Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.
Der Anstieg der Konzentrationen von gelöstem organischem Kohlenstoff (DOM) konnte in vielen Oberflächengewässern der temperierten Zonen der Nordhemisphäre nachgewiesen werden. Der Anstieg der DOM-Konzentrationen wird größtenteils auf die schnellere Zersetzung organischer Substanz und den erhöhten Austrag von DOM aus den Böden der Gewässereinzugsgebiete, hier speziell aus Torfmooren, in Flüsse und Seen zurückgeführt. Neben der Bedeutung des DOM im globalen Kohlenstoffkreislauf, auch im Zusammenhang mit Klimaveränderungen, verursacht die 'Gewässerverbraunung' Probleme im Zusammenhang mit der Trinkwassergewinnung. So vermindern hohe DOM-Gehalte, oft auch verbunden mit erhöhten Einträgen DOM-gebundener Schwermetalle, die Trinkwasserqualität und Erhöhen die Kosten der DOM-Entfernung. Obwohl die DOM-Zusammensetzung ein Schlüsselparameter für das Umweltverhalten von DOM ist, ist die Bedeutung seiner molekularen Zusammensetzung in Verbindung mit Landnutzung, Liefergebietsvegetation, Moorhydrologie und Schwermetalltransport kaum verstanden. Zusätzlich sind viele Waldgebiete und Moore in Mittelgebirgen aufgrund von jahrhundertelangem Bergbau oft mit Schwermetallen (Pb, Hg, Zn, etc.) und Arsen belastet. Im vorgeschlagenen Projekt soll das Phänomen des DOM-Anstiegs in Trinkwasserreservoiren am Beispiel der Eckertalsperre und seinem Liefergebiet im Harz untersucht werden. Der Anstieg der DOM-Konzentrationen wird dort bereits seit mehr als 10 Jahren beobachtet. Obwohl allgemein davon ausgegangen wird, dass eine erhöhte Torfzersetzung in Mooren die erhöhten DOM- und Schwermetallausträge verursacht, konnte dieses bisher nicht direkt nachgewiesen werden. Im Rahmen des vorgeschlagenen Projektes soll die molekulare Zusammensetzung von DOM im Eckertalstausee und seiner Zuflüsse, die sowohl schwermetallkontaminierte Moorgebiete als auch Waldböden entwässern, über einen Zeitraum von 12 Monaten regelmäßig zu untersuchen. Ziel ist es, die saisonale und räumlich Variabilität der Austräge und Quellen von DOM und seine Rolle als Transportmedium für Spurenstoffe als Funktion der molekularen DOM-Zusammensetzung zu verstehen. Anders als in früheren Studien wird der Schwerpunkt der Bestimmung der molekularen DOM-Zusammensetzung auf Festphasenanalysen mittel Pyrolyse-GC-MS und Thermally assisted Hydrolysis and Methylation -GC-MS unterstützt von spektroskopischen Methoden und Spurenelementanalysen liegen. Das beantragte Projekt soll somit, durch die Nutzung des Eckertalstausee-Systems als natürliches Labor, durch die Identifizierung der wichtigsten DOM-Quellen und deren chemischer Variabilität eine Lücke im Verständnis des biogeochemischen Verhaltens von DOM in der Umwelt schließen.
Parasitismus bleibt in unserem Verständnis von Nahrungsnetzen praktisch vernachlässigt. Parasiten herstellen alternative trophische Verbindungen und können sich auf die Kohlenstoffübertragung im Nahrungsnetz auswirken. In aquatischen Ökosystemen führt die Dominanz von schlecht konsumierbarem Phytoplankton zu trophischen Engpässen, die als störend für Kohlenstoffflüsse angesehen werden. Die Infektion von Phytoplankton durch Pilzparasiten wurde vorgeschlagen, um solche Engpässe zu umgehen, indem unzugänglicher Kohlenstoff aus Algen den Zooplanktonkonsumenten als essbare Zoosporen zur Verfügung gestellt wird (Mycoloop). Neue Erkenntnisse deuten darauf hin, dass die Chytrid-Infektion indirekt andere biotische Komponenten beeinflusst, was wiederum trophische Wechselwirkungen verändern kann. Die Verringerung der Phytoplanktongröße, die unter einer Chytrid-Infektion beobachtet wird, kann das Phytoplankton für Zooplankton genießbarer machen und dadurch den Kohlenstofftransfer zu den Konsumenten über die Herbivoren-Nahrungskette verbessern. Darüber hinaus führt ein erheblicher Anstieg der unter Infektionsbedingungen beobachteten Biomasse heterotropher Bakterien, die von den Verbrauchern genutzt werden können, zu der Hypothese, dass die Chytrid-Infektion den Kohlenstofftransfer durch den mikrobiellen Loop weiter fördert. Mit Hilfe eines künstlich zusammengesetzten Nahrungsnetzes, bestehend aus einem Chytrid-Cyanobakterium Wirtsparasiten-System, einem Zooplankton-Konsumenten und einer heterotrophen Bakteriengemeinschaft, sollen solche indirekten Effekte des Chytrid-Parasitismus auf Kohlenstoffflüsse empirisch untersucht werden. Das experimentelle Nahrungsnetz wird manipuliert, um einzelne Komponenten des Nahrungsnetzes auszuschließen, zu modulieren oder zu kombinieren und Szenarien der Anwesenheit und Abwesenheit von Infektionen zu vergleichen. Experimente werden durchgeführt, um die durch Parasiten vermittelten Effekte auf: i) die pflanzenfressende Nahrungskette zu ermitteln, indem auf Unterschiede in der Fähigkeit von Zooplankton, auf infiziertem und nicht infiziertem Phytoplankton zu verwerten, getestet wird, ii) den Mycoloop, indem sein Beitrag zum trophischen Transfer quantifiziert wird und sein Zusammenhang mit dem sich ändernden Infektionsgrad beschrieben wird, und iii) den mikrobiellen Loop, indem seine vermeintliche Verstärkung durch Chytrid-Infektion und seine möglichen synergistischen Effekte in Kombination mit kleinen Mycoloop-Beiträgen untersucht werden. Schließlich werden die experimentellen Daten genutzt, um ein Modell zu generieren, das erstmals sowohl direkte als auch indirekte Effekte der Chytrid-Infektion auf Nahrungsketten integriert. Dies wird unsere Vorhersagen über den trophischen Transfer in der Basis pelagischer Nahrungsnetze und die Auswirkungen von Parasitismus in großen Kohlenstoffkreisläufen in aquatischen Ökosystemen verbessern.
This project is a continuation of project F funded in the first phase of the DFG Research Group CAOS, where we evaluated the potential of different ground-based geophysical techniques for exploring hydrological systems regarding subsurface structures, characteristics, and processes. Building up on the results of this project, we now focus on further developing selected geophysical techniques (timelapse GPR imaging) for deepening our understanding of hydrological processes at the plot and hillslope scale. In addition, we propose to systematically evaluate modem remote sensing techniques because they cun-ently represent the only means to efficiently explore larger areas or entire catchments. Here, we focus on a combination of full-waveform laserscanning and hyperspectral imaging because they can provide detailed Information regarding geometrical and physical properties of earth's surface, respectively. To link remote sensing with point/plot/hillslope scale data as provided by geophysics and conventional hydrological field techniques, we believe that further methodological innovations are needed. For example, we plan to establish a unique field laboratory to better understand the responses of geophysical and remote sensing techniques to different natural and artificial hydrological events and to develop exploration strategies advancing the applicability of geophysics and remote sensing for hydrological applications at a variety of spatial scales.
In den letzten zwei Jahrzehnten ereigneten sich in Deutschland und Österreich eine Reihe extremer Hochwasser, die mit den größten derartigen Ereignissen seit Beginn der systematischen Abflussbeobachtungen zu Beginn des 20. Jahrhunderts vergleichbar waren, oder diese sogar in ihrer Größe überschritten. Derartige Rekordhochwasser unterscheiden sich in mehrfacher Hinsicht von kleineren Hochwasserereignissen. Das Ausmaß, die Dauer und die räumliche Ausdehnung eines extremen Hochwassers werden von einer Reihe von Faktoren (beispielsweise durch den Niederschlag und seine räumliche und zeitliche Verteilung, den Vorfeuchtebedingungen und den Einzugsgebietseigenschaften wie Flächennutzung, Böden, Flussnetzen und anderen) gesteuert. Das Zusammenwirken des Regens in seiner ereignisspezifischen räumlichen und zeitlichen Verteilung mit der Bodenfeuchte ist oft der auslösende Faktor, da es eine extreme Abflussbildung bedingt. Sobald eine Hochwasserwelle sich im Flussnetz stromabwärts bewegt, wird ihr weitere Verlauf durch die Wechselwirkungen zwischen der Abflussbildung in den verschiedenen Teilbereichen des Einzugsgebietes, der Überlagerung von Hochwasserwellen aus Zuflüssen und den zur Verfügung stehenden Retentionsvolumina in den Überschwemmungsgebieten bestimmt. Welche Kombinationen dieser Faktoren extreme Hochwasserereignisse bedingen, stellt eine wichtige und interessante hydrologische Frage dar. Oft werden nur einige dieser Faktoren die Hochwasserentstehung dominieren und selten werden alle diese Faktoren gleichzeitig im Bereich ihres Maximums auftreten. Große Realisierungen einiger Wirkungsfaktoren reichen aber in der Regel aus, um extreme Hochwasserereignisse zu bedingen. In diesem Projekt werden diese Faktoren und deren Kombinationen im Rahmen einer detaillierten Analyse von extremen Hochwasserereignissen in verschiedenen Regionen Deutschlands und Österreichs untersucht. Aus der Anwendung eines einheitlichen analytischen Rahmens sind weitergehende Einblicke in den Hochwasserentstehungsprozess zu erwarten. Die Ergebnisse der Ereignisanalysen können durch regionalen Vergleiche verallgemeinert werden. Die Erkenntnisse zur Steuerung der hydrologischen Prozesse der Hochwasserentstehung werden in einem neuen GIS-basierte deterministischen Modellen zusammengefasst, um so das Wissen über die Entstehung von extremen Hochwasserereignissen zu verallgemeinern und zu formalisieren.
Dieses Forschungsprojekt untersucht die Herkunft und Entwicklung erzbildender Flüssigkeiten und Formationsmechanismen an einer der bedeutendsten Zinn-Kupfer-Zink-Blei-Lagerstätte, der Neves Corvo in Portugal, in Verbindung mit Flüssigkeits- und Schmelzeinschlüssen und numerischen Simulationen. Dies ist ein wichtiges Forschungsprojekt, das dem Verständnis und der Entwicklung von Mineralressourcen im gesamten iberischen Pyritgürtel und ähnlichen Provinzen einen erheblichen Mehrwert verleihen wird.
Die landwirtschaftliche Bewässerung gehört zu den größten Wasserverbrauchern weltweit. Bei hydrologischen und wasserwirtschaftlichen Studien, z.B. Klimafolgenabschätzungen, spielt die Bewässerung aufgrund ihres Einflusses auf die Wasserbilanz eine wesentliche Rolle. Der Bewässerungsbedarf kann durch höheren Bedarf an Nahrungsmitteln sowie Klimaänderungen regional stark ansteigen. Geringe Wasserverfügbarkeit kann die weitere Entwicklung der bewässerten Landwirtschaft limitieren. Daher ist eine zuverlässige Prognose des künftigen Bewässerungsbedarfs eine wesentliche Planungs- und Entscheidungsgrundlage für Landwirtschaft und Wasserwirtschaft. Die Bewässerung auf der regionalen Maßstabsebene (Flusseinzugsgebiete oder Bewässerungsprojekte von mehreren 100 km2 bis zu größer als 100.000 km2) kann in agrar-hydrologischen Flussgebietsmodellen wie SWAT simuliert werden. Vorhergehende Arbeiten zeigten sowohl das Potential, aber auch Defizite dieser Modelle im Vergleich zu Modellen auf der Feldskala. Der Modellunsicherheit in der Simulation der Bewässerungsmengen wurde auf beiden Skalen bisher wenig Beachtung geschenkt. Dies mag an vielen Faktoren liegen, u.a. auch der schlechten Verfügbarkeit von langjährigen Aufzeichnungen über die tatsächlich erfolgte Bewässerung und deren Steuerung. In diesem Vorhaben sollen sowohl die Parameterunsicherheit als auch die strukturelle Unsicherheit von agrar-hydrologischen Modellen für die Feldskala als auch die regionale Skala untersucht werden. Dazu werden Daten von langjährig betriebenen Versuchsfeldern zur Bewässerung in drei Ländern unterschiedlicher Klimazonen verwendet: Deutschland (Versuchsfelder Hamerstorf in Niedersachsen, humid), Indien (Versuchsfelder des IIT Kharagpur, Monsun) und USA (Versuchsfelder des USDA in Texas, semi-arid). Für das Modell SWAT werden Untersuchungen zur Parameterunsicherheit zu Bodenfeuchte, Bewässerung und Ertrag durchgeführt. Auf der Feldskala werden mehrere agrar-hydrologische Modelle gerechnet. Aus den Erkenntnissen der Feldskala sollen die Bewässerungsroutinen in SWAT verbessert werden, wobei auch Bodenfeuchte und Pflanzenwachstum als relevante Prozesse für die Triggerung der automatischen Bewässerung betrachtet werden. Mit dem Ziel, Prognosen des Bewässerungsbedarfs zu verbessern und mit Unsicherheitsinformationen zu versehen, wird für die Untersuchungsflächen ein Ensemble aus mehreren Modellen und mehreren Parametersätzen (Super-Ensemble) generiert. Dieses wird kalibriert und dadurch auf die besten Mitglieder reduziert (Sub-Ensemble). Anwendungen des Ensembles sind auf der langfristigen strategischen Ebene Klimafolgenschätzungen, auf der kurz- bis mittelfristigen operationellen Ebene die Bewässerungsberatung. Für letztere soll untersucht werden, ob die seit kurzem verfügbaren sub-saisonalen (S2S) Ensemblevorhersagen des ECMWF eine Verlängerung des Vorhersagezeitraums des Bewässerungsbedarfs auf bis zu einen Monat erlauben.
Unter anoxischen Bedingungen wird Arsen (As) in Form von Arsenit vermeintlich vollständig über Schwefel(S)-Gruppen an natürliches organisches Material (NOM) gebunden. Laborexperimente zeigten, dass selbst unter oxischen Bedingungen die Halbwertszeit mehr als 300 Tage betrug, damit sogar größer war als die von Arsenit an Eisen(Fe)(III)-Oxyhydroxiden. Global betrachtet heißt das, dass z.B. Moore, die reich an Organik und Sulfid sind, wichtige quantitative As-Senken sind. Allerdings wurden alle mechanistischen Studien bisher so durchgeführt, dass Arsenit einem zuvor gebildeten S(-II)-NOM zugegeben wurde. In einem System, das As(III), S(-II) und NOM enthält, spielt aber auch die As(III)-S(-II)-Komplexierung in Lösung unter Bildung von Thioarseniten ((H2AsIIIS-IInO3-n)-, n=1-3) und Thioarsenaten ((HAsVS-IInO4-n)2-, n=1-4) eine Rolle. Unsere zentrale Hypothese ist, dass die Kinetik der Thioarsen-Spezies-Bildung in Lösung schneller ist als die Sorption von As(III) und S(-II) an NOM und dass daher Thioarsen-Spezies das Ausmaß und die Kinetik der As-Sorption an Organik bestimmen. Auch die kompetitive Sorption an gleichzeitig auftretenden (meta)stabilen Fe-Mineralen wird vom bekannten Verhalten von Arsenit abweichen. Aufgrund ihrer Instabilität und einem Mangel an reinen Standards, ist über das Sorptionsverhalten von Thioarseniten bislang nichts bekannt. Für Thioarsenate gibt es keine Information zum Bindungsverhalten an NOM, aber es ist bekannt, dass die Sorption an verschiedenen Fe(III)-Mineralen geringer ist als die von Arsenit. Wir postulieren, dass Thioarsenate weniger und langsamer als Arsenit an S(-II)-NOM binden, da kovalente S-Bindungen in Thioarsenaten die Affinität für S(-II)-NOM Komplexierung verringern. An Fe(III)-NOM sollte die Bindung geringer sein in Analogie zur bekannten geringeren Affinität für Fe(III)-Minerale. Wir postulieren weiter, dass die Sulfidierung eine schnellere und größere As-Mobilisierung bewirkt als die zuvor untersuchte Oxidation, da abiotische Oxidation langsam ist, die As-S-Komplexierung in Lösung aber spontan und so As-Bindungen an NOM und Fe-Minerale schwächt. Um unsere Hypothesen zu testen, werden wir Batch-Experimente durchführen mit Mono- and Trithioarsenat-Standards und einem Arsenit-Sulfid Mix (der Thioarsenite enthält) bei pH 5, 7 und 9 an zwei ausgewählten NOMs (Federseemoor Torf und Elliott Soil Huminsäure; jeweils unbehandelt, S(-II)- und Fe(III)-komplexiert). Wir werden Sorptionsaffinität und -kinetik, sowie mittels Röntgenabsorptionsspektroskopie Bindungsmechanismen bestimmen. Die Stabilität der (Thio)arsen-beladenen NOMs wird unter oxidierenden aber auch unter sulfidischen Bedingungen studiert und präferenzielle Bindung in binären Systemen (Kombinationen aus Fe-Oxyhydroxiden, Fe(III)-NOM, S(-II)-NOM und Fe-Sulfiden) untersucht. Ziel ist, As-Bindungsmechanismen in S(-II)-Fe(III)-NOM-Systemen besser zu verstehen, um vorhersagen zu können, unter welchen Bedingungen As Senken zu As Quellen werden können.
Das Biofilmwachstum in Biofilmreaktoren wird hauptsächlich durch den Abtragprozess reguliert. Den Abtragprozess zu kontrollieren ist daher ein wichtiges Anliegen für den stabilen Betrieb eines Bioreaktors. Zur Kontrolle des Reaktors und um die größte Effizienz zu erreichen sind mathematische (bzw. numerische) Modelle, die den Abtragsprozess darstellen, hilfreich. Solche Modelle können möglicherweise sogar für den Entwurf von Biofilmreaktoren nützlich zu sein. In diesem Projekt soll ein multidimensionales, poroviskoleastisches Biofilm Modell entwickelt werden, das den Abtragsprozess abbildet. Dabei soll auch der Abtrag durch das Auslösen von größeren Stücken ('sloughing'), das durch die Schubspannungen an der Biofilm Grenzfläche und durch das Spannungsfeld im Biofilm entsteht, erfasst werden. Das Modell für den Abtrag soll basierend auf den Schubspannungen an der Grenzfläche und dem Spannungsfeld im Biofilm formuliert werden. Das Modell wird mit experimentellen Beobachtungen kalibriert und validiert. Biofilm Modelle, die für Reaktoren verwendet werden, sind in der Regel eindimensional (1D). Aus diesem Grund soll in diesem Projekt mittels Modellrechnungen mit dem validierten multi-dimensionalen Abtragmodell ein vereinfachtes ('upscaled') 1D Modell entwickelt werden.
| Origin | Count |
|---|---|
| Bund | 653 |
| Type | Count |
|---|---|
| Förderprogramm | 653 |
| License | Count |
|---|---|
| offen | 653 |
| Language | Count |
|---|---|
| Deutsch | 452 |
| Englisch | 433 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 634 |
| Topic | Count |
|---|---|
| Boden | 635 |
| Lebewesen und Lebensräume | 569 |
| Luft | 407 |
| Mensch und Umwelt | 653 |
| Wasser | 638 |
| Weitere | 653 |