API src

Found 653 results.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Grundwasserversalzung durch Meeresspiegelanstieg als gesellschaftliche Herausforderung - Das Beispiel Nordwest-Deutschland

Grundwasserversalzung ist eines der größten Probleme die mit dem klimatisch bedingten Meeresspiegelanstieg assoziiert werden, trotzdem wird dieses Problem aufgrund seines langsames Voranschreitens bedingt durch die geringen Fließgeschwindigkeiten im Untergrund von Gesellschaft und Entscheidungsträgern weitgehend übersehen. Aufgrund dieser Tatsache kann man auch von einer schleichenden Katastrophe sprechen, die große Unsicherheiten bezüglich des zu erwartenden Ausmaßes birgt und zu Herausforderungen bezüglich der gesellschaftlichen Reaktionen führt. Es ist jedoch wichtig, die Anfälligkeit des Grundwassersystems für eine Versalzung sowie dessen zu erwartendes Ausmaß als Folge des Meeresspiegelanstiegs zu verstehen, um effektive Managementstrategien und Gegenmaßnahmen zu entwerfen. Das Projekt zielt darauf ab, die Reaktionen der Küstenaquifere Nord-West-Deutschlands auf den innerhalb des SPP prognostizierten Meeresspiegelanstieg zu identifizieren. Zu diesem Zweck werden großskalige numerische Dichteströmungsmodellierungen angewandt, mit Hilfe derer zunächst die gegenwärtigen und später basierend auf verschiedenen Szenarien die zukünftigen Strömungsverhältnisse abgebildet werden sollen. Darüber hinaus sollen die sozioökonomischen Folgen der zu erwartenden Grundwasserversalzung untersucht werden, um anschließend geeignete Gegenmaßnahmen mit den betroffenen Akteuren zu aufzuzeigen. Besonderer Fokus liegt dabei auf den Wahrnehmungsmustern, dem Wissen und Lernprozessen von relevanten gesellschaftlichen Akteuren sowie den Kosten von Anpassungsmaßnahmen. Die Ziele der Projektes beziehen sich auf die generellen SPP Ziele die natürlichen und gesellschaftlichen Folgen von Küstensystemen auf den zukünftigen Meeresspiegelanstieg festzustellen sowie Anpassungsstrategien zum Meeresspiegelanstieg unter den gegebenen technischen, ökonomischen, kulturellen, gesellschaftlichen, sozialen und politischen Zwängen auszuloten.

Revision des Methankreislaufes in Seen: Quellen und Senken in 2 deutschen Seen unter besonderer Berücksichtigung der Methanakkumulation in sauerstoffhaltigenen Wasserschichten

Die Akkumulation von Methan (CH4) in sauerstoffhaltigen Wasserschichten wurde kürzlich für viele Binnengewässern und Ozeangebiete beschrieben. In unserem DFG-Projekt Aquameth (GR1540/21-1) haben wir daher die wichtigste Literatur in einem Review zusammengefasst und die möglichen Mechanismen für dieses Phänomen im Stechlinsee evaluiert. Indem wir ein online System für CH4 Messungen entwickelt haben, konnten wir die enge Kopplung der räumlich-zeitlichen Dynamik von Algen (z.B. Blaualgen und Cryptophyten) und CH4 in den oxischen Wasserschichten des Sees zeigen. Obwohl der vor kurzem beschriebene Methylphosphonat-Metabolismus im See vorkommt, haben wir zahlreiche Hinweise, dass Algen das CH4 während der Photosynthese direkt produzieren. Jedoch sind die genauen Mechanismen sowie der Anteil des im sauerstoffreichen Wasser gebildeten CH4 am gesamten CH4 Fluss in die Atmosphäre unklar. Durch die Kombination der Expertise von zwei etablierten Arbeitsgruppen, die sich ideal ergänzen, möchten wir die genaue Chemie und Biologie der CH4 Bildungs- und Oxidations-prozesse untersuchen, um die Rolle von Seen für den regionalen und globalen CH4 Kreislauf besser zu verstehen. Daher soll das komplette CH4 Budget von zwei Seen detailliert quantifiziert werden, d.h. CH4-Quellen und -Senken werden mit einem Massenbalance-Ansatz untersucht und mit in situ Inkubationsexperimenten verknüpft. Unsere zwei ausgesuchten Seen (Stechlinsee und Willersinnweiher) repräsentieren zwei Hauptseentypen der gemäßigten Zone (tief/Nährstoff-arm und flach /Nährstoff-reich), die gut von beiden Institutionen untersucht und biogeochemisch charakterisiert wurden. In diesen Seen hängen die spezifischen Prozesse der CH4 Bildung, Akkumulation und Freisetzung in die Atmosphäre von dem komplizierten Wechselspiel von physikalischen, chemischen und biologischen Faktoren sowie bestimmten Organismen ab. Daher ist unser Hauptziel, dieses komplizierte Wechselspiel zwischen Umweltvariablen und den CH4 Prozessen und ihre globale Bedeutung zu entschlüsseln. Unser Hypothesen sind: (1) Die Methanproduktion ist direkt mit der Photosynthese verbunden und CH4 kann bei bestimmten Umweltbedingungen, z.B. Nährstofflimitation, direkt von photo-autotrophen Organismen gebildet werden. (2) Die Methanbildung ist von der -oxidation durch die räumlich-zeitliche Trennung der methanotrophen Aktivität in sauerstoffhaltigen Wasserkörpern entkoppelt. (3) Methan an der Temperatursprungschicht ist das Produkt aus einem komplizierten Wechselspiel von biologischen, chemischen und physikalischen Prozessen. (4) Die erhöhten CH4 Konzentration in der oberen oxischen Wasserschicht erleichtert den Gasaustausch mit der Atmosphäre. Obwohl die CH4 Anreicherung in den oberen Wasserschichten stark vernachlässigt wurde, könnte sie eine wichtige fehlende Verbindung im globalen CH4 Budget sein. Um diese Hypothesen zu überprüfen, sollen Feld- und Labormessungen gemeinsam durch beide Teams durchgeführt werden.

Aufklärung der mikrobiellen Nitratumsetzung in einem Süßwasserhabitat bei Anwesenheit von Methan, Nitrat und Ammonium: Koppelung von n-damo (Nitrat/Nitrit-abhängige anaerobe Methanoxidation) und Anammox (anaerobe Oxidation von Ammonium)

In diesem Projekt wollen wir in einem Süßwasserhabitat die Koppelung der nitratabhängigen Methanoxidation (n-damo) mit dem Anammox Prozess nachweisen. Messungen der stabilen Isotope im Methan, Nitrat, Nitrit, Ammonium und DIC und molekularbiologische Methoden sollen helfen, diese Prozesse zu entschlüsseln. Zudem wollen wir klären, wie die Erkenntnis von einströmendem Grundwasser in das Habitat (Interaktion zwischen Grundwasser und Seewasser) zu erklären ist, dass die für die Prozesse (n-damo, Anammox, Methanogenese) benötigten stabilen Umwelt- bzw. anoxischen Redoxbedingungen vorliegen.

Unbeachtete Dynamik des Gewässerbetts? Wirkung wandernder Sandrippel auf das mikrobielle Nahrungsnetz und den Metabolismus in Fließgewässern

Ziel des Projektes ist es, die Bedeutung wandernder Sandrippel für das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus in Fließgewässerökosystemen aufzuklären. Die etablierten Konzepte zur Sedimentstörung in der Fließgewässerökologie fokussieren auf katastrophale Hochwasserereignisse, die tiefe Erosionen und drastische Verlagerungen der Sedimente bewirken. In Gewässern mit einem hohen Anteil sandiger Sedimente kommt es allerdings bereits bei geringen Abflüssen zu einer periodischen Umlagerung der Bettsedimente in Form wandernder Sandrippel. Diese Sandrippel bedecken, abhängig von der Sedimentfracht, zunehmende Bereiche der Gewässersohle, streckenweise sogar bis zu 100%. Aufgrund des weltweit zunehmenden Feinsedimenteintrags aus den Einzugsgebieten sind Sandrippel ein weit verbreitetes Phänomen in Bächen und Flüssen. Dennoch gibt es zum Einfluss der Sandrippel auf die Fließgewässerökologie nur sehr wenige Untersuchungen, deren Ergebnisse sich teilweise widersprechen. Wir postulieren, dass wandernde Sandrippel abhängig von ihrem Deckungsgrad auf der Sohle das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus des gesamten Gewässers bestimmen. In originären experimentellen Ansätzen untersuchen wir i) die Auswirkungen der Sedimentumlagerung innerhalb wandernder Sandrippel, ii) die Interaktion der Rippelbereiche mit den umliegenden stabilen Sohlbereichen eines Gewässerabschnitts und den Gesamtmetabolismus im Abschnitt und iii) den Return (= Dynamik nach Beendigung der Sedimentumlagerung). Die Bewegung der Sande in wandernden Sandrippeln wird in einer Mikrokosmenanlage simuliert und der Einfluss von Umlagerungsfrequenz, Licht- und Nähstoffregime auf die Respiration, die Primärproduktion und das mikrobielle Nahrungsnetz untersucht. Die Auswirkungen zunehmender Bedeckung der Sohle mit wandernden Sandrippeln auf nahe stabile Sohlbereiche und den Gesamtmetabolismus von Gewässerabschnitten werden in 16 Rinnen einer Fließgewässersimulationsanlage erforscht. In diesen Experimenten werden zudem der Return von mikrobiellen Gemeinschaften und Gesamtmetabolismus mit erfasst. Die Experimente werden ergänzt und validiert durch in situ Messungen in Bächen und Flüssen. Dabei werden die abiotisch Bedingungen im Porenraum wandernder Sandrippel und naheliegender stabiler Sande sowie der lokale Metabolismus mit einer neu entwickelten Sonde gemessen und das mikrobielle Nahrungsnetz und der Kohlenstofftransfer in diesen Sohlbereichen erfasst. Die Synthese der Ergebnisse wird Klarheit schaffen über die Bedeutung wandernder Sandrippel für die mikrobiellen Gemeinschaften und den Stoffumsatz in Fließgewässern. Die zu erwartenden Erkenntnisse werden auch eine bessere Bewertung wandernder Sandrippel ermöglichen und sind somit Grundlage für Schutz und Management der Gewässerfunktionen.

Transformation of organic carbon in the terrestrial-aquatic interface

The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.

Experimente und Simulationen zur Untersuchung aquatischer Vegetationsschichten mit langen flexiblen Elementen

Aquatische Ökosysteme sind wegen ihrer Allgegenwart und ihren zahlreichen Funktionen auf unterschiedlichen Skalen von hoher Relevanz. Die Interaktion zwischen der Strömung und den flexiblen Blättern einer aquatischen Vegetationsschicht bestimmen das hydraulische Verhalten, sowie den Transport von Sediment, Nährstoffen und Verunreinigungen. Während Konfigurationen mit starren Elementen in vielen Laboruntersuchungen analysiert wurden, ist bisher wenig für den Fall sehr flexibler Strukturen bekannt, d.h. für den Fall hoher Cauchy-Zahlen. Dieses Defizit wird durch das vorliegende Projekt adressiert, bei dem sorgfältig abgestimmte Simulationen und Experimente eingesetzt werden, um deren hydromechanische Eigenschaften bei Rekonfiguration zu untersuchen, sowie deren Auswirkungen auf den Transport skalarer Größen. Ein wesentliches Feature des Projekts ist die enge Kopplung an ökologisch-relevante Bedingungen. Experimente und Simulationen werden für drei Typen von Konfigurationen durchgeführt: (1) Testkonfigurationen mit einer einzelnen Struktur oder mit wenigen zur Methodenentwicklung und Validierung, (2) homogene Anordnungen mit gleichartigen Strukturen hoher Flexibilität, (3) Konfigurationen mit Lichtungen, die die Patch-Skala adressieren. Daten zur Charakterisierung realer schlanker Wasserpflanzen und Patches werden im Projekt ermittelt, so dass eine optimale Wahl der Parameter in Experiment und Simulation gewährleistet ist. Diese werden zum Teil für dieselbe Konfiguration durchgeführt, wobei Simulationen z.B. nicht messbare Größen bereitstellen können. Zusätzlich werden die jeweiligen Vorzüge von Experiment und Simulation eingesetzt, um komplementäre Bereiche des Parameterraums abzutasten. So entsteht eine sehr verlässliche und reichhaltige Datenbasis. Für Experiment wie Simulation werden neuartige Methoden eingesetzt. Im Experiment werden PIV, PLIV eingesetzt, sowie ein Akustik Doppler Profilsensor. Damit ist die simultane Vermessung von Konzentrationen, Fluidgeschwindigkeiten und Strukturen möglich. Speziell der Profilsensor wurde bisher nicht für derartige Aufgaben verwendet. Er erlaubt die Messung instantaner Geschwindigkeitsprofile über der künstlichen Vegetationsschicht wie auch in ihrem Inneren simultan mit der Position der Strukturen. Überzeugende Simulationen von Vegetationsschichten mit flexiblen Elementen existieren bisher nicht. Hier wird eine innovative Methode verwendet, die eine IBM mit einem eigenen semi-impliziten Kopplungsalgorithmus und einem hoch effizienten Cosserat-Modell kombiniert. Damit können Simulationen für tausende Strukturen durchgeführt werden, die einen großen Datenreichtum liefern. Die gemeinsame Auswertung der Daten durch die Projektpartner erlaubt die ideale Kombination der interdisziplinären Kompetenz. Die Vision ist, ein detailliertes Verständnis der komplexen Prozesse zu generieren, die Vegetationsschichten mit hoher Cauchy-Zahl dominieren, und dieses Wissen für aquatische Ökosysteme bereitzustellen.

Sonderforschungsbereich (SFB) 1253: Catchments as Reactors: Schadstoffumsatz auf der Landschaftsskala (CAMPOS); Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS), Teilprojekt P05: Schadstofftransformationen an der Grenzfläche zwischen Grundwasser und der Gesteinsmatrix in Kluftgrundwasserleitern

Die Verweilzeit von Grundwasser in ausgedehnten Grundwasserleitern liegt oft im Bereich von Dekaden, so dass auch langsame mikrobielle Stoffumsätze (z.B. von Nitrat, Atrazin und dessen Abbauprodukten) die Stofffracht in solchen Systemen erheblich beeinflussen können. In diesem Projekt werden mittels geologischer und geochemischer Analysen die reaktiven Zonen und die zugehörigen Verweil- und Kontaktzeiten des Wassers eines Kluftgrundwasserleiters bestimmt. Omics und molekularbiologische Methoden werden genutzt, um Abbaupotential und Aktivität der mikrobiellen Gemeinschaften zu untersuchen. In begleitenden Laborexperimenten werden effektive Diffusions-konstanten und metabolische Raten, deren limitierende Faktoren und die beteiligten Mikroorganismen quantifiziert.

Optimierte Eisen-Biokohle-Komposite zum Abbau von halogenierten Verbindungen in Umweltmedien: Synthese-Strategien und Reaktionsmechanismen

Die rasante Urbanisierung und Industrialisierung in den vergangenen Jahrzehnten hat zu einer Vielzahl von Umweltkontaminationen mit halogenierten organischen Verbindungen (HOCs) sowohl in China als auch Europa geführt. Ziel des vorgeschlagenen Projektes ist es, neue Erkenntnisse und ein vertieftes Prozessverständnis für die Synthese von biobasierten nFe(0)/Pd/C-Kompositen und deren Reaktionen mit HOCs in der Grundwasserreinigung zu gewinnen. Dies beinhaltet die Identifizierung von Synthese-optionen für Partikel mit maßgeschneiderten und verbesserten Eigenschaften mithilfe der Hydrothermalen Karbonisierung (HTC). Ein tiefgreifendes mechanistisches Verständnis der beteiligten Prozesse, d.h. Sorption, Reaktion und Transport reaktiver Spezies so-wie Katalyse sowie deren Synergien dient einer zielgerichteten Optimierung der Partikel und der Erkundung ihrer Anwendungsgebiete. Die nFe(0)/Pd/C-Komposite sollen speziell für die in-situ Grundwasserreinigung geeignet sein und verbesserte Eigenschaften insbesondere für solche Anwendungsfälle besitzen, bei denen bekannte Konzepte der in-situ-Sanierung mit Nanopartikeln (Nanoremediation) nicht greifen. Die synergistische Kombination verschiedener Wirkprinzipien erlaubt Multikatalyse-Prozesse sowie die sequentielle Behandlung von verschiedenen Kontaminanten. Zunächst werden verschiedene Optionen für die Einbettung von Metallen in oder auf die Kohlepartikel untersucht, die erhaltenen Produkte detailliert durch physikalisch-chemische Methoden charakterisiert und auf ihre Reaktivität getestet. Danach werden Reaktionen in Batch-Ansätzen für die Aufklärung der zugrundeliegenden Mechanismen, wie das Zusammenspiel von Pd, Kohleoberfläche und Fe-Spezies, der beteiligten Reaktionswege und reaktiven Spezies, durchgeführt. Weiterhin werden Optionen für Multikatalyse und sequentielle Reduktions-/Oxidationsprozesse untersucht. Abschließend werden die entwickelten Materialien und Prozesse im Labor für die Behandlung von Wasser von kontaminierten Standorten in Deutschland und China erprobt. Dieses kooperative Forschungsvorhaben von chinesischen und deutschen Partnern wird zu einem signifikanten Fortschritt in der Sanierungsforschung für industriell kontaminierte Standorte, insbesondere auch in China, führen.

Forschergruppe (FOR) 2131: Datenassimilation in terrestrischen Systemen; Data Assimilation for Improved Characterisation of Fluxes across Compartmental Interfaces, Teilprojekt: Wert von Grundwasserdaten in der Assimilation des Grundwasser-Boden-Landoberflächen Komplexes

Das Projekt untersucht (a) ob und wie Grundwasserbeobachtungen und die Bestimmung von Aquifereigenschaften die Schätzung und Vorhersage durch Datenassimilation des gekoppelten Atmosphären-Oberflächen-Untergrund-Systems verbessern sowie (b) ob und wie die Aktualisierung von Zuständen und Eigenschaften benachbarter Kompartimente die Schätzung der Zustände im Grundwasserkompartiment verbessert. Wir erwarten einen Nutzen durch die konsistente Behandlung von Flüssen über die Grenzen des Grundwasserleiters zu allen benachbarten Kompartimenten innerhalb des gekoppelten Modellrahmens. Die Einbindung benachbarter Kompartimente erhöht jedoch den rechnerischen Aufwand und trägt zur konzeptionellen und parametrischen Unsicherheit bei. Darüber hinaus können sich die räumlichen und zeitlichen Skalen benachbarter Kompartimente unterscheiden. Das Projekt wird die beste Strategie für die Aktualisierung der Grundwasserzustände und -parameter sowohl in schwach als auch stark gekoppelten Datenassimilations-Umgebungen auf der Basis von TerrSysMP-PDAF entwickeln.

Multi Skalen Modellierung von Abtragprozessen bei Biofilmen mit einem poroviskoelastischen Modell

Das Biofilmwachstum in Biofilmreaktoren wird hauptsächlich durch den Abtragprozess reguliert. Den Abtragprozess zu kontrollieren ist daher ein wichtiges Anliegen für den stabilen Betrieb eines Bioreaktors. Zur Kontrolle des Reaktors und um die größte Effizienz zu erreichen sind mathematische (bzw. numerische) Modelle, die den Abtragsprozess darstellen, hilfreich. Solche Modelle können möglicherweise sogar für den Entwurf von Biofilmreaktoren nützlich zu sein. In diesem Projekt soll ein multidimensionales, poroviskoleastisches Biofilm Modell entwickelt werden, das den Abtragsprozess abbildet. Dabei soll auch der Abtrag durch das Auslösen von größeren Stücken ('sloughing'), das durch die Schubspannungen an der Biofilm Grenzfläche und durch das Spannungsfeld im Biofilm entsteht, erfasst werden. Das Modell für den Abtrag soll basierend auf den Schubspannungen an der Grenzfläche und dem Spannungsfeld im Biofilm formuliert werden. Das Modell wird mit experimentellen Beobachtungen kalibriert und validiert. Biofilm Modelle, die für Reaktoren verwendet werden, sind in der Regel eindimensional (1D). Aus diesem Grund soll in diesem Projekt mittels Modellrechnungen mit dem validierten multi-dimensionalen Abtragmodell ein vereinfachtes ('upscaled') 1D Modell entwickelt werden.

1 2 3 4 564 65 66