API src

Found 653 results.

Die Rolle von Viren beim mikrobiellen Schadstoffabbau

Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt B 01: Physikalisch-chemische Gesetzmäßigkeiten der Wechselwirkungen an und mit Mikroplastik-Partikeln in wässriger Lösung

MP-Partikel mit Größen im unteren Mikrometer- und Submikrometer-Bereich stellen kolloidale Systeme dar, deren Oberflächenkräfte und Adsorptionsverhalten den Transport sowohl in aquatischen als auch terrestrischen Umgebungen bestimmt. Das zentrale Ziel dieses TP ist die Untersuchung der zugrundeliegenden Oberflächeneigenschaften von MP-Partikeln und deren Änderung durch Adsorption von natürlichen kolloidalen Inhaltsstoffen bei Exposition in limnischen Umgebungen. Aufgrund der Komplexität dieser Systeme sollen unsere Studien anhand von Modellsystemen mit repräsentativen Bestandteilen wie Eisen- und Aluminiumhydroxiden sowie Humin- und Fulvosäuren durchgeführt werden. Die Oberflächeneigenschaften und deren Änderungen werden anhand nasschemischer und kolloidchemischer Techniken bestimmt und mit der lokalen Grenzflächenstruktur aus Festkörper-NMR-spektroskopischen Experimenten und der direkten Messung von Wechselwirkungskräften mit dem Rasterkraftmikroskop korreliert. So erarbeiten wir, ein umfassendes Verständnis für die zugrundeliegenden Adsorptionsprozesse, und damit die Grundlage für eine Modellierung des Aggregations- und Transportverhaltens von MP im geochemischen Milieu.

Erweiterung von Modellkonzepten für technisch kontrollierte Kalziumkarbonatausfällung unter besonderer Berücksichtigung mehrerer antreibender Prozesse, des Temperatureinflusses und der Zweiphasenströmung

Fluidspeicherung im Untergrund ist ein wichtiger Bestandteil der Bemühungen zur Eindämmung des Klimawandels (Speicherung von CO2) oder für Energiespeicherung um die Schwankungen durch die wechselnde, unvorhersehbare Produktion erneuerbarer Energierzeugung auszugleichen. Diese Fluide können jedoch durch undichte Brunnen oder beschädigte Deckschichten austreten. Die technisch kontrollierte Kalziumkarbonatausfällung ist von unseren Partnern an der Montana State University erfolgreich in Feldversuchen angewandt worden, solche Leckagen zu beheben. Die Anwendbarkeit einer bestimmten Methode von induzierter Kalziumkarbonatausfällung (ICP) wird hauptsächlich durch die Tiefe der Leckage und dem lokalen geothermalen Gradienten bestimmt. Mikrobiell induzierte Kalziumkarbonatausfällung (MICP) ist auf die Aktivität lebender bakterieller Zellen angewiesen, welche auf einen niedrigen Temperaturbereich beschränkt ist, der meist nur im flacheren Untergrund, in zur Speicherung von CH4 oder Erdgas geeigneten Tiefen gegeben ist, aber in geeigneten Reservoiren für die Speicherung von CO2 meist überschritten wird. Deswegen sollten weitere Möglichkeiten, Kalziumkarbonatausfällung durch Enzyme (EICP) oder thermische Prozesse (TICP) zu induzieren, entwickelt und in Feldversuchen erprobt werden. Das Hauptziel dieses Projekts ist es, das bestehende numerische Modell für MICP zu verallgemeinern um ein allgemeingültiges Modell zu erhalten, welches auch für EICP und TICP sowie Kombinationen der Prozesse verwendet werden kann. Dafür müssen zunächst alle für EICP und TICP relevanten Prozesse und deren Interaktionen identifiziert werden, um das Modellkonzepte zu formulieren. Für EICP und TICP sind nicht-isotherme Modelle besonders wichtig, da für beide die zentrale Harnstoffhydrolysereaktion stark temperaturabhängig ist. Dafür muss die temperaturabhängig der physikalischen Eigenschaften und der biogeochemischen Reaktionen sowie der Transport der inneren Energie quantifiziert und parameterisiert werden. Die Implementierung des Modells im Open-Source Simulator DuMuX (www.dumux.org) wird auf dem vorhandenen Modell für MICP aufbauen. Ein zweiter Teil des Projekts ist die Verbesserung des ICP Modells unter besonderer Berücksichtigung anwendungsrelevanter Prozesse, wie zum Beispiel der Auswirkung von ICP auf die Zweiphasenströmungseigenschaften. Diese Auswirkung ist bis jetzt noch nicht im bestehenden Modell berücksichtigt. Vor allem aufgrund der Anwendung von ICP zur Reduktion von Gasleckagen im Untergrund sollte das Modell die Auswirkung von ICP auf die Zweiphasenströmungseigenschaften jedoch berücksichtigen, da die Erhöhung des Eindringdrucks für das Gas auf Werte über den Reservoirdruck für eine ausreichende Abdichtung ausreicht.

Experimente und Simulationen zur Untersuchung aquatischer Vegetationsschichten mit langen flexiblen Elementen

Aquatische Ökosysteme sind wegen ihrer Allgegenwart und ihren zahlreichen Funktionen auf unterschiedlichen Skalen von hoher Relevanz. Die Interaktion zwischen der Strömung und den flexiblen Blättern einer aquatischen Vegetationsschicht bestimmen das hydraulische Verhalten, sowie den Transport von Sediment, Nährstoffen und Verunreinigungen. Während Konfigurationen mit starren Elementen in vielen Laboruntersuchungen analysiert wurden, ist bisher wenig für den Fall sehr flexibler Strukturen bekannt, d.h. für den Fall hoher Cauchy-Zahlen. Dieses Defizit wird durch das vorliegende Projekt adressiert, bei dem sorgfältig abgestimmte Simulationen und Experimente eingesetzt werden, um deren hydromechanische Eigenschaften bei Rekonfiguration zu untersuchen, sowie deren Auswirkungen auf den Transport skalarer Größen. Ein wesentliches Feature des Projekts ist die enge Kopplung an ökologisch-relevante Bedingungen. Experimente und Simulationen werden für drei Typen von Konfigurationen durchgeführt: (1) Testkonfigurationen mit einer einzelnen Struktur oder mit wenigen zur Methodenentwicklung und Validierung, (2) homogene Anordnungen mit gleichartigen Strukturen hoher Flexibilität, (3) Konfigurationen mit Lichtungen, die die Patch-Skala adressieren. Daten zur Charakterisierung realer schlanker Wasserpflanzen und Patches werden im Projekt ermittelt, so dass eine optimale Wahl der Parameter in Experiment und Simulation gewährleistet ist. Diese werden zum Teil für dieselbe Konfiguration durchgeführt, wobei Simulationen z.B. nicht messbare Größen bereitstellen können. Zusätzlich werden die jeweiligen Vorzüge von Experiment und Simulation eingesetzt, um komplementäre Bereiche des Parameterraums abzutasten. So entsteht eine sehr verlässliche und reichhaltige Datenbasis. Für Experiment wie Simulation werden neuartige Methoden eingesetzt. Im Experiment werden PIV, PLIV eingesetzt, sowie ein Akustik Doppler Profilsensor. Damit ist die simultane Vermessung von Konzentrationen, Fluidgeschwindigkeiten und Strukturen möglich. Speziell der Profilsensor wurde bisher nicht für derartige Aufgaben verwendet. Er erlaubt die Messung instantaner Geschwindigkeitsprofile über der künstlichen Vegetationsschicht wie auch in ihrem Inneren simultan mit der Position der Strukturen. Überzeugende Simulationen von Vegetationsschichten mit flexiblen Elementen existieren bisher nicht. Hier wird eine innovative Methode verwendet, die eine IBM mit einem eigenen semi-impliziten Kopplungsalgorithmus und einem hoch effizienten Cosserat-Modell kombiniert. Damit können Simulationen für tausende Strukturen durchgeführt werden, die einen großen Datenreichtum liefern. Die gemeinsame Auswertung der Daten durch die Projektpartner erlaubt die ideale Kombination der interdisziplinären Kompetenz. Die Vision ist, ein detailliertes Verständnis der komplexen Prozesse zu generieren, die Vegetationsschichten mit hoher Cauchy-Zahl dominieren, und dieses Wissen für aquatische Ökosysteme bereitzustellen.

Makro-Skala-Modellierungskonzepte für das Wachstum und den advektiven Transport von Bakterien in mit zwei Phasen gesättigten porösen Medien

Poröse Medien bieten exzellente Lebensbedingungen für Bakterien, da ihr Lebensraum geschützt ist aber trotzdem eine kontinuierliche Nahrungezufuhr möglich ist. Folglich existieren Mikroorgansimen in vielen natürlichen und technischen porösen Medien und haben dort einen großen Einfluss. Wenn diese für technische oder industrielle Anwendungen genutzt werden, ist es sehr wichtig die Wechselwirkungen zwischen Strömung, Transport und mikrobiologischen Prozessen zu verstehen. In der Literatur ist eine Vielzahl von Modellierungsmethoden vorhanden, jedoch sind diese in der Regel unter einphasigen Strömungsbedingungen entwickelt worden. Es ist schwierig mikrobiologische Prozesse in den natürlichen und komplexen Porenstrukturen von Gesteinen (wie z.B. Anhaften/Ablösen und Bildung von Biofilmen) zu beobachten und demzufolge sind diese Prozesse unzureichend erforscht. In diesem Projekt werden künstliche Strukturen geschaffen, die den Porenstrukturen des Gesteins nachempfunden sind und dafür benutzt, das Verhalten von Bakterien in mit zwei Phasen gesättigten porösen Medien zu untersuchen. Diese transparenten sozusagen zweidimensionalen Mikromodelle erlauben eine direkte Beobachtung der mikrobiologischen Prozesse, wie z.B. Wachstum, Transport und Anhaftung/Ablösung von Bakterien, durch mikroskopische Auswertungen. Die Bakterien, die für die experimentellen Untersuchungen eingesetzt werden, gehören zu der Klasse der methanogenen Archaeen. Die detaillierte Interpretation der experimentellen Ergebnisse durch Bilddatenverarbeitung erlaubt es, zeitlich und räumlich aufgelöste Datensätze für die Anzahl, Struktur und Bewegung der Bakterien zu erzeugen. Aus diesen Datensätzen wird ein verbessertes mathematisches Modell entwickelt, welches das Wachstum und die Bewegung von Bakterien in mit zwei Phasen gesättigten porösen Medien beschreibt. Das Modell soll das bakterielle Wachstum unter nicht-nährstofflimitierten Bedingungen, das Vorhandensein von verschiedenen bakteriellen Strukturen (Plankton und Biofilm), die individuellen Bewegungseigenschaften und die Anhaftungs- und Ablösevorgänge berücksichtigen. Um das neu entwickelte Modell zu testen und zu parametrisieren, wird es auf Basis eines diagonal-impliziten Runge-Kutta-Verfahrens, welches für die stark nicht-linearen Quellterme gut geeignet ist, numerisch umgesetzt. Die Anwendung des theoretischen Modells bezieht sich auf die Technologie der Untergrundmethanisierung, in welcher das injizierte Gasgemisch aus Wasserstoff und Kohlenstoffdioxid durch mikrobiologische Reaktionen in Methan umgewandelt wird.

Stochastische Charakterisierung von diskreten Klüften in Festgestein durch hydraulische und Tracer-Tomographie

Geklüftete Festgesteine haben eine große Bedeutung als Grundwasserleiter und für die petrothermale Geothermie. Eine Herausforderung ist es immer, die strukturellen Merkmale der Festgesteine und jene Kluftsysteme zu erkunden, die für Fließ- und Transportprozesse bedeutend sind. Je genauer die Charakterisierung erfolgt, umso verlässlicher können diese Prozesse mit numerischen Modellen simuliert werden. Zwar gibt es mit numerischen Modellen beeindruckende Möglichkeiten zur effizienten, realistischen, hochauflösenden und gekoppelten Simulation, allerdings lässt sich der Datenbedarf solcher Modelle durch die verfügbaren Erkundungsverfahren kaum decken. Besonders jene standortspezifischen Eigenschaften wie die Kluftgeometrien erfordern angepasste Erkundungsverfahren. Zudem werden nach erfolgreicher Erkundung auch effiziente Methoden benötigt, um die erhobenen Daten in das numerische Modell zu integrieren. Das vorliegende Projekt widmet sich der Anwendung von tomographischen Bohrlochtests mit Wasser (Druck) und Tracer (Salztracer, thermisch) zur Charakterisierung von jenen für Grundwasserfluss und Transport relevanten Klüften. Über die Kombination von Multi-Level-Tests mit mehreren Bohrlöchern wird die räumliche Rekonstruktion von Kluftgeometrien ermöglicht. Eine zentrale Innovation ist die Inversion der aufgezeichneten tomographischen Signale über ein flexibles Bayessches Verfahren, das iterativ Kluftorientierungen, -längen und Kluftdichte anpasst (Inversmodell). Es wird kombiniert mit einer effizienten numerischen Implementierung und Simulation des diskreten Kluftnetzwerks (Vorwärtsmodell). Aufbauend auf den vielversprechenden Ergebnissen aus Vorarbeiten wird das vorgestellte Diskrete-Kluftnetzwerk-Inversionsverfahren hier weiterentwickelt und zur robusten Schätzung von zwei- (2D) und dreidimensionalen (3D) Kluft-Wahrscheinlichkeiten verwendet. Dies wird sowohl über die Anwendung von synthetischen Datensätzen aus virtuellen Bohrlochtests erreicht, als auch mithilfe von Druck- und thermischen Tracerdaten aus in-situ-Experimenten in Kluftgesteinen.

Wie Bodeneigenschaften Prozesse im Boden und an der Schnittstelle zwischen Boden und Atmosphäre beeinflussen - Eine Verknüpfung von Experimenten und Modellierung

Es ist das primäre Ziel dieses Projektes, Prozesse an der Schnittstelle zwischen Boden und Atmosphäre und deren Einfluss auf die ungesättigte Bodenzone zu analysieren, sowie die Theorie derartigen nicht-isothermen, mehrphasen und mehrkomponenten Prozesse zu verbessern. Hierbei liegt der Hauptfokus auf dem Einfluss von Oberflächenrauheiten und Heterogenitäten auf das Austauschverhalten. Das übergeordnete Ziel ist es, neue und validierte physikalische und mathematische Modelle zu entwickeln. Diese Modelle sollen mithilfe von umfassenden experimentellen und numerischen Analysen auf verschiedenen örtlichen und zeitlichen Skalen erstellt werden. Das Projekt hat vier Hauptziele:1. Hochauflösende Laborexperimente sollen auf verschiedenen Skalen (0,25-8m) durchgeführt werden, um neuartige Datenreihen zu erstellen, die aktuell nicht verfügbar sind. Dazu werden Experimente in einem Boden-Atmosphären Windkanal, dem Einzigen seiner Art, durchgeführt in denen die Eigenschaften der freien Strömung, der Bodenoberfläche und des Bodens variiert werden.2. Auf der Intermediate Skala werden Freifeldversuche unter dynamischen Randbedingungen durchgeführt um (i) die theoretischen Beschreibungen unter dem Einfluss von natürliche Heterogenitäten (z.B. Aggregaten) zu testen (ii) den Einfluss von tagesgang-abhängigen Triebkräften (z.B. Windgeschwindigkeit) zu analysieren und (iiI) zu untersuchen wie die Heterogenitäten am besten auf unterschiedlichen Skalen integriert werden können und wie diese die Austauschprozesse beeinflussen.3. Mit Hilfe dieser experimentellen Daten werden detaillierte numerische Simulationen auf der Darcy Skala (wenn notwendig mit der Forchheimer Erweiterung) benutzt, um zu analysieren ob es notwendig ist, die freie Strömung und deren Grenzschichteffekte für Masse, Impuls und Energie in aktuelle Modelle zu integrieren.4. Die Theorie für Massen-, Impuls- und Energieaustauschprozesse zwischen der Atmosphäre und dem Boden soll verbessert werden. Das beinhaltet Verdunstung, Kondensation, Strahlung und Transport von Komponenten, wie flüchtigen Komponenten in der Gasphase (VOC) oder stabilen Wasserisotopen, unter der Berücksichtigung unterschiedlicher Materialgrenzflächen. In einem zweiten Schritt sollen vereinfachte Modelle mit effektiven Parametern, basierend auf der integralen Betrachtung von Strömungs- und Transportprozessen, entwickelt, erweitert und getestet werden. Diese Modelle sollen die Effekte auf den unterschiedlichen zeitlichen und räumlichen Skalen wiedergeben.

Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Ökoevolutive Rückkopplungen phänotypischer Plastizität und mono- versus polyklonaler Gemeinschaften in bi- und tri-trophischen Systemen

Unser Projekt fokussiert sich auf die Effekte individueller Merkmalsvariation (phänotypischer Plastizität) und genetischer Merkmalsvariation (polyklonale Systeme) auf Populations-, Gemeinschafts- und Merkmalsdynamiken, in bi- und tritrophischen System, mit Algen, herbivore Ciliaten und ihren Räubern (karnivore Ciliaten). In unserem System wirkt phänotypische Plastizität auf zwei Ebenen. Die herbivoren Ciliaten (Euplotes aediculatus und E. octocarinatus) können phänotypisch plastische Verteidigungen gegen ihre Räuber ausbilden, die aber einen Trade-off zwischen Verteidigung und Konkurrenzstärke bedingen. Wir werden dabei verschiedene Euplotes-Stämme, die sich in ihren Reaktionsnormen der Plastizität, ihrer Wachstumsrate und ihrer Konkurrenzstärke unterscheiden, in mono- und polyklonalen Experimenten, untersuchen. Dementsprechend betrachten wir Merkmalsdynamiken auf der Ebene der Plastizität und auch über die selektionsbedingte Verschiebung der klonalen Zusammensetzungen. Darüber hinaus verwenden wir Prädatoren, die entweder ihrerseits mit phänotypisch plastischen Merkmalen induzierbare Verteidigungen der Beute, zumindest teilweise, ausgleichen können (Lembadion bullinum), oder Räuber, die nicht plastisch reagieren (Stenostomum sphagnetorum). Mit unserem System testen wir folgende Hypothesen:1. Variationen von Merkmalen in Form klonspezifischer Reaktionsnormen (phänotypische Plastizität) auf der Konsumenten- fördert die Stabilität und Beständigkeit der trophischen Ebenen in einem tri-trophischen System.2. Polyklonale Konsumentensysteme mit klonspezifischen Reaktionsnormen der Merkmale erhöhen die Stabilität im Vergleich zu monoklonalen Systemen. 3. Merkmalsvariation auf der Konsumentenebene kann die trophischen Dynamiken in einem tritrophischen System, in Abhängigkeit der Geschwindigkeit der Anpassung, stärker stabilisieren als Merkmalsvariation auf zwei trophischen Ebenen (Räuber und Beute).Unser Projekt kombiniert empirische Experimente mit mathematischer Modellierung. Es ist eng mit anderen Projekten im SPP vernetzt, hat aber das Alleinstellungsmerkmal, dass wir das einzige tritrophische System mit Plastizität auf der Prädatorenebene betrachten. Unser Projekt wird, durch die Kombination experimenteller Ansätze und mathematischer Modellierung, zu einem tieferen Verständnis ökologischer Prozesse im generellen, sowie von Räuber-Beute- und Nahrungsnetz-Dynamiken führen.

Research group (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, Roving - Räumliche Kartierung der Bodenfeuchte über mehrere Skalen mit dem Cosmic-Ray-Rover

Während der stationäre Einsatz der CRNS Methode die Erfassung zeitlicher Variabilitäten der Bodenfeuchte im Einflussbereich (Footprint) des Sensors ermöglicht, dient die mobile Anwendung der Methode, die Rover-Applikation, dazu, die räumliche Variabilität der Bodenfeuchte über größere Flächen und entlang längerer Transsekte zu erfassen. Die räumliche Heterogenität der die Messmethode beeinflussenden Umgebungseigenschaften ist dabei eine zentrale Herausforderung für die Kalibrierung und räumliche Korrektur von mobilen CRNS-Daten. Ziel des Teilprojektes ist es, ein Konzept zur Datenerfassung und -analyse zu entwickeln, das zu zuverlässigen CRNS-Raumdatenprodukten über räumliche Skalen hinweg führt. Dazu werden Methoden zur räumlichen Korrektur unter Einbeziehung von Proxydaten aus z.B. konventioneller Geophysik und Fernerkundung entwickelt. Um die Übertragbarkeit des Ansatzes über Skalen und Standorte hinweg zu erreichen, werden die entsprechenden Parameter mit Hilfe verschiedener Beobachtungsdatensätze, Neutronensimulationen und dem mehrskaligen hydrologischen Modell mHM regionalisiert. Wir werden mit Hilfe von Neutronentransportsimulationen Strategien entwickeln, um den Effekt lokaler Strukturen (wie Straßen und Bäume) zu quantifizieren und in der Messung zu korrigieren. Weiterhin sollen die Effekte von Bodenwasser und Wasser in der Biomasse durch verschiedene Detektorabschirmungen getrennt werden. Die Hypothesen werden im Rahmen von Rover-Kampagnen an verschiedenen Standorten getestet. Der Einsatz des CRNS-Rovers ist darüber hinaus generell von entscheidender Bedeutung für Feldkampagnen, die zusammen mit den anderen RMs durchgeführt werden. Es ist vorgesehen, die CRNS-Rover-Daten in Verbindung mit dem Netzwerk der stationären CRNS-Sonden im Rahmen von Teilprojekt Großflächiges CRNS-Netzwerk zu kalibrieren. Weiterhin integriert das Teilprojekt Daten des Teilprojektes Fernerkundung, um den Effekt der Vegetation mit Hilfe von Teilprojekt Vegetation zu entwickelnden Methoden räumlich zu korrigieren. Die korrigierten CRNS-Roverdaten werden wiederum direkt für die Validierung von fernerkundeten Bodenfeuchteprodukten verwendet. Der Einfluss kleinräumiger Effekte von Straßen und Wäldern wird in enger Zusammenarbeit mit dem Teilprojekt Neutronensimulation untersucht. Des Weiteren ist vorgesehen, verschiedene Schildkonfigurationen zur verbesserten Abschirmung (z.B. von trockenen Straßenbereichen), sowie regelmäßig Prototypen der neuartigen Detektorentwicklung vom Teilprojekt Detektorentwicklung zu testen. Die gemessenen räumlichen Bodenfeuchtemuster werden direkt in die Quantifizierung der Wasserbilanz durch das Teilprojekt Grundwasserneubildung einbezogen. Die Parameter-Regionalisierung wird durch das Teilprojekt Hydrologische Modellierung unterstützt, wobei auch die Rover-Daten einbezogen werden.

Einfluss von Umweltfaktoren auf die Wasserstoffisotopie von Wasserpflanzen

Die Wasserstoffisotopensignatur (Delta D-Wert) von Wasserpflanzenbiomarkern wird zunehmend zur Rekonstruktion vergangener hydrologischer Zustände von Seen verwendet. Während der Synthese dieser Biomarker findet eine Diskriminierung des schwereren Wasserstoffisotopes Deuterium im Vergleich zum aufgenommenen Wasser statt. Im direkten Vergleich zu terrestrischen Pflanzen gibt es sehr wenig verfügbare Daten bezüglich der Größe dieses Fraktionierungsfaktors (Epsilon). Weiterhin ist unbekannt, inwieweit Umweltfaktoren die Isotopenfraktionierung beeinflussen. Dieses fehlende Wissen erschwert die Interpretation von Gamma D-Werten aquatischer Biomarker in Seesedimentkernen erheblich. Eine bereits durchgeführte Pilotstudie und weitere erste Experimente suggerieren einen möglichen Einfluss von Salinität des Seewassers, sowie Nährstoff- und Lichtverfügbarkeit auf Epsilon. Um diesen Verdacht zu bestätigen, müssen nun die Magnituden von potentiellen Isotopeneffekten dieser Parameter in einer systematischen Studie untersucht werden. Wie bereits erfolgreich getestet, werden hierfür Wasserpflanzen verschiedener Spezies, unter kontrollierten Bedingungen, mit Fokus auf Variabilität genannter Parameter, im Labor gezüchtet. Weiterhin werden Makrophyten an geeigneten Standorten über weite Gradienten von Salinität und Nährstoffstatus beprobt und hinsichtlich Delta D-Werten von Biomarkern analysiert. Mithilfe der gewonnenen Daten aus dem gekoppelten Feld- und Laborversuch können die potentiellen Isotopeneffekte von Salinität, Nährstoffverfügbarkeit und Lichtintensität für die zukünftige Anwendung in paläoklimatischen Studien kalibriert werden. Die erwarteten Ergebnisse werden somit einen wichtigen Beitrag hinsichtlich der Interpretierbarkeit von Delta D-Werten aquatischer Biomarker aus Seesedimenten liefern. Die gewonnenen Erkenntnisse sind somit ein wichtiger Baustein zur Rekonstruierbarkeit vergangener hydrologischer Zustände von Seen und damit ein essentieller Faktor zum Verständnis möglicher zukünftiger Änderungen im Zusammenhang mit der Erderwärmung.

1 2 3 4 564 65 66