Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Hochwasser sind aufgrund ihres hohen Schadenspotentials von großer Bedeutung für die Gesellschaft. Hochwasser sind aber auch auf Grund der auftretenden nichtlinearen Wechselwirkungen und Rückkopplungen, der interessanten Fragen der Verallgemeinerungsfähigkeit von Erkenntnissen und der resultierenden Notwendigkeit einer interdisziplinären Betrachtung ein sehr interessantes Forschungsthema. Die Entstehung und die maßgebenden Prozesse extremer Hochwasser sind bisher nicht sehr gut bekannt, aber neue, zeitlich und räumlich hochauflösende Daten und neue Ansätze zur Quantifizierung von Wechselwirkungen im Rahmen von koordinierten Forschungsarbeiten versprechen nunmehr einen großen Durchbruch. Ziel dieser Forschungsgruppe ist es, die Prozesse in der Atmosphäre, den Einzugsgebieten und den Flusssystemen sowie deren Wechselwirkungen, die zu extremen Hochwasserereignissen führen, in einer räumlich und zeitlich kohärenten Weise zu verstehen. Hierzu wurde ein innovatives und kohärentes Konzept wurde entwickelt, um so das Potenzial der Zusammenarbeit zwischen den Forschungspartnern zu maximieren. Es besteht aus drei Integrationsebenen: Forschungsthemen, die sich auf die wissenschaftlichen Fragen konzentrieren, Teilprojekte, die sich auf bestimmte Forschungsaufgaben konzentrieren, und ein gemeinsames Studienobjekt in Form von extremen Hochwasserereignissen in Deutschland und Österreich. Mit Hilfe von Skalen als verbindlichem Element ist der Forschungsplan in die Forschungsthemen: - Ereignisse und Prozesse, - räumliche (regionale) Variabilität, - zeitliche (dekadische) Variabilität sowie - Unsicherheit und Vorhersagbarkeit gegliedert. Die Mitglieder der Forschergruppe wurden so ausgewählt, dass ein Team führender Experten mit hervorragenden Fachkenntnissen, die sich in Bezug auf Prozesse, Methoden und regionalem Wissen ergänzen, gebildet wurde. Die Kooperations- und Kommunikationsstrategie wurde durch thematische Clustergruppen, die mehrere Teilprojekte bündeln, durch regelmäßige Treffen der Clustergruppen, das jährliche Projektsymposium und eine Cloud zum Datenaustausch umgesetzt. Die Cluster werden nun durch thematische Arbeitsgruppen ersetzt, die ergebnisorientiert methodische Entwicklungen vorantreiben sollen. Eine konsequente Umsetzung der Chancengleichheit und eine intensive Nachwuchsförderung waren wesentliche Merkmale der ersten Phase. Diese Aktivitäten werden bei hoher personeller Kontinuität nunmehr fortgesetzt um Wissenschaftlerinnen und Nachwuchswissenschaftler in hohem Maße zu fördern. Insgesamt werden die Ergebnisse der Forschergruppe das Verständnis des gekoppelten Systems von hochwasserauslösenden Prozessen in der Atmosphäre, den Einzugsgebieten und Flüssen grundlegend verändern, was erhebliche Auswirkungen auf eine Reihe von Wissenschaftsdisziplinen und die Gesellschaft haben wird.
Städte haben ihre Wurzeln im Untergrund. Hier befinden sich die Fundamente von Gebäuden und ein wesentlicher Anteil der urbanen Infrastruktur. Zugleich dient der Untergrund als Wasserreservoir und als Quelle für erneuerbare Energie. Ein bisher wenig beachtetes Phänomen sind die sogenannten Urbanen Wärmeinseln im Untergrund (UWIU), die sich oft unbemerkt über Jahrzehnte ausbreiten. Sie reichen häufig über das gesamte Stadtgebiet, in dem erheblich höhere Boden- und Grundwassertemperaturen zu finden sind als in der ungestörten, ländlichen Umgebung. Die Ursachen hierfür sind vielfältig und gerade die langfristige Entwicklung von UWIUs ist noch heute ungeklärt. Um Empfehlungen für eine möglichst proaktive Nutzung des städtischen Untergrunds in der Zukunft zu erstellen, gilt es, die treibenden Prozesse und Faktoren zu ergründen, die UWIUs in verschiedenen Städten verursachen. Das Kernthema dieses Projekts ist, erstmalig die thermischen Bedingungen unter zwei chinesischen und deutschen Städten, Nanjing und Köln, zu vergleichen. Die teilnehmenden Wissenschaftler haben weitreichende Erfahrung in der Erforschung von UWIUs in ihren Ländern und in Vorarbeiten bereits eine umfassende Datenbasis von Boden- und Grundwassertemperaturen gesammelt. Kernziel ist es, diese mit einem neuen gemeinsamen Messprogramm zu aktualisieren und aus der vergangenen und aktuellen Entwicklung der beobachteten UWIUs auf die zukünftige Temperaturentwicklung im Untergrund zu schließen. Dies wird erreicht durch ergänzende Laborversuche und umfassende numerische Simulationen, die insbesondere die zeitliche Entwicklung der Landnutzung berücksichtigen. Die Ergebnisse für die Städte in Deutschland und China werden verglichen und so individuell von gemeinsamen Charakteristiken unterschieden. Auf diese Weise werden allgemeingültige Zusammenhänge erschlossen, die sich auch auf weitere weniger erforschte Städte übertragen lassen und dort Prognosen zur zukünftigen UWIU-Entwicklung ermöglichen.
In diesem Projekt wollen wir in einem Süßwasserhabitat die Koppelung der nitratabhängigen Methanoxidation (n-damo) mit dem Anammox Prozess nachweisen. Messungen der stabilen Isotope im Methan, Nitrat, Nitrit, Ammonium und DIC und molekularbiologische Methoden sollen helfen, diese Prozesse zu entschlüsseln. Zudem wollen wir klären, wie die Erkenntnis von einströmendem Grundwasser in das Habitat (Interaktion zwischen Grundwasser und Seewasser) zu erklären ist, dass die für die Prozesse (n-damo, Anammox, Methanogenese) benötigten stabilen Umwelt- bzw. anoxischen Redoxbedingungen vorliegen.
Methane emissions from inland water bodies are of growing global concern since surveys revealed high emissions from tropical reservoirs and recent studies showed the potential of temperate water bodies. First preliminary studies at the River Saar measured fluxes that exceed estimates used in global budgets by one order of magnitude. In this project we will investigate the fluxes and pathways of methane from the sediment to the surface water and atmosphere at the River Saar. In a process-based approach we will indentify and quantify the relevant environmental conditions controlling the potential accumulation of dissolved methane in the water body and its release to the atmosphere. Field measurements, complemented by laboratory experiments and numerical simulations, will be conducted on spatial scales ranging from the river-basin to individual bubbles. We will further quantify the impact of dissolved methane and bubble fluxes on water quality in terms of dissolved oxygen. Special emphasize will be put on the process of bubble-turbation, i.e. bubble-mediated sediment-water fluxes. The project aims at serving as a reference study for assessing methane emissions from anthropogenically altered river systems.
Ziel des vorgeschlagenen Projektes ist die Entwicklung eines integrierten mesoskaligen Ansatzes zur Quantifizierung von neun Ökosystemleistungen (ÖSL) in Auen. Unter Berücksichtigung von Hydraulik und Ökologie werden Wirkungsgrenzen definiert. Diese ermöglichen eine Abgrenzung der Aue nach ihrer Funktionsfähigkeit in Bezug auf die Bereitstellung von ÖSL, welche für den Erhalt natürlicher Lebensgrundlagen bedeutend sind. Trotz des Wissens um die ökologische Bedeutung und die hohe Gefährdung von Auen weltweit findet eine Verschlechterung des Auenzustands weiterhin statt. Dies reduziert auch die Bereitstellung von ÖSL von Auen in unbekanntem Maß. Grund hierfür ist ein fehlendes Verständnis der Interaktionen zwischen den natürlichen Prozessen und ÖSL, den anthropogenen Einflüssen sowie dem Auenzustand. Des Weiteren werden in Auen bereitgestellte ÖSL bei der Kostenberechnung von Maßnahmen vernachlässigt, da ein integrierter übertragbarer Ansatz zur Ermittlung der ÖSL auf der relevanten räumlichen Skala, der Landschaftsebene, fehlt. Die Herausforderungen in der Ökosystemleistungsforschung liegen hauptsächlich in der Vielfalt von nicht abgestimmten Definitionen, Begrifflichkeiten und Indikatoren. Die Skalenproblematik wird zudem bei der Betrachtung der Auengrenzen als räumliche Basis deutlich. Mit der Entwicklung einer übertragbaren Methode wird in diesem Projekt erstmalig ein umfangreiches Spektrum an ÖSL (klimatische, hydrologische Leistungen, Wasserqualität und Biodiversität, Produktion von Lebensmitteln, Baumaterialien und Energie, kulturelle Leistungen, Schutz vor Naturgefahren) unter Berücksichtigung des Auenzustands in Deutschland integriert. Als räumliche Basis der Auenabgrenzung dienen die Überschwemmungsflächen häufiger Hochwasser gemäß öffentlich zugänglicher Hochwassergefahrenkarten. Die Eignung dieser rein hydraulisch bestimmten Grenzen wird durch umfangreiche ökologische Daten anderer Forschungsinstitute (Bundesanstalt für Gewässerkunde (Vegetation) und Universität Duisburg-Essen (Laufkäfer)) erstmals untersucht. Neue Indikatoren werden für jede der neun ÖSL auf der Basis von Geoinformationen und Literaturrecherchen entwickelt. Mittels Metaanalysen wird die Übertragbarkeit von ökonomischen Faustzahlen für einen Wertetransfer überprüft. Ergebnis ist eine erstmalige Berechnung des ökonomischen Gesamtwertes der Auen auf Landschaftsebene, um die Leistungen von Auen, ihren Erhalt bzw. ihre Wiederherstellung umfassender als bisher zu bewerten. Anhand von zehn bereits durchgeführten Auenrenaturierungsprojekten wird dieser Ansatz mittels einer Kosten-Nutzen-Rechnung validiert. Dieser neue integrierte Ansatz ist interdisziplinär ausgerichtet, um der Komplexität von Auen und den von ihnen erbrachten ÖSL gerecht zu werden. Mit der Inwertsetzung bieten sich breite thematische Anknüpfungspunkte. So erhalten u.a. Biologen und Hydrologen, Geowissen- und Volkswirtschaftler eine vereinheitlichte Datenbasis bisher dezentral vorliegender Informationen.
Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.
Das übergeordnete Ziel des vorgeschlagenen Vorhabens ist die Entwicklung eines numerischen Modells, das in der Lage ist Prozesse zu simulieren, die bei der mikrobiell unterstützten Produktion von Methan aus Kohleflözen (englisch: MECBM) auftreten. Dieses Modell soll in den numerischen Simulator Dumux (www.dumux.org) implementiert werden, der als Open Source Programm zur Verfügung steht. Indem das Modell zur Ergänzung und Unterstützung experimenteller Arbeiten eingesetzt wird, können damit gezielt verschiedene Hypothesen über den reaktiven Transport bei MECBM Prozessen getestet werden. Dies betrifft verschiedene Detailfragen, die zur Zeit noch nicht vollständig verstanden sind. Dies soll durch Vergleiche zwischen Simulationen und Experimenten erreicht werden, die am Center for Biofilm Engineering an der Montana State University in Bozeman/USA (MSU-CBS) durchgeführt werden. Zunächst sollen hierfür Säulenexperimente verwendet werden, um Sensitivitäten der simulierten Prozesse hinsichtlich verschiedener Modellparameter zu analysieren. Wo erforderlich, werden die Modellgleichungen dann entsprechend an neu gewonnene Daten und Erkenntnisse aus den Validierungsversuchen mit experimentellen Daten angepasst. Unsere Vision ist es, dass das neu entwickelte Modell ein wesentliches Werkzeug sein wird, um letztendlich das Wissen und Know-how von der Laborskala auf die Feldskala zu übertragen, und um dann auch geplante MECBM-Demonstrationsprojekte im Feld zu konzipieren. Das numerische Modell soll eine wichtige Rolle bei der weiteren Entwicklung von MECBM-Produktionstechnologien spielen; spezifische Möglichkeiten dazu ergeben sich z.B. für geplante Feldanwendungen durch MSU-CBS in Zusammenarbeit mit der US Geological Survey (USGS).Das erwartete Ergebnis aus dem vorgeschlagenen Projekt wird also ein deutlich verbessertes Grundlagenwissen über MECBM Prozesse sein, welches mit dem neu entwickelten Simulationswerkzeug in Kombination mit experimentellen Studien am MSU-CBE auf der Labor- und Feldskala erzielt wird. Die Entwicklung von Simulationskapazitäten soll aber in keinster Weise die Wichtigkeit von Experimenten schmälern, aber die Simulation wird einen entscheidenden Beitrag leisten, um die vorhandenen Ressourcen of die wesentlichen experimentellen (Feld-)Studien zu fokussieren.
Selen ist einerseits ein essentieller Nährstoff, andererseits aber in erhöhten Konzentrationen hochtoxisch. Die in Wasser löslichsten Se-Spezies sind Selenit (Se(IV)) und Selenat (Se(VI)). Sobald diese in die aquatische Umwelt gelangen, können sie rasch Konzentrationen erreichen, die für die aquatischen Nahrungsketten toxisch sind. In diesem Antrag wollen wir das Potenzial von sulfidisiertem nullwertigem Eisen (S-ZVI) untersuchen, um Se(VI) zu Se(0) und/oder Se(-II) zu reduzieren. Die Sulfidisierung von ZVI hat in den letzten 3 bis 4 Jahren zunehmende Aufmerksamkeit erfahren als eine Methode zur Verbesserung der Selektivität und Spezifität des Schadstoffabbaus bei der Verwendung von ZVI als abiotischem Reduktionsmittel. Bis heute wurde jedoch noch keine Studie zur Wirkung auf die Entfernung von Selenat durchgeführt. In der vorgeschlagenen Arbeit werden wir in drei Arbeitspaketen die folgende Hypothese untersuchen: i) Das S/Fe-Verhältnis in S-ZVI bestimmt seine Reaktivität gegenüber Se(VI), ii) die Anwesenheit von Sauerstoff und Fe(II) beeinflusst die Wirksamkeit von S-ZVI im Hinblick auf die Reduktion von Se(VI), iii) die Se(VI)-Reduktion durch S-ZVI wird durch den pH-Wert aufgrund elektrostatischer Effekte beeinflusst, und iv) die Anwendung von S-ZVI-Teilchen in Filterbett-Systemen ist eine wirksame Methode zur Entfernung von Selenat. Die Kinetik und Mechanismen der Wechselwirkung zwischen S-ZVI und Selenat werden in Batch-Experimenten in Kombination mit Synchrotron-basierten Methoden in Zusammenarbeit mit der Canadian Light Source untersucht. Zusätzlich werden wir Filterbett-Experimente mit S-ZVI durchführen.
Die Verweilzeit von Grundwasser in ausgedehnten Grundwasserleitern liegt oft im Bereich von Dekaden, so dass auch langsame mikrobielle Stoffumsätze (z.B. von Nitrat, Atrazin und dessen Abbauprodukten) die Stofffracht in solchen Systemen erheblich beeinflussen können. In diesem Projekt werden mittels geologischer und geochemischer Analysen die reaktiven Zonen und die zugehörigen Verweil- und Kontaktzeiten des Wassers eines Kluftgrundwasserleiters bestimmt. Omics und molekularbiologische Methoden werden genutzt, um Abbaupotential und Aktivität der mikrobiellen Gemeinschaften zu untersuchen. In begleitenden Laborexperimenten werden effektive Diffusions-konstanten und metabolische Raten, deren limitierende Faktoren und die beteiligten Mikroorganismen quantifiziert.
| Origin | Count |
|---|---|
| Bund | 653 |
| Type | Count |
|---|---|
| Förderprogramm | 653 |
| License | Count |
|---|---|
| offen | 653 |
| Language | Count |
|---|---|
| Deutsch | 452 |
| Englisch | 433 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 634 |
| Topic | Count |
|---|---|
| Boden | 635 |
| Lebewesen und Lebensräume | 567 |
| Luft | 407 |
| Mensch und Umwelt | 653 |
| Wasser | 638 |
| Weitere | 653 |