Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Bodenwasserbewegung ist ein Schlüsselprozess in mehreren bereitstellenden und regulierenden Ökosystemdienstleistungen. Die genaue Vorhersage mit mathematischen Modellen bleibt jedoch aufgrund großer Unsicherheiten in allen Modellkomponenten eine Herausforderung, selbst wenn prozessbasierte Beschreibungen wie die Richards-Gleichung verwendet werden. Datenassimilationsmethoden bieten die Möglichkeit, Informationen aus unsicheren Modellen und unsicheren Messungen zu einer verbesserten konsistenten Zustandsbeschreibung zu verbinden, sofern die Unsicherheiten korrekt quantifiziert werden können. Die größten Unsicherheiten liegen dabei typischerweise in den hydraulischen Eigenschaften des Bodens. Werden die relevanten hydraulischen Parameter in einem erweiterten Zustand berücksichtigt, können diese mit den Datenassimilationsmethoden geschätzt werden. Dies ist selbst in Gegenwart von Modellfehlern wie z.B. präferentiellem Fluss möglich, falls diese Fehler entsprechend berücksichtigt werden. Bisher konnten solche konsistenten Beschreibungen nur auf kleinen Skalen bis hin zu eindimensionalen Bodenprofilen demonstriert werden. Auf größeren Skalen wurden noch keine detaillierten prozessbasierten Beschreibungen erreicht. Dies ist auf fehlende Informationen über die heterogenen bodenhydraulischen Eigenschaften in Kombination mit den hochgradig nichtlinearen und interagierenden Prozessen zurückzuführen. Eine einzigartige Forschungsinfrastruktur für die experimentelle Untersuchung der Bodenhydrologie von Hängen ist das Landscape Evolution Observatory (LEO) in der Biosphere 2. Es besteht aus drei künstlichen Hängen mit einem ausgedehnten Sensor- und Probennehmernetzwerk. Um das Verständnis auf dieser größeren Hangskala zu verbessern, ist das Ziel dieses Projektes die konsistente und prozessbasierte Beschreibung der Bodenwasserbewegung am LEO, einschließlich der Darstellung von Heterogenität und Evolution der bodenhydraulischen Parameter. Der Focus liegt dabei auf den folgenden Aspekten: (i) die Ableitung der zeitlichen Entwicklung der bodenhydraulischen Parameter durch Datenassimilation an ausgewählten Profilen in den Hängen, (ii) die Bestimmung der Heterogenität der bodenhydraulischen Eigenschaften und deren Auswirkungen durch hydraulische Experimente und Vorwärtssimulationen und (iii) die Entwicklung und Verifizierung einer konsistenten Beschreibung von Teilen der Hänge durch Datenassimilationsmethoden. Dieses Projekt wird die Frage beantworten, ob die derzeitigen Beobachtungstechniken ausreichen, um eine konsistente und ausreichend akkurate Beschreibung der Hanghydrologie zu erhalten, und wenn ja, wie und mit welcher Unsicherheit diese Darstellung erreicht wird. Darüber hinaus erwarte ich einen quantitativen Einblick in die Ausbildung der Heterogenität am LEO.
Städte haben ihre Wurzeln im Untergrund. Hier befinden sich die Fundamente von Gebäuden und ein wesentlicher Anteil der urbanen Infrastruktur. Zugleich dient der Untergrund als Wasserreservoir und als Quelle für erneuerbare Energie. Ein bisher wenig beachtetes Phänomen sind die sogenannten Urbanen Wärmeinseln im Untergrund (UWIU), die sich oft unbemerkt über Jahrzehnte ausbreiten. Sie reichen häufig über das gesamte Stadtgebiet, in dem erheblich höhere Boden- und Grundwassertemperaturen zu finden sind als in der ungestörten, ländlichen Umgebung. Die Ursachen hierfür sind vielfältig und gerade die langfristige Entwicklung von UWIUs ist noch heute ungeklärt. Um Empfehlungen für eine möglichst proaktive Nutzung des städtischen Untergrunds in der Zukunft zu erstellen, gilt es, die treibenden Prozesse und Faktoren zu ergründen, die UWIUs in verschiedenen Städten verursachen. Das Kernthema dieses Projekts ist, erstmalig die thermischen Bedingungen unter zwei chinesischen und deutschen Städten, Nanjing und Köln, zu vergleichen. Die teilnehmenden Wissenschaftler haben weitreichende Erfahrung in der Erforschung von UWIUs in ihren Ländern und in Vorarbeiten bereits eine umfassende Datenbasis von Boden- und Grundwassertemperaturen gesammelt. Kernziel ist es, diese mit einem neuen gemeinsamen Messprogramm zu aktualisieren und aus der vergangenen und aktuellen Entwicklung der beobachteten UWIUs auf die zukünftige Temperaturentwicklung im Untergrund zu schließen. Dies wird erreicht durch ergänzende Laborversuche und umfassende numerische Simulationen, die insbesondere die zeitliche Entwicklung der Landnutzung berücksichtigen. Die Ergebnisse für die Städte in Deutschland und China werden verglichen und so individuell von gemeinsamen Charakteristiken unterschieden. Auf diese Weise werden allgemeingültige Zusammenhänge erschlossen, die sich auch auf weitere weniger erforschte Städte übertragen lassen und dort Prognosen zur zukünftigen UWIU-Entwicklung ermöglichen.
Mit der Unterzeichnung des UNEP Minamata Vertrages in 2013 haben Regierungen weltweit die Gefahr und Toxizität von Quecksilber (Hg) anerkannt und Maßnahmen zur Kontrolle und Reduzierung von Hg festgelegt. Obwohl Quecksilber in der Umweltforschung schon seit Jahrzehnten ein wichtiges Thema ist, gibt es noch offene Fragen zu den grundlegendsten Prozessen im globalen Hg Kreislauf und auch bezüglich der Transformation von Hg Spezies. Der Anteil von Hg aus hydrothermalen Quellen könnte einer der bedeutsamsten, natürlichen Beiträge zum globalen Hg Kreislauf sein, jedoch unterscheiden sich die Schätzungen um mehrere Größenordnungen von 20 bis 2000 t pro Jahr. Es gibt, wenngleich widersprüchliche, Daten über Hg Konzentrationen in hydrothermalen Quellen in der Tiefsee, wogegen hydrothermale Quellen in flacher, küstennaher Umgebung bisher jedoch ignoriert wurden. Gerade diese haben jedoch einen großen Einfluss auf die chemische Zusammensetzung der biologisch wichtigen Küstengewässer. Hydrothermale Quellen setzen nicht nur giftige Verbindungen frei, wie z.B. Schwefelwasserstoff und Arsenverbindungen, sondern liefern auch Nährstoffe wie Eisen und Kohlenstoffverbindungen und sind dadurch eine ökologische Nische für Organismen. Obwohl einige Studien diese hydrothermalen Systeme im Flachwasser als eine mögliche Quelle für Hg thematisierten waren die Ergebnisse nicht zufriedenstellend. Ein Grund könnte die herausfordernde Matrix der hydrothermalen Lösungen sein, sowie eine unzureichende Datenlage um Aussagen über den Gesamteintrag von Hg zu treffen. Noch wichtiger als die Gesamtmenge des Hg Eintrages ist die Verteilung der individuellen Hg-Spezies. Eine fundamentale Transformation ist die Methylierung von Quecksilber (MeHg) und die daraus resultierende Verstärkung der Toxizität. MeHg bioakkumuliert und biomagnifiziert sich innerhalb der marinen Nahrungskette und damit auch letztlich im Menschen. Die Methylierung von Quecksilber ist ein ozeanweites Phänomen. Die niedrigen Konzentrationen von Hg im offenen Gewässer machen das genaue Erforschen dieser biologisch-chemischen Reaktion jedoch schwierig. Hier können hydrothermale Quellen im Flachwasser als natürliche Laboratorien genutzt werden um die Umwandlungsraten von Hg-Spezies und deren Abhängigkeit von Umwelt Faktoren zu bestimmen. Dementsprechend schlagen wir vor, die Speziierung und den Eintrag von Hg für Flachwasser-Hydrothermalsysteme zu bestimmen, um damit bessere Schätzungen für den globalen Quecksilber Kreislauf zu bekommen. Die geplante Arbeit besteht aus 4 Teilen: (1) Probenahme an ausgewählten Standorten, (2) Vollständige Charakterisierung der freigesetzten Hg-Spezies (anorganisches Hg, MeHg und elementares Hg), (3) Bestimmung der Methylierungsrate und (4) eine Schätzung der mengenmäßigen Freisetzung von totalem und methyliertem Hg.
Der biogeochemische Eisenkreislauf stellt ein wichtiges Reaktionsnetzwerk dar, welches einen direkten Einfluss auf umweltrelevante Prozesse in Sedimenten hat. Eisen(II)-oxidierende und Eisen(III)-reduzierende Bakterien kontrollieren zu großen Teilen die (Im)Mobilisierung von Eisen in Sedimenten. Unser klassisches Verständnis vom sedimentären Eisenkreislauf beschreibt, dass die Hauptsubstratquelle (Eisen(II) für Eisen(II)-oxidierende Bakterien die mikrobiellen Eisen(III)-reduktion ist, welcher typischerweise in tieferen Zonen von Redox-stratifizierten Sedimenten ansässig ist. Bislang wurde der Prozess der Eisen(III)-Photoreduktion nicht als signifikante Eisen(II) Quelle in limnische Sedimente betrachtet. In dem beantragten Forschungsprojekt, stellen wir die Hypothese auf, dass die Photoreduktion von Eisen(III) in limnischen Sedimenten eine zusätzliche Eisen(II)-Quelle für Eisen(II)-oxidierende Bakterien in den obersten (teilweise) oxischen und Lichtdurchfluteten Sedimentschichten darstellt. Zu diesem Zweck werden wir hochaufgelöste Licht und geochemische Messungen (O2, gelöstes Fe(II), pH, H2O2) mit Mikrosensoren durchführen und die Eisenmineralogie als Funktion der Lichtqualität (Wellenlänge) und Lichtquantität (Intensität) in Süßwassersedimenten bestimmen. Darüber hinaus werden wir den Einfluss von natürlichen organischen Material auf die Eisen(III)-Photoreduction untersuchen. Zusätzlich werden wir die Rolle von reaktiven Sauerstoffspezies auf die Bioverfügbarkeit von produzierten Eisen(II) in oxischen Sedimenten bestimmen. Dieses Forschungsprojekt untersucht einen Prozess der bislang in Sedimenten vernachlässigt wurde und öffnet die Türen zu einem neuen Verständnis des biogeochemischen Eisenkreislaufs und den assoziierten Eisen(II) Stoffflüssen entlang sedimentärer Redoxgradienten.
Die Vielfalt der natürlichen Flussumgebungen wird derzeit durch den Grad der räumlichen Heterogenität in abiotischen Faktoren, die durch Flussströmungsstrukturen gesteuert werden, verstanden. Im Mittelpunkt dieses Themas steht die Heterogenität der Flüsse, die durch natürliche In-Stream-Hindernisse wie Geröllhaufen, Baumstau, Ufer- und Wasservegetation und ihre verschiedenen Kombinationen erzeugt wird. Spezifische Strömungstypen, die sich um und hinter In-Stream-Hindernissen bilden, werden als Rucktrömungen bezeichnet. Aufgrund komplexer Naturumgebungen und -prozesse, wird die Dynamik von Rucktrömungen immer noch nicht vollständig verstanden. Die vorgeschlagene Forschung zielt auf die Verbesserung des Wissens über die Hydrodynamik von Wirbelströmungen ab, indem fundamentale, auf der Theorie beruhende Erkenntnisse über steuernde Faktoren und ihre Implikationen für die Flussmorphologie bereitgestellt werden. In diesem Projekt werden komplexe Umweltflüsse, die in flachen, rauhen Flussumgebungen durch poröse In-Stream-Hindernisse entstehen, direkt im Feld unter verschiedenen hydrologischen Bedingungen untersucht. Die Dynamik dieser Rucktrömungen wird dann durch den Vergleich von Feldbeobachtungen mit den Ergebnissen von Laborexperimenten besser verstanden, wobei Skalen-unabhängige Feld-basierte Experimente und numerische Simulationen zur Untersuchung von Skaleneffekten dienen werden. Ergänzt wird diese Studie durch in-situ-Untersuchungen der Porosität natürlicher Hindernisse und der Probenahme des Flussbettsubstrats. Diese Studien werden derzeit nicht verfügbares Wissen über grundlegende Eigenschaften von In-Stream-Hindernissen und eine direkte Quantifizierung von Erosions-/Ablagerungsprozessen aufgrund von Fluviale Rucktrömungen liefern. Darüber hinaus werden die gesammelten Daten den Beitrag des Nachstroms zu den hydraulischen Eigenschaften des Flusses auf einer Flussreichweite schätzen.
Die Hydrologie der Landoberfläche wirkt an der Schnittstelle zwischen Boden, Vegetation und Atmosphäre. Sie hat dadurch Auswirkungen auf Nahrungsmittelproduktion, Wasserverfügbarkeit und Extremereignisse, wie Dürren und Überschwemmungen. Die Wechselwirkungen zwischen Land (Hydrologie) und Atmosphäre (Wetter) sind bisher nur ungenügend verstanden. Es ist insbesondere unklar, ob sich die Einflüsse der Landoberfläche auf Vegetation und Wetter durch die globale Erwärmung verstärken werden. Darüber hinaus ist nur wenig bekannt bezüglich des Übergangs von einem energielimitierten Regime, wo die Atmosphäre (Temperatur und Einstrahlung) das Land (Vegetationsproduktivität, Bodenfeuchte) beeinflusst, hin zu einem wasserlimitierten Regime, wo das Land (auch) die Atmosphäre beeinflusst. Um das Verständnis der Land-Atmosphäre-Wechselwirkungen zu verbessern, wird ein multivariater Ansatz mit der Analyse von Daten über Bodenfeuchte, Matrixpotential, Bruttoprimärproduktion, Verdunstung, Temperatur und Landoberflächencharakteristiken vorgeschlagen. Mit dieser umfassenden Methodik werden Land-Atmosphäre-Wechselwirkungen in Bezug auf ihre kurz- und langfristige Variabilität, sowie auf ihre Veränderungen im Kontext des Klimawandels untersucht. Ausserdem werden potentiell stark betroffene Regionen bestimmt. Desweiteren wird ein kritischer Bereich der Bodenfeuchte und/oder des Matrixpotentials identifiziert und charakterisiert, ab dem eine Wasserlimitierung von Vegetation oder Evapotranspiration auftritt. Ein Ergebnis dieser Analyse wird die Identifizierung eines dritten charakteristischen Matrixpotentials neben dem permanenten Welkepunkt und der Feldkapazität sein. Als Grundlage für diese Untersuchungen wird mittels eines Landoberflächenmodells von geeigneter Komplexität ein langfristiger, qualitativ hochwertiger hydrologischer Datensatz berechnet, welcher anhand von multivariaten Beobachtungen kalibriert wird. Dabei werden auch die Unsicherheiten des Datensatzes, sowie der multivariaten Beobachtungen, thematisiert. Die Resultate dieser Arbeit können helfen das Management von Wasserressourcen zu verbessern. Beispielsweise können Prognosen des Matrixpotentials in Verbindung mit dem identifizierten kritischen Bereich für eine intelligente Bewässerung von Pflanzen und Feldern verwendet werden. Eine Analyse von langfristigen Trends in Matrixpotential-, Bodenfeuchte- und Abflussdaten kann als Grundlage für langfristige Anpassungsmaßnahmen dienen. In einer weiteren Analyse werden Größenordnungen und Auftrittshäufigkeiten von Extremereignissen, wie Dürren und Überschwemmungen untersucht und in Verbindung mit entstandenen Sach- und Personenschäden gebracht. Diese Arbeit trägt zu den Millenniums-Entwicklungszielen der Vereinten Nationen bezüglich der Bekämpfung von Hunger und einer nachhaltigeren Wassernutzung, den 'Europa 2020' Zielen der EU Kommission bezüglich nachhaltiger Energienutzung, und zum 'grand challenge' Wasserverfügbarkeit des Weltklimaforschungsprogramms bei.
The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.
Der globale Wandel verändert nicht nur das Klima sondern auch die Oberfläche der Erde. Unser Verständnis von Bodenveränderungen und ihrer Wechselwirkungen mit hydrologischen, ökologischen und geomorphologischen Prozesse ist jedoch noch rudimentär. Einige der Bodeneigenschaften sind zeitlich stabil, aber andere verändern sich zum Teil sehr schnell mit signifikanten Auswirkungen auf die Quantität und Qualität des Wasserkreislaufes. Diese Veränderungen sind besonders markant auf der Hangskala, wo laterale und vertikale Prozesse über unterschiedliche Zeitskalen miteinander interagieren. Wasser und Vegetation beeinflussen die oberirdischen und unterirdischen Prozesse an Hängen auch über die Verwitterung, die Bodenentwicklung und die Erosion. Diese Prozesse wiederum beeinflussen auch die Fließwege des Wassers. Die daraus resultierende Verteilung der Wasserspeicher beeinflusst die Artenverteilung und Funkrionalität der Vegetation, wobei die Vegetation selber wiederum die Fließwege des Wassers beeinflusst. Dieses komplexe Gefüge an Wechselwirkungen wurde in seiner zeitlichen Entwicklung bisher noch kaum detailliert untersucht. Das interdisziplinäre Forschungsprojekt HILLSCAPE (HILLSlope Chronosequence And Process Evolution) soll sich mit der Frage beschäftigen, wie sich dieser Feedback-Zyklus in einem Zeitraum von 10000 Jahren verändert und was für strukturelle Veränderungen daraus resultieren. Das Projekt konzentriert sich dabei auf die vertikale und laterale Umverteilung von Wasser und Stoffen an Hängen und ihrer Wechselwirkungen mit dem Boden, der Vegetation und der Landschaftsentwicklung. Um dieses ehrgeizige Ziel erreichen zu können, wird sich HILLSCAPE Hang-Chronosequenzen auf Moränenstandorten zu Nutze machen. Gletschervorländer liefern uns so Schnappschüsse der zeitlichen Entwicklung. Die Auswahl zweier Fokusgebiete mit unterschiedlichem Ausgangsmaterial erlaubt dabei den direkten Vergleich der Entwicklung auf Silikat- und Karbonatgestein. In jedem Fokusgebiet werden Hänge in 4 verschiedenen Altersklassen instrumentiert. Die Aufgliederung in 5-6 Flächen pro Altersklasse ermöglicht es uns, eine große Bandbreite an Vegetationsbedeckung und -komplexität abzudecken. Wir werden gezielt relevante Strukturen aller 48 Hangflächen aufnehmen und werden deren hydrologische und geomorphologische Funktionsweise und Prozesse einerseits über ein Jahr beobachten und andererseits durch künstliche Beregnung in kontrollierten Experimenten genauer aufschlüsseln. Zusätzlich werden wir funktionalen Eigenschaften der Pflanzen und somit die strukturelle und funktionale Diversität der Standorte erfassen. Die Kombination von vier interdisziplinären Doktorarbeiten und der integrativen Modellierung durch einen Postdoc erlaubt uns die gemeinsame Untersuchung von hydrologischen, geomorphologischen und biotischen Prozessen und ihrer Interaktionen.
Die Quantifizierung von Boden-Wasser Interaktionen ist von großer Bedeutung für eine Reihe praktischer Anwendungen wie z.B. im Bewässerungsmanagement, bei der Nahrungsmittelproduktion oder im Hochwasserschutz. Trotzdem ist die genaue räumliche und zeitliche Schätzung der hydrologischen Zustände und Wasserflüsse nach wir vor eine große Herausforderung in der Hydrologie. Dies liegt daran, dass die meisten hydrologischen Prozesse stark nichtlinear und zudem durch zeitlich variable Randbedingungen kontrolliert sind. Daher werden numerische Modelle für ihre umfangreiche Beschreibung benötigt. Eine weitere Herausforderung ist die räumliche Heterogenität der Böden, deren Identifikation und Charakterisierung nach wie vor ein Gebiet intensiver Forschung im Gebiet der Hydrogeophysik ist. Bis heute gibt es nur sehr wenige Studien, die vorhandene Informationen aus der traditionellen bodenkundlichen Beschreibung, hydrologischem Monitoring, geophysikalischer Charakterisierung des Untergrundes und moderner hydrologischer Modellierung kombinieren, um zu einer umfangreichen Beschreibung der hydrologischen Prozesse zu kommen. Hauptziel dieses Projektes ist es, einen integrativen Ansatz für eine verbesserte prozessbasierte hydrologische Modellierung der ungesättigten Wasserflüsse auf der Hangskala anzuwenden. Der Ansatz basiert auf der Integration von klassischem pedologischem Wissen zur Bodenbeschreibung, präzisem Monitoring des Bodenwassergehalts, sowie auf Zeitreihen moderner geophysikalischer Messungen zur Erfassung der räumlichen Heterogenität des Untergrundes. Letztendlich sollen die gesamten gesammelten Informationen in einem physikalisch-basierten numerischen Modell integriert werden, welches in der Lage ist, die Bodenwasserflüsse inklusive der gesättigten und ungesättigten Wasserflüsse, Oberflächenabfluß, Evaporation, Wasseraufnahme durch Pflanzen, sowie Schneeakkumulation und -schmelze in hoher räumlicher und zeitlicher Auflösung zu simulieren. Das Projekt wird die derzeit vorhandenen Ansätze zur Schätzung der Bodenwasserflüsse um eine neue Dimension erweitern, da es die Möglichkeit bietet, durch Kombination die Potenziale der verfügbaren Mess- und Modellierungstechniken zu maximieren und die Quellen der Unsicherhheiten in den geschätzten hydrologischen Zuständen und Flüssen zu minimieren. Es wird wichtiges Wissen liefern, um diesen Ansatz auch auf größere Skalen zu übertragen, wo eine präzise Quantifizierung der Bodenwasserflüsse auf Betriebs- oder Einzugsgebietsskala für ein effizienteres Wasser- und Nährstoffmanagement im Zusammenhang mit einer nachhaltigen Nahrungsmittelproduktion in Zeiten Klimawandels benötigt wird.
| Origin | Count |
|---|---|
| Bund | 653 |
| Type | Count |
|---|---|
| Förderprogramm | 653 |
| License | Count |
|---|---|
| offen | 653 |
| Language | Count |
|---|---|
| Deutsch | 452 |
| Englisch | 433 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 634 |
| Topic | Count |
|---|---|
| Boden | 474 |
| Lebewesen und Lebensräume | 571 |
| Luft | 408 |
| Mensch und Umwelt | 653 |
| Wasser | 639 |
| Weitere | 653 |