API src

Found 834 results.

Kurzzeitdynamik des Sediment-Phytoplankton-Nährstofftransports in Flachgewässern

Algenblüten stellen eines der Hauptprobleme für die Wasserqualität vieler Seen und Küstengewässer dar. Trotz der Reduzierung externer Nährstoffeinträge treten sie wiederholt auf. Der Hauptgrund dafür wird in der pulsartigen Freisetzung von Nährstoffen, die in den Sedimenten der betroffenen Gewässer angereichert sind, gesehen. Daten zur Kinetik solcher Nährstoffpulse (Ursachen, Mengen) liegen aber kaum vor und die unmittelbaren Effekte auf das Phytoplankton sind bislang unerforscht. Das liegt vor allem daran, dass Methoden für zeitlich hochauflösende in-situ-Messungen erst in den vergangenen Jahren in größerem Umfang verfügbar wurden. Ihr Einsatz ist sehr arbeitsaufwändig und nur in begrenztem Zeitrahmen realisierbar. Dennoch gibt es in der Fachliteratur zahlreiche Beispiele für pulsartige Nährstofffreisetzungen (NSF), die im Rahmen von Monitoringprogrammen dokumentiert wurden. Dabei handelt es sich meist um sprunghafte Erhöhungen von Nährstoffkonzentration nach plötzlicher Änderung der Redox-Bedingungen in Folge von Sauerstoffmangel. Es ist zu erwarten, dass solche pulsartigen NSF-Ereignisse im Zuge des Klimawandels häufiger auftreten werden, da die Schichtung von Gewässern unter höheren Temperaturen länger anhalten und damit das Risiko für das Auftreten von Sauerstoffmangel ansteigen wird. Die Auswirkungen von NSF auf das Phytoplankton sind sehr wahrscheinlich erheblich, weil sein Wachstum in den Sommermonaten oft durch Nährstoffmangel (N, P, Fe) begrenzt ist. Das Ziel des vorliegenden Projekts ist es, Kurzeiteffekte auf das Phytoplankton (Artenzusammensetzung und physiologische Reaktionen, inklusive Art-spezifischer Reaktionen) unter in-situ-Bedingungen zu analysieren und daraus allgemeingültige Konzepte bezüglich der Trigger- und der Responsevariablen abzuleiten. Die Messungen werden in einem flachen Süß- und einem flachen Brackwassersystem mit einer Kombination aus neuartigen, hochauflösenden nasschemischen Sensoren (P), UV-Sensoren (C, N) und Methoden zur Charakterisierung der Phytoplanktonphysiologie (in-situ-Flow Cytometry, Gasaustauschmessungen und verschiedene Pulse-Amplitude-Modulated [PAM]-Fluorometer) durchgeführt. Im Mittelpunkt stehen die Verifizierung der Ursachen sowie die Quantifizierung der kinetischen Parameter (Dauer und Amplitude) von pulsartigen NSF in Kombination mit der quantitativen Erfassung der Auswirkungen auf Phytoplanktonentwicklung und -zusammensetzung. Parallel zu den Feldarbeiten sind Mesokosmos- und Laborexperimente vorgesehen, um unter kontrollierten Bedingungen die Kausalität der Freilandbeobachtungen zu überprüfen. Durch die Arbeiten des Projekts, vor allem die zeitlich hochaufgelösten Erfassungen von Freisetzungskinetik und Phytoplanktonreaktion, werden wegweisende Erkenntnisse erwartet, die insbesondere für Experten im Bereich Wasserqualitätsmanagement von fundamentalem Interesse sein werden. Es ist daher vorgesehen, die Ergebnisse auf frei zugänglichen Wissenschaftsdaten-Plattformen zur Verfügung zu stellen.

Eine nachhaltige Nutzung der globalen hydrologischen Modellierungssoftware WaterGAP

WaterGAP ist eine globale hydrologische Simulationssoftware zur Berechnung von Wasserflüssen und -speicherung auf allen Kontinenten der Erde. Sie wird verwendet, um Wasserverfügbarkeit und Wasserstress für Menschen und andere Biota weltweit zu bestimmen. In zahlreichen Studien wurde WaterGAP genutzt, um z.B. den Einfluss des Klimawandels auf Bewässerungsbedarf, ökologisch relevante Durchflusscharakteristika, Grundwasserneubildung und auf Wasserressourcen im Allgemeinen zu erforschen. Resultate aus diesen Studien sind in IPCC-Berichte eingegangen. WaterGAP nimmt unter den hydrologischen Modellen weltweit eine Führungsrolle ein. Allerdings wurde die Software über mehr als 20 Jahre von mehreren Doktoranden und Postdocs verändert und befindet noch sich immer in einem Prototypstadium. Die Software wurde nie grundlegend überarbeitet oder auf Grundlage einer sorgfältig geplanten Software-Architektur entwickelt. Es handelt sich eher um eine Ansammlung von Dateien mit jeweils fast 10.000 Code-Zeilen, ohne eine konsequente Modularisierung. Es ist es uns daher aktuell nicht möglich, die Software anderen Forschern zur Verfügung zu stellen, damit sie Ergebnisse replizieren und verstehen können oder die Software für eigene Forschung zu erweitern. Auch Modellveränderungen und Erweiterungen durch unsere beiden Gruppen sind herausfordernd und kosten Zeit. Gerade wegen der wichtigen Forschungsergebnisse bezüglich der Beurteilung und Projektion von globalen Wasserressourcen wäre eine Replikation der Ergebnisse durch Dritte unbedingt notwendig, was eine deutliche Verbesserung der Softwarequalität voraussetzt. Projektziel ist es. die Forschungssoftware in einer modernen Programmiersprache neu zuschreiben und ausführlich zu dokumentieren. Zudem soll die räumliche Auflösung flexibel anpassbar sein. Die resultierende Software soll testbar, wartbar, erweiterbar und durch Dritte nutzbar und erweiterbar sowie gründlich getestet sein. Die Neuentwicklung wird mit einem angepassten Scrum-Prozess durchgeführt und die Planung der Software Architektur wird auf Grundlage des IEEE 1016-2009 Dokuments erstellt. Mehrere Methoden werden genutzt um nachhaltig die Qualität der Software intern und externe zu steuern. Dieses Projekt wird anderen Forschern erlauben unser globales hydrologisches Modell selbst auszuführen, Ergebnisse zu replizieren oder die Einflüsse von Modifikationen in den Eingabedaten und Algorithmen zu untersuchen. Die Forschergemeinschaft kann so algorithmische Ansätze vergleichen, unserer Ergebnisse überprüfen und auch Fehler in unserer Software identifizieren. Um die Berichterstattung und Zusammenarbeit so einfach wie möglich zu gestalten setzen wir auf die etablierte Plattform github. Auch werden wir von automatisierten Tests und Benchmarkszenarien Gebrauch machen. Dies wird nicht nur dazu beitragen die Forschungssoftware WaterGAP effizienter zu nutzen und wissenschaftliche Ergebnisse robuster machen, sondern auch den wissenschaftlichen Fortschritt beschleunigen.

HILLSCAPE (Chronosequenzen an Hängen und deren Prozessentwicklungen)

Der globale Wandel verändert nicht nur das Klima sondern auch die Oberfläche der Erde. Unser Verständnis von Bodenveränderungen und ihrer Wechselwirkungen mit hydrologischen, ökologischen und geomorphologischen Prozesse ist jedoch noch rudimentär. Einige der Bodeneigenschaften sind zeitlich stabil, aber andere verändern sich zum Teil sehr schnell mit signifikanten Auswirkungen auf die Quantität und Qualität des Wasserkreislaufes. Diese Veränderungen sind besonders markant auf der Hangskala, wo laterale und vertikale Prozesse über unterschiedliche Zeitskalen miteinander interagieren. Wasser und Vegetation beeinflussen die oberirdischen und unterirdischen Prozesse an Hängen auch über die Verwitterung, die Bodenentwicklung und die Erosion. Diese Prozesse wiederum beeinflussen auch die Fließwege des Wassers. Die daraus resultierende Verteilung der Wasserspeicher beeinflusst die Artenverteilung und Funkrionalität der Vegetation, wobei die Vegetation selber wiederum die Fließwege des Wassers beeinflusst. Dieses komplexe Gefüge an Wechselwirkungen wurde in seiner zeitlichen Entwicklung bisher noch kaum detailliert untersucht. Das interdisziplinäre Forschungsprojekt HILLSCAPE (HILLSlope Chronosequence And Process Evolution) soll sich mit der Frage beschäftigen, wie sich dieser Feedback-Zyklus in einem Zeitraum von 10000 Jahren verändert und was für strukturelle Veränderungen daraus resultieren. Das Projekt konzentriert sich dabei auf die vertikale und laterale Umverteilung von Wasser und Stoffen an Hängen und ihrer Wechselwirkungen mit dem Boden, der Vegetation und der Landschaftsentwicklung. Um dieses ehrgeizige Ziel erreichen zu können, wird sich HILLSCAPE Hang-Chronosequenzen auf Moränenstandorten zu Nutze machen. Gletschervorländer liefern uns so Schnappschüsse der zeitlichen Entwicklung. Die Auswahl zweier Fokusgebiete mit unterschiedlichem Ausgangsmaterial erlaubt dabei den direkten Vergleich der Entwicklung auf Silikat- und Karbonatgestein. In jedem Fokusgebiet werden Hänge in 4 verschiedenen Altersklassen instrumentiert. Die Aufgliederung in 5-6 Flächen pro Altersklasse ermöglicht es uns, eine große Bandbreite an Vegetationsbedeckung und -komplexität abzudecken. Wir werden gezielt relevante Strukturen aller 48 Hangflächen aufnehmen und werden deren hydrologische und geomorphologische Funktionsweise und Prozesse einerseits über ein Jahr beobachten und andererseits durch künstliche Beregnung in kontrollierten Experimenten genauer aufschlüsseln. Zusätzlich werden wir funktionalen Eigenschaften der Pflanzen und somit die strukturelle und funktionale Diversität der Standorte erfassen. Die Kombination von vier interdisziplinären Doktorarbeiten und der integrativen Modellierung durch einen Postdoc erlaubt uns die gemeinsame Untersuchung von hydrologischen, geomorphologischen und biotischen Prozessen und ihrer Interaktionen.

Ecosystem Engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)

Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.

Forschungsgruppe (FOR) 2589: Zeitnahe Niederschlagsschätzung und -vorhersage; Near-Realtime Quantitative Precipitation Estimation and Prediction (RealPEP), Evaluierung von Verbesserungen in QPE und QPN in einem Echtzeit-vorhersagesystem für Abfluss und Überflutungen mit Datenassimilatio

Echtzeitvorhersagen von Abfluss und Überflutungen stellen eine große Herausforderung dar, auch weil Wettervorhersagen konvektive Starkregenereignisse auf der stündlichen Sub-Kilometerskala noch nicht mit ausreichender Qualität vorhersagen können. Das führt zu unvorhergesehenen Überflutungen und großen Schäden öffentlichen Eigentums und Infrastruktur und potentiell zu Todesopfern. Bekannte Beispiele in der Region des Geoverbundes ABC/J sind die Sturzfluten in Wachtberg am 3. Juli 2010 und am 6. Juni 2016. Das Projekt wird ein neuartiges, probabilistisches Echtzeitvorhersagesystem für Abfluss und Überflutungen in kleinen Einzugsgebieten (kleiner als 500 km2) entwickeln. Das Projekt konzentriert sich auf die Einzugsgebiete Wachtberg, Ammer und Bode. Wir werden QPE, QPN und QPF (quantitative Niederschlagsschätzung, Nowcasting und numerische Vorhersage), die Produkte von P1, P2 und P3 in dem Vorhersagesystem verwenden, um die erreichten Verbesserungen in RealPEP zu bewerten. Ein wichtiger Aspekt des Projektes ist die Verwendung verschiedener hydrologischer Modelle (konzeptionell und physikbasiert) für die Flutvorhersage. Wir werden den Mehrwert und die Limitierungen der verschiedenen Modelle (und Datenassimilierungsverfahren) identifizieren. Konzeptionelle Modelle profitieren hauptsächlich von der Optimierung/Kalibrierung des Abflusses und der Möglichkeit schnell, große Ensemble berechnen zu können; physikbasierte Modelle dagegen haben den Vorteil verschiedenartige Beobachtungsdaten verarbeiten zu können und Prozesse besser abzubilden, wodurch eine einfachere Übertragbarkeit auf andere Einzugsgebiete ohne Kalibration möglich ist. Schlussendlich werden wir untersuchen ob die verschiedenen Ansätze sich ergänzende Information zu Echtzeitvorhersage von Überflutungen liefern können.

Forschungsgruppe FOR 2793: Sensitivity of High Alpine Geosystems to Climate Change Since 1850 (SEHAG), Auswirkungen des Klimawandels auf hydrologische Prozesse in hochalpinen Einzugsgebieten

Die Häufigkeit und das Ausmaß extremer hydrologischer Ereignisse werden höchstwahrscheinlich durch den Klimawandel verstärkt. Hochalpine Einzugsgebiete sind besonders sensible Räume, da diese Regionen der Hydrosphäre stark durch Veränderungen im Temperatur- und Niederschlagsregime beeinflusst werden. Die starke Kopplung zwischen der Hydrologie und weiteren Komponenten der Geosystem in hoch gelegenen Einzugsgebieten erfordert eine detaillierte Beschreibung der ablaufenden hydrologischen Prozesse. Dieser Umstand rechtfertigt die Einrichtung dieses Teilprojekts der im Rahmen des SEHAG Projektes (Sensitivity of high Alpine geosystems to climate change since 1850) beantragten Forschergruppe. Die Innovation der vorgeschlagenen Forschungsrichtung liegt in der Untersuchung der Veränderungen in der Hydrosphäre zwischen 1850 und 2050 und wie diese mit den übrigen Komponenten der Geosystem in hochalpinen Lagen interagieren. Insbesondere werden wir gründliche Zeitreihenanalysen zur Untersuchung der Korrelation zwischen Klimawandel und den Jährlichkeiten extremer hydrologischer Ereignisse (z.B.: zeitliche Verteilung von Niederschlagsereignissen innerhalb eines Jahres und Einsetzen der Schnee- und Gletscherschmelze) durchführen. Daneben wollen wir verifizieren ob es möglich ist die Qualität der hydrologischen Modelle für hochalpine Einzugsgebiete durch 'multi-objective' Kalibrierungsansätze zu verbessern. Archive spielen dabei eine wichtige Rolle als Datenquelle zur Rekonstruktion der meteorologischen Bedingungen der Vergangenheit. Außerdem ermöglicht die Zusammenarbeit mit anderen Teilprojekten die Kalibrierung des hydrologischen Modells, sowohl gegen den Abfluss, als auch gegen Permafrost- sowie Schnee- und Gletschermessungen. Darüber hinaus werden uns die geplanten experimentellen Messungen erlauben die 'multi-objective' Kalibrierung auf weitere Parameter, wie die elektrische Leitfähigkeit des Abflusses oder die Wassertemperatur der Wildbäche auszuweiten. Das resultierende, kalibrierte Modellergebnis, für das eine intensive Unsicherheitsanalyse durchgeführt werden wird, wird dann von den weitern Teilprojekten genutzt, um die Veränderungen in der Geosystem zu interpretieren.

Sonderforschungsbereich (SFB) 1076: Forschungsverbund zum Verständnis der Verknüpfungen zwischen der oberirdischen und unterirdischen Biogeosphäre, Teilprojekt C07: Rückwirkung geochemischer Störungen und Gesteins-Reaktivität auf die Spurenelement-Speziation und Transportparameter in der Critical Zone

Unterirdische Transportpfade im Hainich CZE sind komplex und bestimmt von der Heterogenität und Reaktivität des Aquifer-Materials. Der Transport von Tonmineralen aus der Bodenzone wird unter Verwendung synthetischer Tonmineral-Nanopartikel mit der multi-methodischen massenspektrometrischen Plattform untersucht. Der besondere Schwerpunkt liegt auf der Dynamik, Steuerung und Rückkopplung des Spurenelementtransports auf das unterirdische Mikrobiom der Critical Zone vom Labormaßstab bis zum projektübergreifenden Feldexperiment.

Räumliche Niederschlagsschätzung mit verbesserten Messungen durch Richtfunkstrecken und statistischer Datenfusion

Mit der Steigerung der Rechenleistung, mathematischer Modellierung und satellitengestützter Fernerkundung der Erdoberfläche sind Niederschlagsbeobachtungen nach wie vor eines der schwächsten Glieder in der Beschreibung und im Verständnis des Wasserkreislaufs der Erde. Niederschlagsbeobachtungen sind jedoch eine wesentliche Voraussetzung für das Wassermanagement und insbesondere für die Hochwasserprognose. Dies ist besonders kritisch im Angesicht des Klimawandels und der durch den Menschen verursachten hydrologischen Veränderungen, z.B. aufgrund der raschen Urbanisierung . Opportunistische Sensoren können die räumliche und zeitliche Auflösung von Standard-Niederschlagsmessnetzen erheblich verbessern, indem sie mit Messungen von Geräten ergänzt wird, die ursprünglich nicht für die Niederschlagsmessung vorgesehen waren. Ein Beispiel dafür ist die Verwendung von Dämpfungsdaten kommerzieller Richtfunkstrecken (engl. CMLs) aus Mobilfunknetzen. Im Rahmen dieses trilateralen Projekts zwischen UniA, TUM und CTU werden wir verbesserte Methoden entwickeln, um Niederschlagsraten aus CML-Daten abzuschätzen und mit Radardaten, unter Berücksichtigung spezifischer Beobachtungsunsicherheiten zu kombinieren. Die CML-Niederschlagsschätzung wird durch die Entwicklung eines neuen Kompensationsalgorithmus zur Bestimmung der Dämpfung durch den 'wet-antenna attenuation' (WAA) Effekt verbessert. Dies wird erreicht, indem Erkenntnisse aus einem speziellen Mikrowellentransmissions-Feldexperiment und Labormessungen (durchgeführt durch TUM) mit Daten aus kurzen CMLs (von CTU bereitgestellt) kombiniert werden. Darüber hinaus wird das Potenzial zur Nutzung der von benachbarten CMLs in dichten Netzwerken gebotenen Diversität untersucht (durch CTU). Darüber hinaus werden das Potenzial und die Herausforderungen der CML-Niederschlagsschätzung im aufkommenden E-Band mit CML-Daten (von CTU bereitgestellt) und mittels Labormessungen (an der TUM) untersucht. Verbesserte räumliche Niederschlagsfelder werden durch das Zusammenführen von CML- und Wetterradardaten unter Verwendung des statistischen Ansatzes Random-Mixing (RM) bereitgestellt, für den eine Erweiterung (von UniA) entwickelt wird, um Beobachtungsunsicherheiten zu berücksichtigen. Es werden Methoden entwickelt, um diese Unsicherheiten sowohl für CML- als auch für Radardaten abzuschätzen. Das erweiterte RM wird dann angewendet, um einen einzigartigen grenzüberschreitenden CML- und Radardatensatz (von UniA und CTU bereitgestellt) sowie einen Datensatz von Wetterradar und dichtem städtisches CML-Netzwerk in der Stadt Prag zusammenzuführen.

Aufklärung der mikrobiellen Nitratumsetzung in einem Süßwasserhabitat bei Anwesenheit von Methan, Nitrat und Ammonium: Koppelung von n-damo (Nitrat/Nitrit-abhängige anaerobe Methanoxidation) und Anammox (anaerobe Oxidation von Ammonium)

In diesem Projekt wollen wir in einem Süßwasserhabitat die Koppelung der nitratabhängigen Methanoxidation (n-damo) mit dem Anammox Prozess nachweisen. Messungen der stabilen Isotope im Methan, Nitrat, Nitrit, Ammonium und DIC und molekularbiologische Methoden sollen helfen, diese Prozesse zu entschlüsseln. Zudem wollen wir klären, wie die Erkenntnis von einströmendem Grundwasser in das Habitat (Interaktion zwischen Grundwasser und Seewasser) zu erklären ist, dass die für die Prozesse (n-damo, Anammox, Methanogenese) benötigten stabilen Umwelt- bzw. anoxischen Redoxbedingungen vorliegen.

Einfluss von Vergletscherung, Permafrost und tektonischen Bedingungen auf die Ausbreitung von Radionukliden im Fernfeld eines Tiefenlagers nach einem potenziellen Schadensfall

Die Entsorgung nuklearer Abfälle in geologischen Tiefenlagern muss in Gebieten erfolgen, die vom Grundwasserstrom ausreichend isoliert bleiben. Andernfalls können Fluidströmungsprozesse bei einer gestörten Entwicklung des Endlagers die Migration von Radionukliden in die Biosphäre begünstigen. Nur wenige Studien befassen sich mit den Folgen des weiträumigen Radionuklidtransports in solchen Worst-Case-Szenarien. Die hydrogeologischen Bedingungen des Gesamtsystems in der Nachbetriebsphase werden sich jedoch letztendlich von denen zum Zeitpunkt des Endlagerbaus unterscheiden und werden sowohl von äußeren Faktoren (z.B. Klimawandel) als auch von intrinsischen Beckeneigenschaften stark beeinflusst. Dieses Vorhaben im Bereich der Umweltrisiken zielt darauf ab, die Auswirkungen von (i) Vereisung, (ii) Permafrost und (iii) tektonischen Ereignissen auf die hydrologischen und hydromechanischen Grenzen zu untersuchen, die den großräumigen Grundwasserfluss in der Nähe von hypothetischen Abfalldeponien bestimmen. Zu diesem Zweck dient der Yeniseisky-Standort (YS) in Russland, ein potenzielles geologisches Tiefenlager für radioaktive Abfälle in kristallinem Gestein, als Fallstudie, der auf einzigartige Weise alle drei oben genannten Merkmale der geologischen Umgebung umfasst. Multiphysikalische Simulationen von thermisch-hydraulisch-mechanisch-chemisch gekoppelten Prozessen (THM-C) werden angewendet, um Szenarien der Fernfeld-Radionuklidentwicklung im Extremfall eines Endlagerstörfalls zu liefern. Die Neuartigkeit der THM-C-Modelle und der Zugang zu einer einzigartigen Datenbank der YS werden das klassische Verständnis von anomaler Fluid-, Wärme- und Massentransportvorgänge innerhalb tektonisch aktiver Becken erweitern. Während sich das vorgeschlagene Vorhaben auf die Thematik der nuklearen Entsorgungsforschung bezieht, können die den entwickelten Modellen zugrunde liegenden physikalischen und numerischen Konzepte auf eine Vielzahl von Nutzungsszenarien der Geosphäre (z.B. CO2-Speicherung, Abfallentsorgung, Entstehung seismischer Ereignisse) angewendet werden. Darüber hinaus sind entsprechende Benchmarkstudien in ähnlichen kristallinen geologischen Formationen geplant.

1 2 3 4 582 83 84