Die zentrale Aufgabe von C1 ist die Erzeugung des virtuellen Einzugsgebietes (VR) mit Hilfe der vollgekoppelten Terrestrial System Modeling Platform (TerrSysMP) und die Entwicklung des Datenassimilationssystems (DAF) durch Kopplung von TerrSysMP mit der Parallel Data Assimilation Platform (PDAF), sowie die Durchführung und Analyse von DAF-Experimenten zusammen mit den Mitgliedern der FOR2131. Dies beinhaltet die stete Aktualisierung der Teilmodelle von TerrSysMP COSMO, CLM und ParFlow, notwendige Erweiterungen wie die Einbeziehung dynamischer Vegetation durch die neueste CLM Version 4.5 und die Verbesserung der Parametrisierungen von Flüssen und Hangabfluss. Die DAF-Entwicklung erfordert in enger Zusammenarbeit mit den FOR2131-Mitgliedern den Einbau von Beobachtungsoperatoren in das DAF, welche die unterschiedlichen räumlichen Auflösungen der VR und des DAF-Modells berücksichtigen. Durch die extremen IT-Anforderungen sowohl für die VR-Erzeugung als auch für die TerrSysMP-PDAF-Läufe ist C1 auch verantwortlich für deren Implementierung auf den IT-Infrastrukturen JUQUEEN und JUROPA des HPSC am Forschungszentrum Jülich JSC. Dies schließt die Vorbereitung und Durchführung von Rechenzeitanträgen der FOR2131 an das Gauss Centre for Supercomputing e.V. (GCS) in Kooperation mit dem SimLab-TerrSys des Geoverbunds ABC/J mit ein.
In aquatischen Ökosystemen ist der Nährstoffkreislauf eine entscheidende Ökosystemfunktion. Sowohl Stickstoff (N) als auch Phosphor (P) sind essentielle Nährstoffe für aquatische Lebensformen, doch im Übermaß verursachen Stickstoff und Phosphor Eutrophierung. Eutrophierung ist eine globale Beeinträchtigung des Ökosystems, bei der ein Überschuss an Nährstoffen die Struktur und Funktion von Süßwasserökosystemen verändert. Die wichtigsten Auswirkungen der Eutrophierung sind eine übermäßige Zunahme der Algenbiomasse und -produktivität, eine Beeinträchtigung der physikalisch-chemischen Wasserqualität (d. h. Zunahme von Farbe, Geruch und Trübung), anoxische Gewässer, Fischsterben und Einschränkungen der Wassernutzung für Erholungszwecke. Die Eutrophierung ist seit den späten 1980er Jahren in ganz Europa als erhebliches Umweltproblem erkannt worden und stellt auch heute noch eine Herausforderung dar. Um ein gesundes Ökosystem zu erhalten, sollte der Phosphorgehalt im Wasser kontrolliert werden. Phosphor wird nicht vollständig aus dem aquatischen Ökosystem entfernt, sondern von einem Kompartiment (d. h. Wasser) in ein anderes (d. h. Flussbettsubstrate und/oder Biota) immobilisiert. Bei dieser P-Immobilisierung spielen mikrobielle Biofilme eine Schlüsselrolle, indem sie gelösten Phosphor aus dem Wasser einschließen. Dieser Einschluss kann in zwei verschiedenen Pools erfolgen (d. h. intrazellulär oder extrazellulär). Das Wissen über die biologischen Mechanismen des Biofilm-P-Einschlusses in aquatischen Ökosystemen ist jedoch nach wie vor begrenzt. Außerdem kann die Fähigkeit von Biofilmen, P einzuschließen, von ihren Stoffwechselprofilen abhängen. Genauer gesagt bestimmt der C-bezogene Stoffwechsel die Fähigkeit von Biofilmen, organische Verbindungen zu mineralisieren und für ihr Wachstum zu nutzen, und der P-bezogene Stoffwechsel ist mit ihrer Fähigkeit verbunden, verschiedene P-Quellen aufzunehmen. Aus diesem Grund erwarte ich, dass die Fähigkeit aquatischer Ökosysteme, P aus aquatischen Ökosystemen aufzunehmen, von der Struktur und Aktivität der Biofilme abhängt. Das Hauptziel dieses Projekts ist es, zu verstehen, wie Energiequellen in Flussökosystemen die Wege der P-Einlagerung innerhalb von Biofilmen beeinflussen. Insbesondere soll (i) geklärt werden, wie die Kombination von autotrophen und heterotrophen Energiequellen (d. h., (ii) die Auswirkung autotropher und heterotropher Energiequellen auf den C- und P-Stoffwechsel in Biofilmen und ihre Verbindung zu den P-Einlagerungspools zu testen und (iii) die Muster der intrazellulären P- und extrazellulären P-Einlagerungswege in Biofilmen und die Stoffwechselprofile mit den Längsgradienten des Lichts und der Qualität des gelösten Sauerstoffs in Flussökosystemen zu verknüpfen.
Isotopendaten von Fließgewässern sind von essentieller Bedeutung, um unser Verständnis und Modelle für hydrologische, ökologische, biogeochemische und atmosphärische Prozesse zu verbessern. Jedoch läßt sich das volle Potential wegen viel zu kurzer und unvollständiger Zeitreihen gar nicht ausschöpfen. Hier schlagen wir einen innovativen Beitrag vor, um zur Lösung des Problems, nämlich limitierter Gewässerisotopen-Archive, beizutragen: die Nutzung von Süßwassermuscheln als langzeitliche delta18O-Archive von Fließgewässern. Im Rahmen einer Pilotstudie haben wir die Sauerstoffisotopendaten von Muschelschalen (kompiliert aus 10 Studien) analysiert, die von 18 Lokalitäten aus insg. 16 Flüssen unterschiedlicher geographischer Breiten weltweit stammen. Wir haben signifikante Zusammenhänge zwischen delta18O-Werten des Niederschlags, des Fließgewässers und der Muschelschalen ermittelt. Sowohl die Wasser- als auch die Schalendaten weisen relativ zum Niederschlag stark gedämpfte saisonale Amplituden auf. Aufbauend auf dieser Studie wollen wir nun multidekadische Rekonstruktionen von delta18O-Werten in Fließgewässern vornehmen. Zunächst wollen wir prüfen, ob sich die Wassertemperatur - als wichtige Voraussetzung zur präzisen Rekonstruktion des delta18O-Wertes des Wassers aus delta18O-Werten der Schalen - aus der (a) Zuwachsrate, (b) mikrostruktureller Merkmale und/oder (c) elementchemischer Daten der Schalen rekonstruieren lassen. Dann wollen wir testen inwiefern sich hochauflösende in-situ Messungen der delta18O-Werte der Schalen via SIMS komplementär zur traditionellen naßchemischen Methode via CF-IRMS (Stichwort: Micromilling oder Microdrilling) eignen, vor allem mit welcher Genauigkeit. Insbesondere könnte SIMS, dank wesentlich kleinerer, flacherer Probenpunkte, für langsam wachsende Schalenabschnitte in späten Lebensstadien der Tiere von großem Nutzen sein. Außerdem lassen sich die Meßpunkte wesentlich präziser zeitlich alignieren. Schließlich wollen wir die rekonstruierten delta18O(Wasser)-Zeitreihen von drei Einzugsgebieten in Luxemburg, Schweden und Deutschland mit multidekadischen delta18O-Niederschlags-Zeitreihen vergleichen, um über das derzeitige Verständnis zur Kontrolle der geologischen Begebenheiten auf hydrologische Funktionen hinauszugehen. Wir testen die Hypothese, daß Änderungen im Abfluss-Regime eines Einzugsgebiets (ausgelöst durch den Klimawandel) mechanistisch zu einer Modifikation des Wasseranteils führen, der über schnelle Fließwege zum Strom fließt - mit der zusätzlichen Annahme, daß das Ausmaß dieser Modifikation durch das Gestein moduliert wird. Um unsere Hypothese zu prüfen, bauen wir auf einer Metrik auf, nach der der Anteil jungen Wassers (Fyw) proportional zur Abflußmenge steigt und dadurch einen Anstieg des proportionalen Beitrags schneller Durchläufe bei hohen Abflußmengen aufzeigt. Dieser Ansatz ist besonders geeignet für die Bestimmung von Transitzeiten des Wassers in stationären und heterogenen Einzugsgebieten.
Fließgewässer tragen wesentlich zum globalen organischem Kohlenstoffkreislauf und zu der Emission der klimarelevanten Gase Kohlendioxid (CO2) und Methan (CH4) bei. Die Dynamik der CO2-Emissionen wurde mit dem Wasserabfluss und der Hydrologie des Einzugsgebietes in Verbindung gebracht, während CH4 mit dem Biom des Fließgewässers und der umgebenden Landnutzung korrelierte. Die Mehrzahl dieser Studien wurde jedoch an ganzjährig wasserführenden (perennierenden) Fließgewässern und unter stabilem Wasserabfluss durchgeführt, mit einer nur begrenzten Abdeckung von Hochwasserepisoden (Niederschlagsereignissen). Bislang sind daher Gasemissionen von nicht ganzjährig wasserführenden (intermittierenden) Fließgewässern nicht ausreichend in den lokalen und regionalen Kohlenstoff-Budgets enthalten. Diese erlangen jedoch erhöhte Bedeutung, da die aktuellen Prognosen zum Klimawandel darauf hindeuten, dass das Ausmaß und die Häufigkeit schwerer klimatischer Ereignisse wie Überschwemmungen und Dürre wahrscheinlich zunehmen wird. Das vorgeschlagene Projekt zielt darauf ab, diese wichtige Forschungslücke zu schließen, indem die treibenden Kräfte und die jahreszeitliche Relevanz der CO2- und CH4-Emissionen nicht nur in perennierenden sondern auch in intermittierenden Fließgewässern untersucht werden sollen. Das erste Ziel des Projekts ist die Quantifizierung der lokalen Relevanz von ereignisgesteuerten CO2- und CH4-Emissionen aus perennierenden Fließgewässern mittels einer Kombination von i) State-of-the-art Techniken zur Quantifizierung von Gasflüssen über die Wasser-Luft-Grenzfläche, ii) Sensoren nach dem Stand der Technik und In-situ-Gasmessungen und iii) etablierten Verfahren zur Bewertung der mikrobiellen Gemeinschaft und potentieller metabolischer Aktivität Das zweite Projektziel ist die Untersuchung des Kohlenstoff-Kreislaufs und der Gasemissionen von kontinentalen, nicht-perennierenden Fließgewässern, mit Schwerpunkt auf Trocknungs- und Wiederbefeuchtungszyklen. Das Projekt konzentriert sich auf das Einzugsgebiet des Flusses Queich (271 km2) in Rheinland-Pfalz. Der Fluss entspringt in einem natürlichen Reservoir (Biosphärenreservat Pfälzerwald) und fließt entlang eines ausgeprägten Landschaftsgefälles (natürlich bis anthropogen beeinflusst). Diese Umgebung bietet ein ideales Untersuchungsgebiet um die Rolle der Hydrologie und der Bodennutzung für kohlenstoffrelevante Gasemissionen aus Fließgewässern zu erforschen. Das übergeordnete Ziel des Projekts ist die Quantifizierung der Beiträge von episodischen (ereignisbasierten) Einflüssen und von saisonalen Trocknungs-Wiederbefeuchtungszyklen zum lokalen und regionalen Kohlenstoff-Kreislauf. Die Projektdaten werden mit zusätzlichen hydrologischen und biogeochemischen Daten in bestehenden geografischen Informationssystemen kombiniert, um die Entwicklung von Upscaling-Verfahren zu ermöglichen, die die oben genannten Beiträge schließlich in umfangreiche Budgets für den Kohlenstoffkreislauf überführen können.
Pilzparasiten auf Phytoplankton sind ubiquitär und stellen eine integrale Komponente aquatischer Ökosysteme dar. Trotz zunehmender Hinweise, dass diese parasitischen Pilze eine wichtige Rolle für verschiedenste Ökosystemfunktionen spielen - via top-down Kontrolle von Phytoplanktonblüten und alternativen Kohlenstoff- und Nährstoffflüssen - sind sie noch immer stark vernachlässigt und wenig erforscht. Insbesondere methodische Gründe sind dafür verantwortlich, so sind sie morphologisch schwierig zu identifizieren und werden daher häufig übersehen. Neuerdings zeigen Untersuchungen von Umwelt-DNA eine unerwartet hohe Diversität von meist noch nicht beschriebenen Pilzen in aquatischen Ökosystemen. Ein bedeutender Teil dieser noch unbekannten Sequenzen gehört zu den parasitischen Pilzen auf Phytoplankton. Bis heute bleiben diese jedoch noch weitgehend unsichtbar für mikrobielle Ökologen, da sie bisher nur einen kleinen Anteil der beschriebenen Arten von parasitischen Pilzen auf Phytoplankton in den Sequenzdatenbanken ausmachen. Daher, ist die Hauptaufgabe dieses Projektes, diese Lücke zwischen morphologischen und molekularen Studien mit klassischen Kultivierungsverfahren und kultivierungsunabhängigen modernen Ansätzen zu überbrücken. Dies erlaubt der Umweltgenomik, einen direkten Zugang zu taxonomischem Wissen, das während mehr als einem Jahrhundert generiert wurde. Ferner wird die Verbindung von Diversitäts- und Funktionsanalyse aquatischer Pilze ermöglicht. Die phylogenetische Integration dieser bisher stark vernachlässigten Gruppe parasitischer Pilze auf Phytoplankton wird einen wichtigen Beitrag darstellen, um die evolutionären Schlüsselereignisse der basalen Pilze an der Wurzel des Pilzstammbaumes zu verstehen. Die zweite Aufgabe soll sein, unser Wissen zu den ökophysiologischen Eigenschaften der Phytoplankton-Pilz-Interaktionen zu entschlüsseln. Zusätzlich erlaubt das einzigartige Set von Modellsystemen, physiologische Experimente durchzuführen, die die Bedeutung von Temperatur und Licht auf die Interaktion von wohl-definierten Phytoplankton-Pilzkulturen beleuchten und die taxonomische sowie ökologische Variabilität (Spezialist vs. Generalist) untersuchen. Diese Studien werden wichtige, bisher noch fehlende Grunddaten bzgl. Taxon-spezifischen und Trait-abhängigen physiologischen Antworten von Phytoplankton-Pilz Interaktionen liefern. Solche Daten sind sehr wichtig, um jetzige und zukünftige Vorhersagen von Pilzinfektionen und ihren Auswirkungen auf die Phytoplanktondynamik sowie auf die des gesamten Nahrungsnetzes im Zusammenhang mit den momentanen globalen Veränderungen zu verbessern.
Aquatische Ökosysteme sind wegen ihrer Allgegenwart und ihren zahlreichen Funktionen auf unterschiedlichen Skalen von hoher Relevanz. Die Interaktion zwischen der Strömung und den flexiblen Blättern einer aquatischen Vegetationsschicht bestimmen das hydraulische Verhalten, sowie den Transport von Sediment, Nährstoffen und Verunreinigungen. Während Konfigurationen mit starren Elementen in vielen Laboruntersuchungen analysiert wurden, ist bisher wenig für den Fall sehr flexibler Strukturen bekannt, d.h. für den Fall hoher Cauchy-Zahlen. Dieses Defizit wird durch das vorliegende Projekt adressiert, bei dem sorgfältig abgestimmte Simulationen und Experimente eingesetzt werden, um deren hydromechanische Eigenschaften bei Rekonfiguration zu untersuchen, sowie deren Auswirkungen auf den Transport skalarer Größen. Ein wesentliches Feature des Projekts ist die enge Kopplung an ökologisch-relevante Bedingungen. Experimente und Simulationen werden für drei Typen von Konfigurationen durchgeführt: (1) Testkonfigurationen mit einer einzelnen Struktur oder mit wenigen zur Methodenentwicklung und Validierung, (2) homogene Anordnungen mit gleichartigen Strukturen hoher Flexibilität, (3) Konfigurationen mit Lichtungen, die die Patch-Skala adressieren. Daten zur Charakterisierung realer schlanker Wasserpflanzen und Patches werden im Projekt ermittelt, so dass eine optimale Wahl der Parameter in Experiment und Simulation gewährleistet ist. Diese werden zum Teil für dieselbe Konfiguration durchgeführt, wobei Simulationen z.B. nicht messbare Größen bereitstellen können. Zusätzlich werden die jeweiligen Vorzüge von Experiment und Simulation eingesetzt, um komplementäre Bereiche des Parameterraums abzutasten. So entsteht eine sehr verlässliche und reichhaltige Datenbasis. Für Experiment wie Simulation werden neuartige Methoden eingesetzt. Im Experiment werden PIV, PLIV eingesetzt, sowie ein Akustik Doppler Profilsensor. Damit ist die simultane Vermessung von Konzentrationen, Fluidgeschwindigkeiten und Strukturen möglich. Speziell der Profilsensor wurde bisher nicht für derartige Aufgaben verwendet. Er erlaubt die Messung instantaner Geschwindigkeitsprofile über der künstlichen Vegetationsschicht wie auch in ihrem Inneren simultan mit der Position der Strukturen. Überzeugende Simulationen von Vegetationsschichten mit flexiblen Elementen existieren bisher nicht. Hier wird eine innovative Methode verwendet, die eine IBM mit einem eigenen semi-impliziten Kopplungsalgorithmus und einem hoch effizienten Cosserat-Modell kombiniert. Damit können Simulationen für tausende Strukturen durchgeführt werden, die einen großen Datenreichtum liefern. Die gemeinsame Auswertung der Daten durch die Projektpartner erlaubt die ideale Kombination der interdisziplinären Kompetenz. Die Vision ist, ein detailliertes Verständnis der komplexen Prozesse zu generieren, die Vegetationsschichten mit hoher Cauchy-Zahl dominieren, und dieses Wissen für aquatische Ökosysteme bereitzustellen.
Poröse Medien bieten exzellente Lebensbedingungen für Bakterien, da ihr Lebensraum geschützt ist aber trotzdem eine kontinuierliche Nahrungezufuhr möglich ist. Folglich existieren Mikroorgansimen in vielen natürlichen und technischen porösen Medien und haben dort einen großen Einfluss. Wenn diese für technische oder industrielle Anwendungen genutzt werden, ist es sehr wichtig die Wechselwirkungen zwischen Strömung, Transport und mikrobiologischen Prozessen zu verstehen. In der Literatur ist eine Vielzahl von Modellierungsmethoden vorhanden, jedoch sind diese in der Regel unter einphasigen Strömungsbedingungen entwickelt worden. Es ist schwierig mikrobiologische Prozesse in den natürlichen und komplexen Porenstrukturen von Gesteinen (wie z.B. Anhaften/Ablösen und Bildung von Biofilmen) zu beobachten und demzufolge sind diese Prozesse unzureichend erforscht. In diesem Projekt werden künstliche Strukturen geschaffen, die den Porenstrukturen des Gesteins nachempfunden sind und dafür benutzt, das Verhalten von Bakterien in mit zwei Phasen gesättigten porösen Medien zu untersuchen. Diese transparenten sozusagen zweidimensionalen Mikromodelle erlauben eine direkte Beobachtung der mikrobiologischen Prozesse, wie z.B. Wachstum, Transport und Anhaftung/Ablösung von Bakterien, durch mikroskopische Auswertungen. Die Bakterien, die für die experimentellen Untersuchungen eingesetzt werden, gehören zu der Klasse der methanogenen Archaeen. Die detaillierte Interpretation der experimentellen Ergebnisse durch Bilddatenverarbeitung erlaubt es, zeitlich und räumlich aufgelöste Datensätze für die Anzahl, Struktur und Bewegung der Bakterien zu erzeugen. Aus diesen Datensätzen wird ein verbessertes mathematisches Modell entwickelt, welches das Wachstum und die Bewegung von Bakterien in mit zwei Phasen gesättigten porösen Medien beschreibt. Das Modell soll das bakterielle Wachstum unter nicht-nährstofflimitierten Bedingungen, das Vorhandensein von verschiedenen bakteriellen Strukturen (Plankton und Biofilm), die individuellen Bewegungseigenschaften und die Anhaftungs- und Ablösevorgänge berücksichtigen. Um das neu entwickelte Modell zu testen und zu parametrisieren, wird es auf Basis eines diagonal-impliziten Runge-Kutta-Verfahrens, welches für die stark nicht-linearen Quellterme gut geeignet ist, numerisch umgesetzt. Die Anwendung des theoretischen Modells bezieht sich auf die Technologie der Untergrundmethanisierung, in welcher das injizierte Gasgemisch aus Wasserstoff und Kohlenstoffdioxid durch mikrobiologische Reaktionen in Methan umgewandelt wird.
Signifikante Veränderungen hydrologischer Extremereignisse sind zentraler Bestandteil zukünftiger Klimawandelprognosen. Das Verständnis komplexer Wechselwirkungen zwischen Niederschlägen, Wasserspeicherung in Boden und Grundwasser sowie Wasserflüssen im Einzugsgebiet ist eine große Herausforderung in der Ökohydrologie. Die Vegetation spielt dabei eine zentrale Rolle in dem sie 50-70% der terrestrischen Evapotranspiration kontrolliert. Verschiedene Pflanzenarten unterscheiden sich signifikant in ihren Wassernutzungsstrategien. Die Integration solcher Informationen zu artspezifischen Einflüssen auf die Bodeninfiltration und Wurzelwasseraufnahmedynamiken liefern erste Hinweise darauf, wie Bäume Wasser in Richtung ihrer aktiven Wurzelzone leiten können. Dies wird unter zukünftigen klimatischen Bedingungen und bei der Entwicklung von Anpassungsstrategien für eine nachhaltige Waldökosystembewirtschaftung bedeutend. Das Konzept des Wasseralters mittels stabiler Wasserisotopen wird verwendet, um den Beitrag unterschiedlicher Wasserfließwege zum Abfluss und deren Änderungen zu bewerten. Das Wasseralter bietet dabei eine weitere Perspektive, um hydrologische Prozesse besser zu verstehen und Modelle zu optimieren. Jüngste Studien zur Bestimmung von Verweilzeit zeigen, dass besonders die Schnittstellen zwischen den Kompartimenten (z.B. Boden-Atmosphäre oder Boden-Wurzeln) besser berücksichtigt werden muss, um den ökohydrologischen Kreislauf ganzheitlicher zu verstehen. Artspezifische Unterschiede und die komplementäre Ressourcennutzung von Baum-Mischbeständen können dabei Wasserverweilzeiten und -alter im ökohydrologischen Kreislauf verändern. Unsere zentrale Hypothese lautet, dass Artidentität und Wasserkonkurrenz zwischen Baumarten ein Haupttreiber für ökohydrologische Rückkopplungsprozesse zwischen Boden und Bäumen sind. Wir werden unsere zentrale Hypothese in Rein- und Mischbeständen von Tannen und Buchen in einem kombinierten experimentellen (Arbeitspakete (WPs) 1-3) und Modellierungsansatz (WP 4) untersuchen, in dem räumlich hochaufgelöste Messungen von Isotopen sowie hydrometrische und ökophysiologische Messungen mit kontinuierlicher Langzeitüberwachung kombiniert werden, um alle Kompartimente des Wasserkreislaufs des Ökosystems zu quantifizieren. Isotopensignaturen von Wasserflüssen auf natürlichem Niveau werden zunächst über eine neuartige in-situ-Monitoringplattform (SWIP) für ein Jahr (WP 1) beobachtet, um das SWIP-System standortspezifisch zu validieren. In WP 2 werden wir ein Isotopenmarkierungsexperiment durchführen, um die standortspezifische zeitliche Heterogenität der Reaktionszeiten der Ökosystemkompartimente zu quantifizieren, während in WP 3 die Verweilzeiten und das Wasseralter der verschiedenen Kompartimente untersucht werden. WP 4 dient der Modellierung ökohydrologischer Prozesse mittels der erhobenen Daten. Der Fokus wird hier auf der Verbesserung der SWIS-Modellstruktur und der Anpassung an verschiedene Baumstände liegen.
Das beantragte Vorhaben zielt auf die Erarbeitung eines umfassenden Werkzeugs, das Fernerkundungstechniken und hydrologische Modellierung integriert, um Wasserdargebot und -bedarf in datenarmen Regionen wie Afghanistan zuverlässig zu bewerten, potenzielle Diskrepanzen zu erkennen und Strategien zur Verringerung von Dargebot-Bedarf-Diskrepanzen zu entwickeln. Das weitgehende Fehlen hydrometeorologischer Beobachtungssysteme in Afghanistan ist ein typisches Beispiel für das Problem der Datenknappheit in vielen Entwicklungsländern. Dies führt zu unzuverlässigen Ergebnissen und erschwert die fundierte Entscheidungsfindung sowie Umsetzung wirksamer Strategien der Wasserbewirtschaftung. Das Vorhaben zielt durch die Kombination fortschrittlicher Fernerkundungstechniken und leistungsfähiger hydrologischer Modelle auf eine - auch unter Knappheit konventionell gewonnener Daten - zuverlässige Bewertung von Wasserressourcen und -bedarf. Über das Untersuchungsgebiet hinaus, liefert dies Erkenntnisse, um die aus Datenknappheit resultierenden Herausforderungen anzugehen und unterstützen somit die globalen Bemühungen um ein nachhaltiges Wasserressourcenmanagement (WRM). Dies steht in engem Zusammenhang mit den Zielen für nachhaltige Entwicklung (direkt: SDG 6; indirekt: SDGs 1, 2, 12, 13). Mit dem Fokus auf den Herausforderungen in datenarmen Regionen, adressieren die Forschungen einen relevanten Bereich, um die SDGs voranzubringen, und zwar vor allem durch die Erarbeitung von Lösungen (wasserwirtschaftliche Konzepte in Verbindung mit Szenarien unterstützender Politiken) zum Abbau von Dargebot-Bedarf-Diskrepanzen. Die Entwicklung des Werkzeugs steigert die Ressourcen-Produktivität (Wasser, Land), fördert die nachhaltige Nutzung und stärkt die Resilienz der Bevölkerung. Die Ergebnisse helfen politischen Entscheidungsträgern, Wege für Investitionsstrategien zu finden, um den Auswirkungen des Klimawandels und der sich verschärfende Konkurrenz um Wasser in datenarmen Regionen zu begegnen (lokale Ebene - internationale Einzugsgebiete). Die Erfüllung des Projektziels wird durch spezifische Zielsetzungen strukturiert: Ziel 1: Entwicklung eines Werkzeugs, das hydrologische Modelle und Fernerkundungsprodukte integriert, um die Verfügbarkeit von Wasserressourcen und den -bedarf einzuschätzen. Ziel 2: Nach der Kalibrierung und Validierung des entwickelten Werkzeugs sollen politische Szenarien simuliert werden, um Änderungen von Wasserdargebot und -bedarf über Zeit und Raum zu bewerten. Ziel 3: Verbesserung der Fähigkeiten des Tools zur Bewertung von Bewässerungsmaßnahmen mit Hilfe von Leistungsindikatoren; Identifizierung von Defiziten, deren Ursachen und Erarbeitung von Optionen zur Verbesserung des WRM durch wasserwirtschaftliche Konzepte und Politik-Szenarien (Schwerpunkt: Intensivierung, Ausdehnung, Optimierung der Bewässerung). Ziel 4:Synthese von Maßnahmen auf der Dargebots- und Bedarfsseite zu integrierten Wassermanagementkonzepten, eingebettet in politische Szenarien.
Für eine zuverlässige Modellierung des globalen Kohlenstoffkreislaufs (und somit des globalen Wärmehaushalts) sind detaillierte Kenntnisse über die Menge an Treibhausgasemission/-absorption durch die Wasseroberfläche erforderlich. Die meisten Modelle zur Vorhersage des Gastransferkoeffizienten an der Wasser-/Luftgrenzfläche beruhen nach wie vor hauptsächlich auf empirisch ermittelten Gleichungen, in denen nur die Windgeschwindigkeit als Parameter in Betracht gezogen wird, obwohl der Beitrag des temperaturbedingten Auftriebs zum Gesamttransfer signifikant ist, vor allem bei niedrig bis mittleren Windbedingungen. Um die Genauigkeit der Bestimmung des Gastransferkoeffizienten an der Grenzfläche zu verbessern, wird eine detaillierte Beschreibung des auftriebsgesteuerten Gasaustausches in tiefen Wasserkörpern benötigt. Da bei mäßig bis schwer löslichen Gasen (z.B. Kohlendioxid, Sauerstoff, Methan) der Stofftransfer in einer sehr dünnen Schicht an der Wasseroberfläche stattfindet, ist es eine besondere Herausforderung die Transportprozesse innerhalb dieser dünnen Schicht aufzulösen. Trotz fortgeschrittener Entwicklung der optischen Messtechnik, liegen keine Daten von simultanen Vermessungen der Temperatur- und Gaskonzentrationsfelder unter gut-kontrollierten Laborbedingungen vor. In diesem Projekt wird der Transferprozess von Wärme- und Gas, induziert durch Oberflächenkühlung bei gleichzeitigem Messen der dynamischen Verteilung von Temperatur- und Gaskonzentration (i) auf der Wasseroberfläche und (ii) in einem vertikalen Schnitt im Wasserkörper, untersucht. Hierzu wird ein komplettes lifetime-based laser induced fluorescence System, geeignet um die Sauerstoffdynamik auch innerhalb der dünnen Grenzschicht aufzulösen, entwickelt. Um die Dynamik der Wärmestrukturen an der Oberfläche zu erfassen, wird eine hochpräzise Infrarot Kamera eingesetzt. Für die Ermittlung der 2D Wärmestrukturen im Wasserkörper wird eine intensitätsbasiertes LIF-Thermometrie System angewendet. Neue erste synoptische Labordaten von Wärme- und Gaskonzentrationsfeldern unter konvektionsinduzierter Strömung im relativ tiefen Wasser können damit dargestellt werden. Die Korrelation zwischen thermal und gas Plumes wird bestimmt und deren geometrischen Merkmale sowohl an der Wasseroberfläche als auch im Wasserkörper ermittelt. Des Weiteren wird der Zusammenhang zwischen diesen Merkmalen und der Wärme- und Gasflüsse ermittelt. Eine Reihe von Messungen im Wasserkörper werden zur Bestimmung der Transfergeschwindigkeit (k) über eine große Bandbreite von Temperaturunterschieden zwischen Wasserkörper und Luft durchgeführt. Dies ermöglicht den Zusammenhang zwischen k und der Rayleighzahl des Wasserkörpers zu bestimmen und mit den k-Werten, die durch direkte Quantifizierung anhand der detaillierten simultanen Messungen ermittelt werden, zu vergleichen. Dazu, werden für ausgewählte Fälle PIV- Messungen durchgeführt, um Informationen zum overall Geschwindigkeitsfeld zur Verfügung zu stellen.
| Origin | Count |
|---|---|
| Bund | 838 |
| Type | Count |
|---|---|
| Förderprogramm | 838 |
| License | Count |
|---|---|
| offen | 838 |
| Language | Count |
|---|---|
| Deutsch | 634 |
| Englisch | 614 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 819 |
| Topic | Count |
|---|---|
| Boden | 820 |
| Lebewesen und Lebensräume | 662 |
| Luft | 528 |
| Mensch und Umwelt | 838 |
| Wasser | 823 |
| Weitere | 838 |