Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Titandioxid-Nanopartikel (n-TiO2) stellen aufgrund ihrer Persistenz und vermehrten Freisetzung aus Sonnenschutzmitteln ein zunehmendes Risiko für aquatische Ökosysteme dar. Ihre Auswirkungen sind jedoch nach wie vor schwer abzuschätzen, da einerseits erst kürzlich Analysemethoden zur Bestimmung ihrer Konzentration in Umweltmedien entwickelt wurden. Andererseits ist ihr Verbleib in aquatischen Systemen nur unzureichend erforscht. Insbesondere die Verteilung zwischen der Wasseroberfläche (SML), Wassersäule, Sedimenten, Pflanzen und Plankton hängt von Prozessen ab, die einzeln in Laborexperimenten untersucht, aber selten unter Umweltbedingungen bewertet wurden. Darüber hinaus wurde die Rolle des Windes bei der Dispersion von Nanopartikeln in der SML bisher nicht untersucht, obwohl Winddrift wahrscheinlich wesentlich zur räumlichen Dispersion von hydrophobem n-TiO2 beiträgt. In diesem Projekt untersuchen wir die Verteilung von n-TiO2 in einem typischen Badesee mittels Feldmessungen, Laborexperimenten und eines reaktiven Transportmodells. Wir werden den Eintrag von Sonnenschutzmitteln anhand von Umfragen und Proben unter den Badegästen quantifizieren und die Abwaschrate von Sonnenschutzmitteln von der Haut unter Feldbedingungen bestimmen. Die Menge an n-TiO2 in der Wasserphase, an der Wasseroberfläche (hydrophobe Filme) und in aquatischen Organismen wird mit einer neu entwickelten Methode bestimmt, die auf Spurenelementen beruht, um den natürlichen TiO2-Hintergrund zu korrigieren. Es wird eine Probenahmekampagne mit hoher Messfrequenz durchgeführt, um empirische Daten über die Ausbreitungsrate aufgrund von Konvektion und Winddrift zu erhalten. Die Akkumulation von anthropogenen n-TiO2 im Sediment wird ebenfalls durch Messungen der Konzentration vor und nach der Badesaison bestimmt. Die gewonnenen Daten werden für die Entwicklung, Prüfung und Optimierung von Verteilungsmodellen verwendet, die die räumliche Ausbreitung zusammen mit den Eigenschaften der Nanopartikeln und der Wasserchemie berücksichtigen. Zur Bestimmung der für das Modell erforderlichen Parameter werden Laborexperimente durchgeführt. Die Haftungseffizienz wird mit n-TiO2 bestimmt, dass aus Sonnenschutzmitteln extrahiert und auf natürliche Weise in Seewasser aufgebracht wurde. Surrogate für natürliche Kolloide werden auf der Grundlage einer detaillierten Untersuchung im Untersuchungssee ausgewählt und als Heteroaggregationspartner in den Laborexperimenten verwendet. Um den Einfluss des Windes auf die SML zu parametrisieren, werden Mesokosmen-Experimente durchgeführt, um die Stabilität von Sonnencreme-SML unter kontrollierten aero- und hydrodynamischen Bedingungen zu quantifizieren. Die Ergebnisse werden es erstmalig ermöglichen, die wichtigsten Prozesse zu bestimmen, die für den Verbleib von n-TiO2 aus Sonnenschutzmitteln in Badegewässern relevant sind, und die zukünftige ökologische Risikobewertung anorganischer UV-Filter in Sonnenschutzmitteln ermöglichen.
Der Towuti See auf Sulawesi, Indonesien ist ein stratifiziertes eisenreiches System, dessen tiefes Becken wechselnde Redoxbedingungen mit variablen Eisenoxidzuflüssen erfährt. Im Sommer 2015 erbohrte das ICDP Towuti Drilling Project Sedimentkerne, die ein Archiv über die Klima- und Ablagerungsgeschichte der letzten 1 Ma beinhalten. Während des späten Quartärs wechselten Nass- und Trockenperioden im See ab was zu unterschiedlichen trophischen und Redox Bedingungen führte. Das Projekt BioMetArchive wird untersuchen, welche Auswirkungen sedimentologische und geochemische Bedingungen zum Zeitpunkt der Ablagerung auf die Zusammensetzung der mikrobiellen Gemeinschaft haben und diese durch die 1-Ma-Chronosequenz verfolgen. Wir werden den Towuti-See als modernes Analogon eisenreiche Systemen der frühen Erde nutzen um weitere Einblicke in die mikrobiellen Prozesse zu gewinnen. Die beiden Haupthypothesen des Projekts sind: (1) Mikrobielle Gemeinschaften spiegeln die lakustrinen Bedingungen zum Zeitpunkt der Ablagerung wieder, diese werden teilweise in sedimentärer DNA aufgezeichnet; (2) Umweltbedingungen in der Tiefe erzeugen einen Selektionsdruck hin zu spezifischen Stoffwechselprozessen, die es den Organismen der tiefen Biosphäre ermöglicht zu überleben. Diese Prozesse ähneln denen der eisenreisen Systeme der frühen Erde. Dank der jüngsten Fortschritte in der Metagenomik kann sedimentäre DNA nun verwendet werden, um mikrobielle Populationen in Bezug auf Häufigkeit, Diversität und Stoffwechselfunktionen zu charakterisieren. Das Projekt BioMetArchive wird Sedimentproben verwenden, die während der Bohrung im Jahr 2015 in hoher zeitlicher Auflösung genommen und seitdem bei -80°C tiefgefroren gelagert wurden. Kürzlich erfolgte Tests haben die Eignung dieses Materials für unsere geplanten Analysen bewiesen. Wir werden die phylogenetische Verteilung von Mikroorganismen ermitteln und genomische Daten mit bereits vorhandenen Umwelt- und geochemischen Datensätzen integrieren, um Parameter zu identifizieren, die die Zusammensetzung der mikrobiellen Gemeinschaft im Laufe der Zeit steuern. Durch Metagenomik werden wir identifizieren, welche mikrobiellen Taxa und metabolischen Merkmale an der Eisenreduktion und der Remineralisierung organischen Materials beteiligt sind. Außerdem werden wir Stoffwechselwege rekonstruieren, die effiziente Redox Reaktionen und die Remineralisierung organischen Materials in eisenhaltigen Sedimenten ermöglichen. Die eisenreichen Bedingungen im Sediment selektieren überwiegend für fermentative Bathyarchaeota. Metabolische Merkmale, die diesem völlig unkultivierten Stamm zugeordnet werden, deuten auf Eisen- und Schwefelmetabolismus sowie Methanogenese hin, was auf kryptische biogeochemische Zyklen schließen lässt. Die tiefe Biosphäre des eisenhaltigen Towuti-Sees stellt dabei ein modernes Äquivalent zu den Stoffwechselprozessen auf der frühen Erde dar.
Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.
Methane emissions from inland water bodies are of growing global concern since surveys revealed high emissions from tropical reservoirs and recent studies showed the potential of temperate water bodies. First preliminary studies at the River Saar measured fluxes that exceed estimates used in global budgets by one order of magnitude. In this project we will investigate the fluxes and pathways of methane from the sediment to the surface water and atmosphere at the River Saar. In a process-based approach we will indentify and quantify the relevant environmental conditions controlling the potential accumulation of dissolved methane in the water body and its release to the atmosphere. Field measurements, complemented by laboratory experiments and numerical simulations, will be conducted on spatial scales ranging from the river-basin to individual bubbles. We will further quantify the impact of dissolved methane and bubble fluxes on water quality in terms of dissolved oxygen. Special emphasize will be put on the process of bubble-turbation, i.e. bubble-mediated sediment-water fluxes. The project aims at serving as a reference study for assessing methane emissions from anthropogenically altered river systems.
Chlordioxid (ClO2) wird weltweit zur Oxidation und Desinfektion eingesetzt, wenngleich über die Reaktionen des Chlordioxids noch wenig bekannt ist. So haben erst kürzlich erschiene Arbeiten gezeigt, dass es bei der Reaktion von ClO2 zur Bildung von freiem Chlor kommen kann, welches bei der Desinfektion und Schadstoffabbau sowie bei der Bildung von Transformations- und Nebenprodukten berücksichtigt werden muss. Das vorliegende Projekt behandelt die Reaktionen von ClO2 mit Schadstoffen. Dabei sollen N-haltige Verbindungen untersucht werden, die einen Großteil der in der aquatischen Umwelt vorhandenen Schadstoffe ausmachen. Ziel der Untersuchungen ist es zunächst die pH-wertabhängige Reaktionskinetik von N-haltigen organischen Modellverbindungen zu bestimmen um die Stoffe zu identifizieren, die ein hohes Potenzial haben durch ClO2 abgebaut zu werden. Dann werden die elementaren Reaktionsschritte anhand der "reaktiven" Modellverbindungen untersucht und Reaktionsmechanismen ermitteln. Hierbei werden auch sekundäre Oxidationsmittel, die aus Reaktionen des ClO2 entstehen können (freies Chlor und freies Brom und Iod) erfasst. Die mechanistischen Untersuchungen umfassen zudem die Rolle des Sauerstoffs und der Peroxylradikale in ClO2 Reaktionen, die bisher kaum diskutiert wurden. Schließlich werden Transformationsprodukten bestimmt. Aus den erarbeiteten Daten werden Reaktionsmechanismen abgeleitet und angewendet um die Bildung von Transformationsprodukten für komplexere Schadstoffe zu vorherzusagen. Die Vorhersagen werden daraufhin sowohl in synthetischen wässrigen Lösungen als auch in realen Wässern anhand von realen N-haltigen Schadstoffen überprüft. Insgesamt soll dabei das Verständnis der ClO2 Reaktionen unter Berücksichtigung der sich bildenden sekundären Oxidationsmittel soweit verbessert werden, dass signifikante wissenschaftliche Fortschritte erreicht werden die in der Praxis der Wasseraufbereitung etwa zur Abschätzung der Abbaubarkeit von N-haltigen Schadstoffen und der Bildung von transformations- und Nebenprodukten genutzt werden können.
Karst entsteht sich durch die Verwitterung von Karbonatgestein und erzeugt starke oberflächliche und unterirdische Heterogenität von hydrologischen Speicher und Fließprozessen. Ungefähr 7% bis 12% der Erdoberfläche besteht aus Karstgebieten und etwa ein Viertel der Weltbevölkerung ist ganz oder teilweise abhängig von Trinkwasser aus Karstgrundwasserleitern. Für die nächsten Jahrzehnte, Klimamodelle prognostizieren einen starken Temperaturanstieg und eine Abnahme von Niederschlagsmengen in vielen Karstregionen der Welt. Trotz dieser Vorhersagen gibt es nur wenige Studien, die die Auswirkungen des Klimawandels auf die Karstwasserressourcen abschätzen. Die ist hautsächlich auf das Fehlen von Messdaten und die inadäquate Abbildung von Karstprozessen in derzeit angewandten Ansätzen zur großskaligen Modellierung zurückzuführen. Das Ziel der beantragten Nachwuchsgruppe ist, die notwendigen Daten und Ansätze zur erstmaligen Abschätzung der gegenwärtigen und zukünftigem Verfügbarkeit von Wasserressourcen in Karstgebieten zur Verfügung zu stellen. Um dieser Herausforderung gerecht zu werden, sind signifikante Fortschritte (1) zum Verständnis der Heterogenität von Karstregionen und zu deren Einarbeitung in hydrologische Modelle, (2) zum Upscaling von Beobachtungen auf der Einzugsgebietsskale für Anwendungen von Simulationsmodellen im globalen Maßstab, und (3) zum Vergleich der gegenwärtigen und zukünftigen Verfügbarkeit von Wasserressourcen mit gegenwärtigen und zukünftigen Wasserbedarf von Nöten. Im vorgeschlagenen Projekt sollen neuartige Ansätze zur Messung und Analyse hydrologischer Daten an fünf experimentellen Messgebieten, die in 5 verschiedenen Klimaregionen über den Globus verteilt sind (AU, D, ES, MX, UK), eingesetzt werden, um die Einflüsse der Heterogenität von Karstgebieten auf oberflächennahe Fließprozesse zu erkunden. Mittels einer neu entwickelten Karstdatenbank, welche beobachtete Zeitreihen von Karstquellenabflüssen enthält, und Rezessionsanalyse sollen die Heterogenität von Grundwasser und Abflussprozesse in verschiedenen Regionen der Welt charakterisiert werden. Dieselbe Datenbank, erweitert durch zusätzlich Abflussdaten auf Flussgebietsskale des Global Runoff Data Center (GRDC), soll zur Entwicklung eines neuen Ansatzes zur Einbindung der neu gewonnenen Erkenntnisse in ein großskaliges Simulationsmodell speziell für Karstregionen angewandt werden. Dieses Modell soll letztendlich dazu benutzt werden, um (1) gegenwärtige und, gekoppelt mit Klimaszenarien, zukünftige Verfügbarkeit von Wasserressourcen in Karstgebieten zu erkunden, um diese (2) mit gegenwärtigen und zukünftigen Wasserbedarf zu vergleichen und von Wassermangel bedrohte Regionen zu identifizieren.
Im Allgemeinen sind die Molybdän (Mo) Werte im Trinkwasser deutlich unterhalb der als Gesundheitsrisiko eingestuften Konzentrationen. Daher hat die Weltgesundheitsorganisation (WHO) noch keine Grenzwerte festgelegt, veröffentlichte jedoch eine Empfehlung, wonach 70 Mikro g/L nicht überschritten werden sollten. In diesem Zusammenhang sind kürzlich im Grundwasser Zentral Floridas gemessene Molybdän-Konzentrationen von über 5.000 Mikro g/L besorgniserregend. Molybdän tritt in dieser Region natürlich auf (geogen) und wird aufgrund von anthropogen bedingter Störung der physikalisch-chemischen Bedingungen im Grundwasserleiter freigesetzt. Diese Art der anthropogen-induzierten Kontamination durch geogene Elemente stellt weltweit ein Problem für die öffentliche Gesundheit dar. Die andauernden Probleme mit Arsen (As) in Bangladesch und Westbengalen sind Thema unzähliger Beiträge in Presse und wissenschaftlichen Zeitschriften. Wenngleich Molybdän weniger toxisch ist als Arsen, könnte es sich als ein ähnliches Problem erweisen. Besonders dann, wenn Trinkwasser aus Grundwasserleitern marinen Ursprungs gewonnen wird in denen Mo von Natur aus erhöht vorhanden ist. Um die Möglichkeit der anthropogen-induzierten Kontamination durch geogenes Mo in Grundwasserleitern marinen Ursprungs besser zu verstehen, wird ein multidisziplinärer Ansatz vorgeschlagen. Ziel ist ein besseres Verständnis der Mo-Mobilisierung durch eine Kombination aus (geo)chemischen und hydrogeologischen Arbeiten, sowie deren Quantifizierung im Rahmen eines reaktiven Transportmodels.
Der globale Wandel verändert nicht nur das Klima sondern auch die Oberfläche der Erde. Unser Verständnis von Bodenveränderungen und ihrer Wechselwirkungen mit hydrologischen, ökologischen und geomorphologischen Prozesse ist jedoch noch rudimentär. Einige der Bodeneigenschaften sind zeitlich stabil, aber andere verändern sich zum Teil sehr schnell mit signifikanten Auswirkungen auf die Quantität und Qualität des Wasserkreislaufes. Diese Veränderungen sind besonders markant auf der Hangskala, wo laterale und vertikale Prozesse über unterschiedliche Zeitskalen miteinander interagieren. Wasser und Vegetation beeinflussen die oberirdischen und unterirdischen Prozesse an Hängen auch über die Verwitterung, die Bodenentwicklung und die Erosion. Diese Prozesse wiederum beeinflussen auch die Fließwege des Wassers. Die daraus resultierende Verteilung der Wasserspeicher beeinflusst die Artenverteilung und Funkrionalität der Vegetation, wobei die Vegetation selber wiederum die Fließwege des Wassers beeinflusst. Dieses komplexe Gefüge an Wechselwirkungen wurde in seiner zeitlichen Entwicklung bisher noch kaum detailliert untersucht. Das interdisziplinäre Forschungsprojekt HILLSCAPE (HILLSlope Chronosequence And Process Evolution) soll sich mit der Frage beschäftigen, wie sich dieser Feedback-Zyklus in einem Zeitraum von 10000 Jahren verändert und was für strukturelle Veränderungen daraus resultieren. Das Projekt konzentriert sich dabei auf die vertikale und laterale Umverteilung von Wasser und Stoffen an Hängen und ihrer Wechselwirkungen mit dem Boden, der Vegetation und der Landschaftsentwicklung. Um dieses ehrgeizige Ziel erreichen zu können, wird sich HILLSCAPE Hang-Chronosequenzen auf Moränenstandorten zu Nutze machen. Gletschervorländer liefern uns so Schnappschüsse der zeitlichen Entwicklung. Die Auswahl zweier Fokusgebiete mit unterschiedlichem Ausgangsmaterial erlaubt dabei den direkten Vergleich der Entwicklung auf Silikat- und Karbonatgestein. In jedem Fokusgebiet werden Hänge in 4 verschiedenen Altersklassen instrumentiert. Die Aufgliederung in 5-6 Flächen pro Altersklasse ermöglicht es uns, eine große Bandbreite an Vegetationsbedeckung und -komplexität abzudecken. Wir werden gezielt relevante Strukturen aller 48 Hangflächen aufnehmen und werden deren hydrologische und geomorphologische Funktionsweise und Prozesse einerseits über ein Jahr beobachten und andererseits durch künstliche Beregnung in kontrollierten Experimenten genauer aufschlüsseln. Zusätzlich werden wir funktionalen Eigenschaften der Pflanzen und somit die strukturelle und funktionale Diversität der Standorte erfassen. Die Kombination von vier interdisziplinären Doktorarbeiten und der integrativen Modellierung durch einen Postdoc erlaubt uns die gemeinsame Untersuchung von hydrologischen, geomorphologischen und biotischen Prozessen und ihrer Interaktionen.
Poröse Medien bieten exzellente Lebensbedingungen für Bakterien, da ihr Lebensraum geschützt ist aber trotzdem eine kontinuierliche Nahrungezufuhr möglich ist. Folglich existieren Mikroorgansimen in vielen natürlichen und technischen porösen Medien und haben dort einen großen Einfluss. Wenn diese für technische oder industrielle Anwendungen genutzt werden, ist es sehr wichtig die Wechselwirkungen zwischen Strömung, Transport und mikrobiologischen Prozessen zu verstehen. In der Literatur ist eine Vielzahl von Modellierungsmethoden vorhanden, jedoch sind diese in der Regel unter einphasigen Strömungsbedingungen entwickelt worden. Es ist schwierig mikrobiologische Prozesse in den natürlichen und komplexen Porenstrukturen von Gesteinen (wie z.B. Anhaften/Ablösen und Bildung von Biofilmen) zu beobachten und demzufolge sind diese Prozesse unzureichend erforscht. In diesem Projekt werden künstliche Strukturen geschaffen, die den Porenstrukturen des Gesteins nachempfunden sind und dafür benutzt, das Verhalten von Bakterien in mit zwei Phasen gesättigten porösen Medien zu untersuchen. Diese transparenten sozusagen zweidimensionalen Mikromodelle erlauben eine direkte Beobachtung der mikrobiologischen Prozesse, wie z.B. Wachstum, Transport und Anhaftung/Ablösung von Bakterien, durch mikroskopische Auswertungen. Die Bakterien, die für die experimentellen Untersuchungen eingesetzt werden, gehören zu der Klasse der methanogenen Archaeen. Die detaillierte Interpretation der experimentellen Ergebnisse durch Bilddatenverarbeitung erlaubt es, zeitlich und räumlich aufgelöste Datensätze für die Anzahl, Struktur und Bewegung der Bakterien zu erzeugen. Aus diesen Datensätzen wird ein verbessertes mathematisches Modell entwickelt, welches das Wachstum und die Bewegung von Bakterien in mit zwei Phasen gesättigten porösen Medien beschreibt. Das Modell soll das bakterielle Wachstum unter nicht-nährstofflimitierten Bedingungen, das Vorhandensein von verschiedenen bakteriellen Strukturen (Plankton und Biofilm), die individuellen Bewegungseigenschaften und die Anhaftungs- und Ablösevorgänge berücksichtigen. Um das neu entwickelte Modell zu testen und zu parametrisieren, wird es auf Basis eines diagonal-impliziten Runge-Kutta-Verfahrens, welches für die stark nicht-linearen Quellterme gut geeignet ist, numerisch umgesetzt. Die Anwendung des theoretischen Modells bezieht sich auf die Technologie der Untergrundmethanisierung, in welcher das injizierte Gasgemisch aus Wasserstoff und Kohlenstoffdioxid durch mikrobiologische Reaktionen in Methan umgewandelt wird.
| Origin | Count |
|---|---|
| Bund | 838 |
| Type | Count |
|---|---|
| Förderprogramm | 838 |
| License | Count |
|---|---|
| offen | 838 |
| Language | Count |
|---|---|
| Deutsch | 634 |
| Englisch | 614 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 819 |
| Topic | Count |
|---|---|
| Boden | 820 |
| Lebewesen und Lebensräume | 735 |
| Luft | 528 |
| Mensch und Umwelt | 838 |
| Wasser | 823 |
| Weitere | 838 |