API src

Found 653 results.

Königshafen Submariner Grundwasserzufluss Netzwerk (KiSNet)

Submariner Grundwasserzustrom (SGD) als Eintragspfad für Wasser und chemische Inhaltsstoffe von Land zum Meer ist ein junges Thema, obwohl seine Bedeutung für Stoffkreisläufe auf globaler Skala mit der von Flüssen gleichzusetzen ist. Trotz dieser Bedeutung beinhalten bisher beschriebene SGD Mengen große Unsicherheiten, entweder weil lokale Punktmessungen auf regionale Skalen extrapoliert wurden oder weil sie auf Modellierungansätzen von regionalen/globalen Stoffflüssen beruhen. Die Unsicherheiten stammen dabei von drei Aspekten: 1) Methoden zur Bestimmung von SGD Mengen unterscheiden sich ohne ihre Relation untereinander zu kennen. Dadurch ist ein methodenübergreifender SGD Mengen Vergleich kaum möglich. 2) SGD Messungen sind zeitlich begrenzte Punktmessungen sind daher nicht generell repräsentativ für Zeit und Raum. 3) SGD Untersuchungen sind meistens disziplinär (entweder marin oder terrestrisch) obwohl weitere Methoden mit gleichen Zielgrößen in anderen Disziplinen existieren. Mit interdisziplinären Untersuchungen würden methodenbezogene Unsicherheiten reduziert. Vor dem Hintergrund des Globalen Wandels, der speziell Küstenregionen betrifft, ist dies essentiell. Das Netzwerk zielt darauf ab, eine Plattform für eine Gruppe von SGD Experten bereit zu stellen, um eine disziplinübergreifende Zusammenarbeit zu initiieren und intensivieren. Durch eine interdisziplinäre Validierung strebt das Netzwerk ebenfalls die Verbesserung individueller Methoden an und einen direkten Vergleich zwischen terrestrischen und marinen Methoden. Letztendlich wird das Netzwerk einen interdisziplinären Methodenkatalog erstellen, der optimale Methodenkombinationen beider Disziplinen für qualitative und quantitative SGD Untersuchungen herausstellt und der die Basis für zukünftige SGD Forschung darstellt. Um diese Ziele zu erreichen wird das Netzwerk um regelmäßige Treffen aufgebaut, von denen vier vis-a-vis Treffen sind. Das erste und letzte sind ein Kick-off und Ergebnis Treffen. Das zweite und dritte dienen dazu ein Methodenvergleichsexperiment in der litoralen Bucht von Königshafen, Sylt durchzuführen. Während des Experimentes wird das interdisziplinäre Netzwerk alle verfügbaren quantitativen und qualitativen Methoden aus beiden Disziplinen zum ersten Man an einem Ort und zur gleichen Zeit anwenden. Im Ergebnis wird das Vorgehen junge und erfahrene Wissenschaftler von allen SGD-relevanten marinen und terrestrischen Disziplinen zusammenbringen. Es wird zudem dazu beitragen, den SGD-Wissensstand aller Teilnehmer zu erweitern, und verleiht der nächsten Generation von SGD Wissenschaftlern einen interdisziplinären Blick auf ihre Forschung. Zudem wird der Methodenvergleich Datensätze erzeugen, die in ihrem Umfang und interdisziplinären Natur einmalig sind und die in internationalen peer-reviewed und Open-Access Journalen veröffentlicht werden. Zudem werden wir den detaillierten SGD Methodenkatalog als Buch analog zu dem GEOTRACES CookBook erstellen und veröffentlichen.

Folgenabschätzung der Vaskulärpflanzenbesiedelung auf den Wasser- und Kohlenstoffkreislauf Sphagnum dominierter Hochmoore - VESBO

Boreale und temperate Moore bedecken weniger als 3% der Erdoberfläche, speichern jedoch fast 30% des terrestrischen Kohlenstoffs (C), akkumuliert über Jahrtausende durch permanente Wassersättigung. Natürliche Hochmoore sind charakterisiert durch Sphagnum-Moos dominierte Vegetationsdecken, werden jedoch seit Jahrhunderten vom Menschen durch Torfabbau genutzt. Die Auswirkungen der künstlichen Entwässerung auf Ökosystemfunktionen und Biodiversität sind zahlreich und nicht auf die stark erhöhten CO2-Emissionen beschränkt. Die Wiederherstellung quasi-natürlicher hydrologischer Bedingungen und typischer Vegetation ist das Hauptziel der seit Jahrzehnten praktizierten Renaturierung. Aufgrund enger Kopplung der C-Fixierung an den Wasserhaushalt können Änderungen in der Pflanzendecke erhebliche Auswirkungen auf die C-Senkenfunktion des Ökosystems haben .In den letzten Jahrzehnten wurden Veränderungen der Artenzusammensetzung Sphagnum-dominierter Hochmoore hin zu mehrschichtigen Baum- und Grasgesellschaften beobachtet. Aktuelle Studien berichten konträre Resultate über Auswirkungen auf Bestandsniederschlag, Evapotranspiration (ET), Bruttoprimärproduktion, Respiration, CO2-Nettobilanz (NEE) sowie die C-Senkenfunktion des Bodens. Eine abschließende Bewertung veränderter Ökosystemfunktionen im Angesicht des Klimawandels fehlt, ist jedoch von zunehmender Bedeutung, da immer mehr Flächen renaturiert werden. Das Entfernen von Gefäßpflanzen ist dabei eine übliche Naturschutzpraxis um ET zu reduzieren und weitere Besiedelungen zu begrenzen. Die Wirksamkeit hinsichtlich der Wiederherstellung naturnaher hydrologischer Bedingungen und der Einfluss auf die C-Bilanz sind jedoch nicht abschließend geklärt. Der vorliegende Projektantrag hat die mechanistische Analyse von ET, NEE und C-Senkenfunktion des Bodens eines renaturierten, atlantisch-temperaten Hochmoores unter Gefäßpflanzenbesiedelung zum Ziel. Der Fokus wird auf der Aufteilung der ET- und NEE-Flüsse des Ökosystems durch Eddy Kovarianz und Kammermessungen in situ in Moos-, Gras- und Baumbeiträge liegen. Die Ergebnisse werden zur Parametrisierung eines Boden-Pflanze-Atmosphäre-Austauschmodells genutzt, mit dem Moos- und Gefäßpflanzenschichten auf Torfböden simuliert werden können. Das Modell wird zusammen mit den empirischen Daten verwendet, um saisonale Änderungen der Flussbeiträge der funktionellen Gruppen in Abhängigkeit dynamischer Umgebungsbedingungen zu quantifizieren. Das ganzheitliche Prozessverständnis ist für die NEE-Abschätzung renaturierter Hochmoorökosysteme unter sich ändernden Klimabedingungen und Vegetationszusammensetzungen und damit deren Auswirkungen auf den Klimawandel von großer Bedeutung. Das verbesserte Wissen über die verschiedenen Wechselwirkungen von Pflanzenfunktionsgruppen mit Massen- und Energieflüssen des Hochmoorökosystems wird durch die Evaluierung von Renaturierungs-, Naturschutz- und Emissionsminderungsmaßnahmen in ganz Europa direkt in Wert gesetzt.

Globale Abschätzung von Wassermangel in Karstregionen in Zeiten des globalen Wandels

Karst entsteht sich durch die Verwitterung von Karbonatgestein und erzeugt starke oberflächliche und unterirdische Heterogenität von hydrologischen Speicher und Fließprozessen. Ungefähr 7% bis 12% der Erdoberfläche besteht aus Karstgebieten und etwa ein Viertel der Weltbevölkerung ist ganz oder teilweise abhängig von Trinkwasser aus Karstgrundwasserleitern. Für die nächsten Jahrzehnte, Klimamodelle prognostizieren einen starken Temperaturanstieg und eine Abnahme von Niederschlagsmengen in vielen Karstregionen der Welt. Trotz dieser Vorhersagen gibt es nur wenige Studien, die die Auswirkungen des Klimawandels auf die Karstwasserressourcen abschätzen. Die ist hautsächlich auf das Fehlen von Messdaten und die inadäquate Abbildung von Karstprozessen in derzeit angewandten Ansätzen zur großskaligen Modellierung zurückzuführen. Das Ziel der beantragten Nachwuchsgruppe ist, die notwendigen Daten und Ansätze zur erstmaligen Abschätzung der gegenwärtigen und zukünftigem Verfügbarkeit von Wasserressourcen in Karstgebieten zur Verfügung zu stellen. Um dieser Herausforderung gerecht zu werden, sind signifikante Fortschritte (1) zum Verständnis der Heterogenität von Karstregionen und zu deren Einarbeitung in hydrologische Modelle, (2) zum Upscaling von Beobachtungen auf der Einzugsgebietsskale für Anwendungen von Simulationsmodellen im globalen Maßstab, und (3) zum Vergleich der gegenwärtigen und zukünftigen Verfügbarkeit von Wasserressourcen mit gegenwärtigen und zukünftigen Wasserbedarf von Nöten. Im vorgeschlagenen Projekt sollen neuartige Ansätze zur Messung und Analyse hydrologischer Daten an fünf experimentellen Messgebieten, die in 5 verschiedenen Klimaregionen über den Globus verteilt sind (AU, D, ES, MX, UK), eingesetzt werden, um die Einflüsse der Heterogenität von Karstgebieten auf oberflächennahe Fließprozesse zu erkunden. Mittels einer neu entwickelten Karstdatenbank, welche beobachtete Zeitreihen von Karstquellenabflüssen enthält, und Rezessionsanalyse sollen die Heterogenität von Grundwasser und Abflussprozesse in verschiedenen Regionen der Welt charakterisiert werden. Dieselbe Datenbank, erweitert durch zusätzlich Abflussdaten auf Flussgebietsskale des Global Runoff Data Center (GRDC), soll zur Entwicklung eines neuen Ansatzes zur Einbindung der neu gewonnenen Erkenntnisse in ein großskaliges Simulationsmodell speziell für Karstregionen angewandt werden. Dieses Modell soll letztendlich dazu benutzt werden, um (1) gegenwärtige und, gekoppelt mit Klimaszenarien, zukünftige Verfügbarkeit von Wasserressourcen in Karstgebieten zu erkunden, um diese (2) mit gegenwärtigen und zukünftigen Wasserbedarf zu vergleichen und von Wassermangel bedrohte Regionen zu identifizieren.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Grundwasserversalzung durch Meeresspiegelanstieg als gesellschaftliche Herausforderung - Das Beispiel Nordwest-Deutschland

Grundwasserversalzung ist eines der größten Probleme die mit dem klimatisch bedingten Meeresspiegelanstieg assoziiert werden, trotzdem wird dieses Problem aufgrund seines langsames Voranschreitens bedingt durch die geringen Fließgeschwindigkeiten im Untergrund von Gesellschaft und Entscheidungsträgern weitgehend übersehen. Aufgrund dieser Tatsache kann man auch von einer schleichenden Katastrophe sprechen, die große Unsicherheiten bezüglich des zu erwartenden Ausmaßes birgt und zu Herausforderungen bezüglich der gesellschaftlichen Reaktionen führt. Es ist jedoch wichtig, die Anfälligkeit des Grundwassersystems für eine Versalzung sowie dessen zu erwartendes Ausmaß als Folge des Meeresspiegelanstiegs zu verstehen, um effektive Managementstrategien und Gegenmaßnahmen zu entwerfen. Das Projekt zielt darauf ab, die Reaktionen der Küstenaquifere Nord-West-Deutschlands auf den innerhalb des SPP prognostizierten Meeresspiegelanstieg zu identifizieren. Zu diesem Zweck werden großskalige numerische Dichteströmungsmodellierungen angewandt, mit Hilfe derer zunächst die gegenwärtigen und später basierend auf verschiedenen Szenarien die zukünftigen Strömungsverhältnisse abgebildet werden sollen. Darüber hinaus sollen die sozioökonomischen Folgen der zu erwartenden Grundwasserversalzung untersucht werden, um anschließend geeignete Gegenmaßnahmen mit den betroffenen Akteuren zu aufzuzeigen. Besonderer Fokus liegt dabei auf den Wahrnehmungsmustern, dem Wissen und Lernprozessen von relevanten gesellschaftlichen Akteuren sowie den Kosten von Anpassungsmaßnahmen. Die Ziele der Projektes beziehen sich auf die generellen SPP Ziele die natürlichen und gesellschaftlichen Folgen von Küstensystemen auf den zukünftigen Meeresspiegelanstieg festzustellen sowie Anpassungsstrategien zum Meeresspiegelanstieg unter den gegebenen technischen, ökonomischen, kulturellen, gesellschaftlichen, sozialen und politischen Zwängen auszuloten.

Wird der Große Aralsee meromiktisch? Verfolgung der laufenden Veränderungen im physikalischen und biogeochemischen Regime des weltweit dynamischsten Gewässerökosystems

Der anthropogene Wassernutzung und der Klimawandel können drastische negative Auswirkungen auf die Ökosysteme der Seen haben. Das auffälligste Beispiel für die Fragilität der Binnengewässer ist die 'ökologische Katastrophe des Jahrhunderts' vom Aralsee. Die Folgen der Austrocknung des Aralsees sind bis heute nicht vollständig geschätzt. Eine neue Erkenntnis des Projektteams, die für die geplante Studie von zentraler Bedeutung ist, war die Entdeckung der meromiktischen (permanenten) Schichtung, die sich im größten verbleibenden Meeresbecken, dem Großen Aral, zu entwickeln begann. Unsere Beobachtungen im Zeitraum 2015-2018 weisen darauf hin, dass der See sich in einer Übergangsphase der 'Meromiktisierung' befindet, die durch die Wasserregulierung in den einströmenden Flüssen und durch klimabedingte Änderungen des regionalen Wasserhaushalts beschleunigt wird. Ein solcher Übergang deutet auf akute Änderungen im biogeochemischen Regime hin. Einige von ihnen, beispielsweise ein rascher Anstieg der Methankonzentration im See, wurde vom Projektteam bereits registriert. Um die Mechanismen der Meromiktisierung zu quantifizieren und ihre Auswirkungen auf die regionalen Skalen zu bewerten, schlagen wir vor, eine Reihe von Feldforschungsmethoden, wie Überwachung des Schichtens und des Sauerstoffregimes, direkte Schätzungen der mikrobiellen Aktivität, Methankonzentration und Emissionen sowie turbulenter Stoffübertragung über die Wassersäule, stabile Isotopenuntersuchungen des Wasserhaushaltes anzuwenden, ergänzt durch Modellierung und Daten aus Fernerkundung. Die gegenwärtige Situation im Großen Aral ermöglicht es, beispiellose Veränderungen des Ökosystems des Sees zu verfolgen, die durch die größten Bedrohungen für die Binnengewässer der Welt verursacht wurden: der zunehmende Wasserverbrauch und die klimabedingte Veränderung des Wasserbudgets. Eine zeitnahe und detaillierte Untersuchung der Transformationen im Ökosystem vom Großen Aral würde somit zu einem 'Worst-Case' -Szenario für andere große abflusslosen Seen in Trockengebieten darstellen, die von denselben anthropogenen Treibern bedroht sind. Als Ergebnis dieses Projekts wird eine Quantifizierung des derzeitigen Mischungsregimes im Großen Aral sowie eine Einschätzung der zukünftigen Tendenz beim saisonalen bis mehrjährigen Mischungsverhältnissen und deren Auswirkungen auf Biogeochemie, insbesondere Methanproduktion und Biodiversität, erwartet.

Der Einfluß der Bildung von Thioarsen-Spezies auf die Arsen-Komplexierung an natürliches organisches Material

Unter anoxischen Bedingungen wird Arsen (As) in Form von Arsenit vermeintlich vollständig über Schwefel(S)-Gruppen an natürliches organisches Material (NOM) gebunden. Laborexperimente zeigten, dass selbst unter oxischen Bedingungen die Halbwertszeit mehr als 300 Tage betrug, damit sogar größer war als die von Arsenit an Eisen(Fe)(III)-Oxyhydroxiden. Global betrachtet heißt das, dass z.B. Moore, die reich an Organik und Sulfid sind, wichtige quantitative As-Senken sind. Allerdings wurden alle mechanistischen Studien bisher so durchgeführt, dass Arsenit einem zuvor gebildeten S(-II)-NOM zugegeben wurde. In einem System, das As(III), S(-II) und NOM enthält, spielt aber auch die As(III)-S(-II)-Komplexierung in Lösung unter Bildung von Thioarseniten ((H2AsIIIS-IInO3-n)-, n=1-3) und Thioarsenaten ((HAsVS-IInO4-n)2-, n=1-4) eine Rolle. Unsere zentrale Hypothese ist, dass die Kinetik der Thioarsen-Spezies-Bildung in Lösung schneller ist als die Sorption von As(III) und S(-II) an NOM und dass daher Thioarsen-Spezies das Ausmaß und die Kinetik der As-Sorption an Organik bestimmen. Auch die kompetitive Sorption an gleichzeitig auftretenden (meta)stabilen Fe-Mineralen wird vom bekannten Verhalten von Arsenit abweichen. Aufgrund ihrer Instabilität und einem Mangel an reinen Standards, ist über das Sorptionsverhalten von Thioarseniten bislang nichts bekannt. Für Thioarsenate gibt es keine Information zum Bindungsverhalten an NOM, aber es ist bekannt, dass die Sorption an verschiedenen Fe(III)-Mineralen geringer ist als die von Arsenit. Wir postulieren, dass Thioarsenate weniger und langsamer als Arsenit an S(-II)-NOM binden, da kovalente S-Bindungen in Thioarsenaten die Affinität für S(-II)-NOM Komplexierung verringern. An Fe(III)-NOM sollte die Bindung geringer sein in Analogie zur bekannten geringeren Affinität für Fe(III)-Minerale. Wir postulieren weiter, dass die Sulfidierung eine schnellere und größere As-Mobilisierung bewirkt als die zuvor untersuchte Oxidation, da abiotische Oxidation langsam ist, die As-S-Komplexierung in Lösung aber spontan und so As-Bindungen an NOM und Fe-Minerale schwächt. Um unsere Hypothesen zu testen, werden wir Batch-Experimente durchführen mit Mono- and Trithioarsenat-Standards und einem Arsenit-Sulfid Mix (der Thioarsenite enthält) bei pH 5, 7 und 9 an zwei ausgewählten NOMs (Federseemoor Torf und Elliott Soil Huminsäure; jeweils unbehandelt, S(-II)- und Fe(III)-komplexiert). Wir werden Sorptionsaffinität und -kinetik, sowie mittels Röntgenabsorptionsspektroskopie Bindungsmechanismen bestimmen. Die Stabilität der (Thio)arsen-beladenen NOMs wird unter oxidierenden aber auch unter sulfidischen Bedingungen studiert und präferenzielle Bindung in binären Systemen (Kombinationen aus Fe-Oxyhydroxiden, Fe(III)-NOM, S(-II)-NOM und Fe-Sulfiden) untersucht. Ziel ist, As-Bindungsmechanismen in S(-II)-Fe(III)-NOM-Systemen besser zu verstehen, um vorhersagen zu können, unter welchen Bedingungen As Senken zu As Quellen werden können.

Multi Skalen Modellierung von Abtragprozessen bei Biofilmen mit einem poroviskoelastischen Modell

Das Biofilmwachstum in Biofilmreaktoren wird hauptsächlich durch den Abtragprozess reguliert. Den Abtragprozess zu kontrollieren ist daher ein wichtiges Anliegen für den stabilen Betrieb eines Bioreaktors. Zur Kontrolle des Reaktors und um die größte Effizienz zu erreichen sind mathematische (bzw. numerische) Modelle, die den Abtragsprozess darstellen, hilfreich. Solche Modelle können möglicherweise sogar für den Entwurf von Biofilmreaktoren nützlich zu sein. In diesem Projekt soll ein multidimensionales, poroviskoleastisches Biofilm Modell entwickelt werden, das den Abtragsprozess abbildet. Dabei soll auch der Abtrag durch das Auslösen von größeren Stücken ('sloughing'), das durch die Schubspannungen an der Biofilm Grenzfläche und durch das Spannungsfeld im Biofilm entsteht, erfasst werden. Das Modell für den Abtrag soll basierend auf den Schubspannungen an der Grenzfläche und dem Spannungsfeld im Biofilm formuliert werden. Das Modell wird mit experimentellen Beobachtungen kalibriert und validiert. Biofilm Modelle, die für Reaktoren verwendet werden, sind in der Regel eindimensional (1D). Aus diesem Grund soll in diesem Projekt mittels Modellrechnungen mit dem validierten multi-dimensionalen Abtragmodell ein vereinfachtes ('upscaled') 1D Modell entwickelt werden.

Vergangenheit, Gegenwart und Zukunft von Urbanen Wärmeinseln im Untergrund von China und Deutschland - Konsequenzen für die geothermische Nutzung

Städte haben ihre Wurzeln im Untergrund. Hier befinden sich die Fundamente von Gebäuden und ein wesentlicher Anteil der urbanen Infrastruktur. Zugleich dient der Untergrund als Wasserreservoir und als Quelle für erneuerbare Energie. Ein bisher wenig beachtetes Phänomen sind die sogenannten Urbanen Wärmeinseln im Untergrund (UWIU), die sich oft unbemerkt über Jahrzehnte ausbreiten. Sie reichen häufig über das gesamte Stadtgebiet, in dem erheblich höhere Boden- und Grundwassertemperaturen zu finden sind als in der ungestörten, ländlichen Umgebung. Die Ursachen hierfür sind vielfältig und gerade die langfristige Entwicklung von UWIUs ist noch heute ungeklärt. Um Empfehlungen für eine möglichst proaktive Nutzung des städtischen Untergrunds in der Zukunft zu erstellen, gilt es, die treibenden Prozesse und Faktoren zu ergründen, die UWIUs in verschiedenen Städten verursachen. Das Kernthema dieses Projekts ist, erstmalig die thermischen Bedingungen unter zwei chinesischen und deutschen Städten, Nanjing und Köln, zu vergleichen. Die teilnehmenden Wissenschaftler haben weitreichende Erfahrung in der Erforschung von UWIUs in ihren Ländern und in Vorarbeiten bereits eine umfassende Datenbasis von Boden- und Grundwassertemperaturen gesammelt. Kernziel ist es, diese mit einem neuen gemeinsamen Messprogramm zu aktualisieren und aus der vergangenen und aktuellen Entwicklung der beobachteten UWIUs auf die zukünftige Temperaturentwicklung im Untergrund zu schließen. Dies wird erreicht durch ergänzende Laborversuche und umfassende numerische Simulationen, die insbesondere die zeitliche Entwicklung der Landnutzung berücksichtigen. Die Ergebnisse für die Städte in Deutschland und China werden verglichen und so individuell von gemeinsamen Charakteristiken unterschieden. Auf diese Weise werden allgemeingültige Zusammenhänge erschlossen, die sich auch auf weitere weniger erforschte Städte übertragen lassen und dort Prognosen zur zukünftigen UWIU-Entwicklung ermöglichen.

Bedeutung und Umweltverhalten von methylthiolierten Arsenaten in Geothermalwässern

Geothermalwässer sind eine der wichtigsten Quellen im geochemischen Arsen-Kreislauf. Untersuchungen konzentrieren sich häufig auf Arsenit und Arsenat, die sich nach dem Austritt aus Geothermalquellen weit ausbreiten und z.B. die Qualität von Trinkwasser-Aquiferen negativ beeinflussen können. Erst kürzlich wurde gezeigt, dass nicht Arsenit und Arsenat, sondern Thioarsenate (AsVSnO4-n3-; n = 1 - 4), die sich aus Arsenit und reduziertem Schwefel bilden, die häufigsten Arsenspezies an Geothermalquellen sind. Allerdings ist deren Ausbreitung durch Reaktivität gegenüber Sauerstoff begrenzt. Für das vorliegende Projekt postulieren wir, dass Methylierung ein viel häufigerer Prozess an Geothermalquellen ist als bisher angenommen und dass methylthiolierte Arsenate signifikanten Anteil am Gesamtarsengehalt haben, v.a. bei leicht saurem pH und hohen Gehalten an Sulfid und gelöstem organischem Kohlenstoff. Wir postulieren weiter, dass methylthiolierte Arsenate im Vergleich zu anorganischen Thioarsenaten geringere abiotische und mikrobielle Umwandlungen zeigen und im Vergleich zu Arsenit und Arsenat geringere und langsamere Sorption an Eisenminerale und organische Substanz. All dies würde zu einem potentiell hohen Austrag aus Geothermalgebieten führen. Um unsere Hypothesen zu testen, werden wir an zwei Geothermalgebieten in China (Rehai, Yunnan und Daggyai, Tibet) Arsenspezies an den Quellen bestimmen und ihre Umwandlung entlang der natürlichen Abflusskanäle sowie in on-site Inkubationsstudien verfolgen. Wir werden dabei auch klären, welche anderen abiotischen oder biotischen Faktoren zur Arsenspeziesumwandlung beitragen. Im Labor werden wir methylthiolierte Arsenate synthetisieren und ihre Bildung und Stabilität unter verschiedenen S/As Verhältnissen, Temperaturen, pH und in Anwesenheit von Oxidationsmitteln untersuchen. Desweiteren werden wir Ausmaß und Kinetik von Sorption an häufig vorkommenden Eisenmineralen (Ferrihydrit, Goethit, Mackinawit, Pyrit) und an einer organischen Modelsubstanz untersuchen. Um natürliche Bedingungen besser abzubilden, werden wir das Sorptionspotential für methylthiolierte Arsenate auch an natürlichen Sedimenten von Geothermalquellen und ihren Abflusskanälen bestimmen. Das Projekt wird in enger Zusammenarbeit zwischen Prof. Dr. Britta Planer-Friedrich (Deutschland), Expertin für Thioarsenchemie und -analytik, und Prof. Dr. Qinghai Guo (China), Experte für Geothermalwasserchemie, durchgeführt. Die Zusammenarbeit schliesst gemeinsam betreute Promotions- und Masterarbeiten ein, gemeinsame Geländearbeiten in China und Laborarbeiten in Deutschland, ein kickoff meeting in Deutschland sowie ein Abschlusstreffen in China. Das übergeordnete Ziel des Projekts ist es, ein neues Modell für die Bildung, den Transport und die Umwandlung von Arsenspezies in Geothermalgebieten zu entwickeln sowie das mögliche Vorkommen von methylthiolierten Arsenaten auch für andere natürliche Systeme vorhersagen zu können.

Export von organischem Kohlenstoff aus Islands Gletschern: Quantifizierung, Herkunft und Kohlenstoffflüsse in Gletscherbächen

Gletscher sind bedeutende Speicher organischen Kohlenstoffs (OC) und tragen zum Kohlenstofffluss vom Festland zum Meer bei. Aufgrund des Klimawandels wird eine Intensivierung dieser Flüsse erwartet. Der Export von OC aus Gletschern wurde weltweit in verschiedenen Regionen quantifiziert, trotzdem liegen keine vergleichbaren Daten für Island vor, obwohl sich dort die größte europäische außerpolare Eiskappe befindet. Um die globalen Prognosen der glazialen Kohlenstofffreisetzung zu verbessern, ist es das Ziel dieses Pilotprojektes, den Export von gelöstem und partikulärem organischen Kohlenstoff (DOC, POC) aus Islands Gletschern erstmalig zu quantifizieren und neue Kooperationen mit isländischen Wissenschaftler/innen für gemeinsame zukünftige Forschungsprojekte aufzubauen. Hierzu werden 4 Feldkampagnen zu unterschiedlichen Jahreszeiten sowie Treffen mit isländischen Kollegen/innen durchgeführt. In jeder Feldkampagne werden von 23 Gletschern der Eiskappen Vatnajökull, Langjökull, Hofsjökull, Myrdalsjökull und Snaeellsjökull Eisproben entnommen, um die biogeochemische Diversität des glazialen OC zu charakterisieren sowie dessen Export in Verbindung mit Massenbilanzen zu quantifizieren. In Gletscherbächen werden Wasserproben entnommen, um den Austrag von OC direkt am Gletschertor zu bestimmen sowie die Kohlenstoffflüsse entlang von 6 Gletscherbächen mit unterschiedlicher Länge (2 km bis 130 km) beginnend am Gletschertor bis zur Mündung zu untersuchen. Wie sich der Gletscherrückgang langfristig auf ein Gletscherbachökosystem auswirkt, wird durch die taxonomische Bestimmung von Makroinvertebraten im Vergleich zur Bestimmung von Prof. Gíslason aus dem Jahre 1997 beurteilt. Gleichzeitig werden in diesem Gletscherbach Wasserproben zum eDNA-Barcoding entnommen, um eine rasche und gering invasive Methode zur laufenden Beobachtung des zukünftigen Einflusses der Gletscherrückgang zu entwickeln. Vor Ort werden Wassertemperatur, elektr. Leitfähigkeit, pH-Wert, gelöster Sauerstoff, Trübung und Chlorophyll alpha gemessen. Innovative Labormethoden (HPLC, DNA-Barcoding, Picarro, GC, TOC) werden zur Analyse des OC im Eis und Wasser (DOC, DIC, POC, Fluoreszenz, Absorption), der Nährstoffe (P-PO4, N-NO3, N-NO2, N-NH4), stabiler Isotope (18O, 2H), Chlorophyll alpha, CO2 und aquatischen Organismen eingesetzt. Die Anwendung statistischer Methoden (Faktorenanalyse, Hauptkomponentenanalyse) basierend auf Anregungs- und Emissionsmatrizen erlauben die Quellen des OC im Gletschereis sowie -schmelzwasser zu bestimmen und die räumliche Vielfalt des OC zu erklären. Das gewonnene Wissen wird zur Verbesserung globaler Prognosen glazialer Kohlenstofffreisetzung beitragen sowie einen intensiven Einblick in das glaziale Ökosystem geben. Für die antragstellenden Nachwuchswissenschaftler/innen entstehen vielversprechende Kooperationen mit isländischen Wissenschaftlern/innen, fokussierend auf die zeitlichen sowie räuml. Aspekte der glazialen Kohlenstoffflüsse sowie das Ökosystem Gletscher

1 2 3 4 564 65 66