischen Material auf die Eisen(III)-Photoreduction untersuchen. Zusätzlich werden wir die Rolle von reaktiven Sauerstoffspezies auf die Bioverfügbarkeit von produzierten Eisen(II) in oxischen Sedimenten bestimmen. Dieses Forschungsprojekt untersucht einen Prozess der bislang in Sedimenten vernachlässigt wurde und öffnet die Türen zu einem neuen Verständnis des biogeochemischen Eisenkreislaufs und den assoziierten Eisen(II) Stoffflüssen entlang sedimentärer Redoxgradienten.

Reaktivität und Transformation funktioneller Gruppen von Spurenstoffen und organischer Hintergrundmatrix bei der Ozonierung von Abwasser

Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.

Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie

Zwischenabfluss (ZA) ist ein bedeutender Abflussbildungsprozess in gebirgigen Einzugsgebieten der feucht-gemäßigten Klimazonen. Obwohl ZA bereits seit den 1970er Jahren intensiv untersucht wird, ist es ein noch immer schwer zu erfassender Prozess in der Einzugsgebietshydrologie. Es ist unklar, welche wesentlichen Faktoren dessen räumliche und zeitliche Verteilung steuern und wie dieser Prozess in Niederschlag-Abfluss-Modellen parametrisiert werden kann. Um diese Forschungslücke zu schließen, wird das wissenschaftliche Netzwerk, Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie, gegründet, in dem aktuelle Probleme zur1) Identifizierung maßgeblicher Einflussfaktoren des ZA,2) Parametrisierung des ZA in N-A-Modellen sowie3) zu bestehenden Ansätze der Kalibrierung und Validierung des ZA diskutiert werden. Das Netzwerk setzt sich aus den Nachwuchswissenschaftler/innen Sophie Bachmair, Theresa Blume, Katja Heller, Luisa Hopp, Ute Wollschläger, Thomas Graeff, Oliver Gronz, Andreas Hartmann, Bernhard Kohl, Christian Reinhardt-Imjela, Martin Reiss, Michael Rinderer und Peter Chifflard (PI) zusammen. Sie werden die genannten Probleme kritisch reflektieren und Forschungsdefizite als Basis für ein gemeinsames Forschungsprojekt erarbeiten, das als Forschergruppe realisiert und bei der Deutschen Forschungsgemeinschaft eingereicht wird. Das Arbeitsprogramm des Netzwerkes wird in insgesamt 6 Workshops umgesetzt, die jeweils etwa 3 Tage dauern und als moderierte, problemlösungsorientierte Workshops organisiert sind. Spezifische Fragestellungen werden zuerst in Kleingruppen erörtert und anschließend in der gesamten Gruppe diskutiert und dokumentiert. Das Ziel eines jeden Workshops ist die Erarbeitung von Hypothesen, die die Grundlage des Forschungsantrages darstellen. In den ersten vier Workshops werden die Themen 1) Zwischenabfluss: Warum? Wann? Wo? 2)Identifizierung maßgeblicher Einflussfaktoren, 3) (Boden-) hydrologische Modellkonzepte und 4) Kalibrierungs- und Validierungsansätze bearbeitet. Die international ausgezeichneten Wissenschaftler/innen Nicola Fohrer, Ilja van Meerveld, Doerthe Tetzlaff, Axel Bronstert, Olaf Kolditz, Gunnar Lischeid, Brian McGlynn und Markus Weiler nehmen an den ersten vier Workshops als Gäste teil und tragen zu den Diskussionen und der Hypothesenbildung bei. Im fünften und sechsten Workshop wird eine Projektskizze, die zur Beantragung einer Forschergruppe bei der DFG notwendig ist, verfasst und fertiggestellt. Die insgesamt sechs Workshops werden durch wissenschaftliche Exkursionen in experimentelle Untersuchungsgebiete, in denen der ZA ein maßgebende Prozess ist, ergänzt und an den Instituten der Mitglieder des Netzwerkes durchgeführt: Universitäten Marburg, Trier, Dresden, Durham (USA), UFZ Leipzig und BfW Innsbruck. Dadurch bestehen zusätzliche Kooperationen mit M. Casper, J. Fleckenstein, A. Kleber, G. Markart,F. Reinstorf, H.-J. Vogel, H. Zepp, und E. Zehe.

Skalenübergreifendes Smoothed Particle Hydrodynamics Modell für Strömungs- und Transportprozesse in ungesättigten geklüftet-porösen Medien

Das Ziel dieses Antrags ist die Entwicklung eines partikel-basierenden skalenübergreifenden Modells zur Simulation von Strömung und Transport in ungesättigten Klüften und angrenzender poröser Matrix. Die Beschreibung von Strömung- und Transportprozessen in ungesättigten geklüftet-porösen Medien stellt immer noch große Herausforderungen an die Wissenschaft, ist jedoch in vielen Anwendungsbereichen von großer Bedeutung wie z.B. im Zusammenhang mit der Quantifizierung der Infiltration durch mächtige ungesättigte Felsmaterialien (Endlagerforschung), mit der Prognose der Grundwasserneubildung durch geklüftete Festgesteine und Aquifervulnerabilität. Strömungs- und Transportprozesse in ungesättigten geklüfteten Grundwasserleitern werden häufig durch ihre heterogene Geometrie und hohen Kontraste in den hydraulischen Eigenschaften dominiert. Strömungen in ungesättigten Klüften sind aufgrund des komplexen Zusammenspiels von Gravitations-, Trägheitseffekten, Kapillarkräften, Oberflächenspannung, Benetzungsdynamiken und der hochvariablen Kluftgeometrie schwer zu prognostizieren. Laborexperimente und numerische Modelle sind häufig eine der wenigen Möglichkeiten die höchst nichtlinearen Strömungsprozesse und den Effekt der Wechselwirkung an komplexen Mehrphasengrenzflächen innerhalb der Klüfte zu erfassen. Insbesondere starke Deformationen der Grenzflächen können mit grid-basierenden Modellen nur unter hohem Aufwand umgesetzt werden. Eine einfachere Methode zur Simulation bieten jedoch partikel-basierte Methoden. Freie Oberflächen und Phasengrenzen bewegen sich hierbei mit den Partikeln, so dass keine komplexen front-tracking Algorithmen notwendig sind.In der Regel sind Kluftsysteme in eine poröse Matrix eingebettet, die in Modellierungsansätzen explizit erfasst werden muss. Die Kluft-Matrix Grenzfläche bildet somit eine wesentliche Schnittstelle zwischen der porösen Matrix, die als Hauptspeicher wirkt, und den Klüften, welche die dominierende hydraulische Verbindung durch die ungesättigte Zone bilden. Um die Verknüpfung dieser beiden Komponenten auf Prozessebene simulieren zu können sind skalenübergreifende Modellansätze notwendig. Im Rahmen des hier beantragten Vorhabens soll ein skalenübergreifendes Smoothed Particle Hydrodynamics Modell entwickelt werden. Die ungesättigte Strömung und der Transport innerhalb der porösen Matrix soll durch klassische Ansätze (Richards) abgebildet und mit den hochdynamischen Strömungs- und Transportprozessen (z.B. adsorbierte Filme, Tropfen, Rinnsäle) auf den Kluftoberflächen gekoppelt werden. Das Modell wird in ein einzigen numerisches Framework eingebunden, so dass Kopplungsmethoden vereinfacht und unterschiedliche Lösungsalgorithmen vermieden werden. Das Modell wird durch numerische Experimente und Laborexperimente validiert und eingesetzt um Effekte komplexer ungesättigter Kluftströmung auf Befeuchtungs- und Transportdynamiken an der Kluft-Matrix-Grenzfläche quantitativ und physikalisch basiert beschreiben zu können.

Nachhaltigkeitsbewertung des Water-Energy-Food (WEF) nexus für Beregnungslandwirtschaft am Beispiel von Einzugsgebieten in Usbekistan (WEFUz)

Ziel des Projektes ist es, am Beispiel von Bewässerungslandwirtschaft in kleinen Einzugsgebieten Usbekistans den Wasser-Energie-Ernährungsnexus (Water-Energy-Food nexus, WEF) besser zu verstehen, und Optionen für seine nachhaltige Bewirtschaftung zu entwickeln. Nachhaltige Bewirtschaftung bedeutet in diesem Fall sowohl die Bereitstellung von Wasser für Kraftwerke und die Feldbewässerung (Level 1), als auch für Minimierung der Bodenversalzung, so dass die Böden langfristig für die Ernährungsproduktion und weitere Ökosystemleistungen erhalten bleiben (Level 2). Am Beispiel von Fallstudien in drei Wassereinzugsgebieten wird aufbauend auf hydrologischen, landwirtschaftlichen und institutionenökonomischen Kontextanalysen ein analytischer Rahmen mit Indikatoren entwickelt und für partizipative, ex-ante Nachhaltigkeitsbewertungen von Szenarien des WEF Nexus Managements genutzt. Das Projekt ist in vier Arbeitspakete gegliedert: (1) Analyse von 28 Einzugsgebieten bezüglich hydrologischer, agronomischer und sozio-ökonomischer Parameter und Auswahl von drei Fallstudiengebieten, (2) detaillierte Kontextanalyse in den drei Fallstudiengebieten mittels Stakeholderkonsultationen, Dokumentenanalyse und ergänzender Satellitendatenauswertung zur Ermittlung der wesentlichen Faktoren für ein nachhaltiges WEF Management und zur Entwicklung eines analytischen Rahmens mit Indikatoren für die Nachhaltigkeitsbewertung; (3) Entwicklung von Management Szenarien und Durchführung von partizipativen Nachhaltigkeitsbewertungen in Workshops mit Stakeholdern, die mittels des analytischen Rahmens ausgewählt wurden; (4) Synthese und Validierung der Ergebnisse aus den drei Fallstudien und Ableitung von übertragbaren Determinanten für das nachhaltiges Management des WEF-Nexus für Einzugsgebiete in Usbekistan. Der Ansatz kombiniert theoretische Konzepte aus der Institutionenökonomie (z.B. Collective Action, Polycentric Governance, Mental Models) mit wissenschaftlich etablierten Methoden der Kontextanalyse (fuzzy-set Qualitative Comparative Analysis fsQCA) und der Nachhaltigkeitsbewertung (Framework of Participatory Impact Assessment FoPIA), um die wesentlichen Nachhaltigkeitsaspekte und die damit verbundenen Konflikte für den WEF Nexus am Beispiel der Bewässerungslandwirtschaft in Usbekistan besser zu verstehen. Usbekistan hat die UN-Agenda 2030 unterzeichnet und sich damit zur Umsetzung der 17 Nachhaltigkeitsziele verpflichtet. Das vorgeschlagene Forschungsprojekt möchte in einem integrierten Ansatz die wissenschaftliche Grundlage dafür verbessern.

Quantification of the influence of current use fungicides and climate change on allochthonous Organic MATer decomposition in streams (QUANTOMAT)

The decomposition of terrestrial organic material such as leaf litter represents a fundamental ecosystem function in streams that delivers energy for local and downstream food webs. Although agriculture dominates most regions in Europe and fungicides are applied widely, effects of currently used fungicides on the aquatic decomposer community and consequently the leaf decomposition rate are largely unknown. Also potential compensation of such hypothesised adverse effects due to nutrients or higher average water temperatures associated with climate change are not considered. Moreover, climate change is predicted to alter the community of aquatic decomposers and an open question is, whether this alteration impacts the leaf decomposition rate. The current projects follows a tripartite design to answer these research questions. Firstly, a field study in a vine growing region where fungicides are applied in large amounts will be conducted to whether there is a dose-response relationship between the exposure to fungicides and the leaf decomposition rate. Secondly, experiments in artificial streams with field communities will be carried out to assess potential compensatory mechanisms of nutrients and temperature for effects of fungicides. Thirdly, field experiments with communities exhibiting a gradient of taxa sensitive to climate change will be used to investigate potential climate-related effects on the leaf decomposition rate.

1 2 3 4 564 65 66