API src

Found 766 results.

Ecosystem Engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)

Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.

Transformation von räumlich-zeitlichen Niederschlagsfeldern in ein räumlich-zeitliches Abflussgeschehen unter besonderer Betrachtung der Extrema

Die Transformation des Niederschlages in den Abfluss ist ein wichtiger Prozess des Wasserkreislaufes. Die zumeist verwendeten linearen Modellansätze können allerdings die hohe Nichtlinearität der Transformation in Raum und Zeit nicht abbilden. Grundlage für eine adäquate Abbildung ist das Wissen um die beeinflussenden Faktoren dieser Transformation. Das Ziel dieser Untersuchung ist die Identifikation der dominierenden physiographischen und klimatischen Faktoren sowie deren Auswirkung auf die räumlich-zeitliche Niederschlag-Abfluss (N-A)-Transformation. Für eine Vielzahl an Einzugsgebieten in Österreich werden N-A-Simulationen mit einem hydrologischen Modell durchgeführt, wobei die räumliche Auflösung variiert wird. Die räumlichen Niederschlags- und Abflussgradienten werden vergleichend betrachtet, sowie die Niederschlags- und Abflussspenden als Funktion der Einzugsgebietsskale. Die räumlichen Muster der Abflüsse werden mit denen der physiographischen und klimatischen Faktoren verglichen, um deren Einfluss auf den raum-zeitlichen Transformationsprozess zu bestimmen. Durch die hohe hydrologische Variabilität der betrachteten Einzugsgebiete vom Flachland bis zum Gebirge lassen sich verallgemeinerbare Aussagen erzielen. Die Innovation dieser Untersuchung liegt in der symmetrischen Betrachtung von Niederschlag und Abfluss in Hinblick auf die räumliche und zeitliche Variabilität, und in der gleichzeitigen Betrachtung der Extrema und des Wasserhaushaltes. Die gewonnenen Erkenntnisse sind wichtig für die Ermittlung zukünftiger Abflüsse bei knapper Datenlage und bei klimatischen Veränderungen.

Bedeutung von mehrjährigen und nicht mehrjährigen Flüssen für Kohlendioxid- und Methanemissionen bei Regenereignissen und Trocknungs-Wiederbefeuchtungszyklen (StreamFlux)

Fließgewässer tragen wesentlich zum globalen organischem Kohlenstoffkreislauf und zu der Emission der klimarelevanten Gase Kohlendioxid (CO2) und Methan (CH4) bei. Die Dynamik der CO2-Emissionen wurde mit dem Wasserabfluss und der Hydrologie des Einzugsgebietes in Verbindung gebracht, während CH4 mit dem Biom des Fließgewässers und der umgebenden Landnutzung korrelierte. Die Mehrzahl dieser Studien wurde jedoch an ganzjährig wasserführenden (perennierenden) Fließgewässern und unter stabilem Wasserabfluss durchgeführt, mit einer nur begrenzten Abdeckung von Hochwasserepisoden (Niederschlagsereignissen). Bislang sind daher Gasemissionen von nicht ganzjährig wasserführenden (intermittierenden) Fließgewässern nicht ausreichend in den lokalen und regionalen Kohlenstoff-Budgets enthalten. Diese erlangen jedoch erhöhte Bedeutung, da die aktuellen Prognosen zum Klimawandel darauf hindeuten, dass das Ausmaß und die Häufigkeit schwerer klimatischer Ereignisse wie Überschwemmungen und Dürre wahrscheinlich zunehmen wird. Das vorgeschlagene Projekt zielt darauf ab, diese wichtige Forschungslücke zu schließen, indem die treibenden Kräfte und die jahreszeitliche Relevanz der CO2- und CH4-Emissionen nicht nur in perennierenden sondern auch in intermittierenden Fließgewässern untersucht werden sollen. Das erste Ziel des Projekts ist die Quantifizierung der lokalen Relevanz von ereignisgesteuerten CO2- und CH4-Emissionen aus perennierenden Fließgewässern mittels einer Kombination von i) State-of-the-art Techniken zur Quantifizierung von Gasflüssen über die Wasser-Luft-Grenzfläche, ii) Sensoren nach dem Stand der Technik und In-situ-Gasmessungen und iii) etablierten Verfahren zur Bewertung der mikrobiellen Gemeinschaft und potentieller metabolischer Aktivität Das zweite Projektziel ist die Untersuchung des Kohlenstoff-Kreislaufs und der Gasemissionen von kontinentalen, nicht-perennierenden Fließgewässern, mit Schwerpunkt auf Trocknungs- und Wiederbefeuchtungszyklen. Das Projekt konzentriert sich auf das Einzugsgebiet des Flusses Queich (271 km2) in Rheinland-Pfalz. Der Fluss entspringt in einem natürlichen Reservoir (Biosphärenreservat Pfälzerwald) und fließt entlang eines ausgeprägten Landschaftsgefälles (natürlich bis anthropogen beeinflusst). Diese Umgebung bietet ein ideales Untersuchungsgebiet um die Rolle der Hydrologie und der Bodennutzung für kohlenstoffrelevante Gasemissionen aus Fließgewässern zu erforschen. Das übergeordnete Ziel des Projekts ist die Quantifizierung der Beiträge von episodischen (ereignisbasierten) Einflüssen und von saisonalen Trocknungs-Wiederbefeuchtungszyklen zum lokalen und regionalen Kohlenstoff-Kreislauf. Die Projektdaten werden mit zusätzlichen hydrologischen und biogeochemischen Daten in bestehenden geografischen Informationssystemen kombiniert, um die Entwicklung von Upscaling-Verfahren zu ermöglichen, die die oben genannten Beiträge schließlich in umfangreiche Budgets für den Kohlenstoffkreislauf überführen können.

Unbeachtete Dynamik des Gewässerbetts? Wirkung wandernder Sandrippel auf das mikrobielle Nahrungsnetz und den Metabolismus in Fließgewässern

Ziel des Projektes ist es, die Bedeutung wandernder Sandrippel für das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus in Fließgewässerökosystemen aufzuklären. Die etablierten Konzepte zur Sedimentstörung in der Fließgewässerökologie fokussieren auf katastrophale Hochwasserereignisse, die tiefe Erosionen und drastische Verlagerungen der Sedimente bewirken. In Gewässern mit einem hohen Anteil sandiger Sedimente kommt es allerdings bereits bei geringen Abflüssen zu einer periodischen Umlagerung der Bettsedimente in Form wandernder Sandrippel. Diese Sandrippel bedecken, abhängig von der Sedimentfracht, zunehmende Bereiche der Gewässersohle, streckenweise sogar bis zu 100%. Aufgrund des weltweit zunehmenden Feinsedimenteintrags aus den Einzugsgebieten sind Sandrippel ein weit verbreitetes Phänomen in Bächen und Flüssen. Dennoch gibt es zum Einfluss der Sandrippel auf die Fließgewässerökologie nur sehr wenige Untersuchungen, deren Ergebnisse sich teilweise widersprechen. Wir postulieren, dass wandernde Sandrippel abhängig von ihrem Deckungsgrad auf der Sohle das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus des gesamten Gewässers bestimmen. In originären experimentellen Ansätzen untersuchen wir i) die Auswirkungen der Sedimentumlagerung innerhalb wandernder Sandrippel, ii) die Interaktion der Rippelbereiche mit den umliegenden stabilen Sohlbereichen eines Gewässerabschnitts und den Gesamtmetabolismus im Abschnitt und iii) den Return (= Dynamik nach Beendigung der Sedimentumlagerung). Die Bewegung der Sande in wandernden Sandrippeln wird in einer Mikrokosmenanlage simuliert und der Einfluss von Umlagerungsfrequenz, Licht- und Nähstoffregime auf die Respiration, die Primärproduktion und das mikrobielle Nahrungsnetz untersucht. Die Auswirkungen zunehmender Bedeckung der Sohle mit wandernden Sandrippeln auf nahe stabile Sohlbereiche und den Gesamtmetabolismus von Gewässerabschnitten werden in 16 Rinnen einer Fließgewässersimulationsanlage erforscht. In diesen Experimenten werden zudem der Return von mikrobiellen Gemeinschaften und Gesamtmetabolismus mit erfasst. Die Experimente werden ergänzt und validiert durch in situ Messungen in Bächen und Flüssen. Dabei werden die abiotisch Bedingungen im Porenraum wandernder Sandrippel und naheliegender stabiler Sande sowie der lokale Metabolismus mit einer neu entwickelten Sonde gemessen und das mikrobielle Nahrungsnetz und der Kohlenstofftransfer in diesen Sohlbereichen erfasst. Die Synthese der Ergebnisse wird Klarheit schaffen über die Bedeutung wandernder Sandrippel für die mikrobiellen Gemeinschaften und den Stoffumsatz in Fließgewässern. Die zu erwartenden Erkenntnisse werden auch eine bessere Bewertung wandernder Sandrippel ermöglichen und sind somit Grundlage für Schutz und Management der Gewässerfunktionen.

cAtchment nitRous oxide Emissions and nitrAte Leaching

The accurate estimation of nitrous oxide (N2O) emissions and monitoring of nitrate (NO3) leaching in agricultural catchments are critical for contemporary environmental science and policymaking. These issues contribute to climate change and groundwater pollution, necessitating a thorough understanding of underlying processes to develop effective mitigation strategies. Our research aims to develop a robust upscaling procedure for N2O emissions and NO3 leaching at the catchment scale, where mitigation actions are finally applied. This involves an integrated approach spanning three scientific disciplines: 1. Field and laboratory measurements: Utilizing local chamber-based and laboratory-based measurements to assess microbial N cycling fluxes and process rates, providing essential data for process understanding. 2. Remote sensing: Leveraging satellite data with unprecedented spatiotemporal resolution to gather catchment-scale information on geomorphology, topography, land use, standing biomass, and soil water status, enhancing our understanding of the catchment environment. 3. Modelling: Employing a fusion of machine learning techniques and mechanistic modeling, we aim to integrate all information from the collected datasets, facilitating the upscaling of N2O emissions and NO3 leaching to the entire catchment scale. Our work program comprises two interrelated work packages focusing on data collection and modeling. WP 1 Data Collection: Creation of a comprehensive dataset, including N2O and NH3 emissions, NO3 leaching, soil d15N isotopic composition, site preference and d15N-N2O, and lab-based measurements of N process rates such as gross nitrification. This dataset will provide a deeper understanding of microbial N-cycling processes such as nitrification and denitrification and their roles in N2O production and NO3 leaching. Hot spot monitoring: Continuous measurements at model-guided identified N2O emission hot spots, covering potential hot moments such as freeze-thaw periods and fertilization events. WP 2 Modeling: Machine Learning: Extracting knowledge from all collected data to create models predicting N2O emissions and NO3 leaching. Mechanistic modelling: Improving a state-of-the-art biogeochemical model that includes a spatially explicit hydrology model for the lateral flow of water and nutrients. Improving will be particularly based on incorporating isotopic data and an isotopic tracing model. Combining machine learning and mechanistic models to benefit from each other, with mechanistic models enhancing machine learning through providing additional data and machine learning to identify and improve structural deficiencies of the mechanistic model. This interdisciplinary proposal seeks to advance our understanding of N2O emissions and NO3 leaching at the catchment scale, ultimately providing valuable insights for environmental assessment and mitigation strategies in agricultural landscapes.

Biogenic soil structures: feedbacks between bioactivity and spatial heterogeneity of water storage and fluxes from plot to hillslope scale

Soil structure determines a large part of the spatial heterogeneity in water storage and fluxes from the plot to the hillslope scale. In recent decades important progress in hydrological research has been achieved by including soil structure in hydrological models. One of the main problems herein remains the difficulty of measuring soil structure and quantifying its influence on hydrological processes. As soil structure is very often of biogenic origin (macropores), the main objective of this project is to use the influence of bioactivity and resulting soil structures to describe and support modelling of hydrological processes at different scales. Therefore, local scale bioactivity will be linked to local infiltration patterns under varying catchment conditions. At hillslope scale, the spatial distribution of bioactivity patterns will be linked to connectivity of subsurface structures to explain subsurface stormflow generation. Then we will apply species distribution modelling of key organisms in order to extrapolate the gained knowledge to the catchment scale. As on one hand, bioactivity influences the hydrological processes, but on the other hand the species distribution also depends on soil moisture contents, including the feedbacks between bioactivity and soil hydrology is pivotal for getting reliable predictions of catchment scale hydrological behavior under land use change and climate change.

Optimierte Eisen-Biokohle-Komposite zum Abbau von halogenierten Verbindungen in Umweltmedien: Synthese-Strategien und Reaktionsmechanismen

Die rasante Urbanisierung und Industrialisierung in den vergangenen Jahrzehnten hat zu einer Vielzahl von Umweltkontaminationen mit halogenierten organischen Verbindungen (HOCs) sowohl in China als auch Europa geführt. Ziel des vorgeschlagenen Projektes ist es, neue Erkenntnisse und ein vertieftes Prozessverständnis für die Synthese von biobasierten nFe(0)/Pd/C-Kompositen und deren Reaktionen mit HOCs in der Grundwasserreinigung zu gewinnen. Dies beinhaltet die Identifizierung von Synthese-optionen für Partikel mit maßgeschneiderten und verbesserten Eigenschaften mithilfe der Hydrothermalen Karbonisierung (HTC). Ein tiefgreifendes mechanistisches Verständnis der beteiligten Prozesse, d.h. Sorption, Reaktion und Transport reaktiver Spezies so-wie Katalyse sowie deren Synergien dient einer zielgerichteten Optimierung der Partikel und der Erkundung ihrer Anwendungsgebiete. Die nFe(0)/Pd/C-Komposite sollen speziell für die in-situ Grundwasserreinigung geeignet sein und verbesserte Eigenschaften insbesondere für solche Anwendungsfälle besitzen, bei denen bekannte Konzepte der in-situ-Sanierung mit Nanopartikeln (Nanoremediation) nicht greifen. Die synergistische Kombination verschiedener Wirkprinzipien erlaubt Multikatalyse-Prozesse sowie die sequentielle Behandlung von verschiedenen Kontaminanten. Zunächst werden verschiedene Optionen für die Einbettung von Metallen in oder auf die Kohlepartikel untersucht, die erhaltenen Produkte detailliert durch physikalisch-chemische Methoden charakterisiert und auf ihre Reaktivität getestet. Danach werden Reaktionen in Batch-Ansätzen für die Aufklärung der zugrundeliegenden Mechanismen, wie das Zusammenspiel von Pd, Kohleoberfläche und Fe-Spezies, der beteiligten Reaktionswege und reaktiven Spezies, durchgeführt. Weiterhin werden Optionen für Multikatalyse und sequentielle Reduktions-/Oxidationsprozesse untersucht. Abschließend werden die entwickelten Materialien und Prozesse im Labor für die Behandlung von Wasser von kontaminierten Standorten in Deutschland und China erprobt. Dieses kooperative Forschungsvorhaben von chinesischen und deutschen Partnern wird zu einem signifikanten Fortschritt in der Sanierungsforschung für industriell kontaminierte Standorte, insbesondere auch in China, führen.

Research group (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, Cosmic Ray Neutron Sensing: Integrierte hydrologische Modellierung und Analyse von Wechselwirkungen zwischen Bodenfeuchte und atmosphärischer Grenzschicht

Die Aufteilung der Nettostrahlung in latenten und fühlbaren Wärmestrom sowie die Infiltrationskapazität hängen stark vom Sättigungszustand des Bodens ab. Die raumzeitliche Verteilung des Bodenwassergehalts ist daher eine Schlüsselvariable für den gekoppelten Austausch von Wasser und Energie zwischen Landoberfläche und Atmosphäre. Die Bedeutung des Bodenwassergehalts erstreckt sich dabei von der lokalen über die regionale bis hin zur kontinentalen Skala. Die Initialisierung und Evaluierung von hydrologischen und atmosphärischen Modellen im Hinblick auf Bodenfeuchte und Schneespeicher ist besonders schwierig, weil die Beobachtungsskala und die räumliche Auflösung in den Modellsystemen üblicherweise nicht übereinstimmen. Wir untersuchen das Potenzial und die Grenzen von feldskaligen, Neutronen basierten Beobachtungen (Cosmic-Ray Neutron Sensing, CRNS) und in situ Sensornetzwerken für die Assimilation in gekoppelten hydrologisch - atmosphärischen Modellen, sowohl für die Bodenfeuchte als auch für das Schneewasseräquivalent. Durch die CRNS Methode erwarten wir erhebliche Verbesserungen für die hydrologische Modellierung, die Landoberflächenmodellierung und damit auch für voll gekoppelte regionale hydrologisch-atmosphärische Simulationen. Die zentralen Ziele des vorgeschlagenen Forschungsvorhabens sind: 1) eine einheitliche Integration von feldskaligen Bodenfeuchte- und Schneewasserdaten in Hydrologie- und Landoberflächenmodelle durch Datenassimilation zu realisieren, 2) den Mehrwert dieser Daten für die hydrologische- und Landoberflächenmodellierung zu bewerten und zu quantifizieren, und 3) die Untersuchung des Einflusses der Assimilation der Bodenfeuchtedaten auf die lokalen Wechselwirkungen zwischen Landoberfläche und Atmosphäre. Wir führen zudem eine integrative Analyse zur Eignung weiterer physikalisch basierter hydrologischer Modelle zur Wiedergabe von Boden- und Schneewasserdynamik auf der Feld- und Regionalskala durch. Darüber hinaus werden wir den Ensemble Kalman Filter (EnKF) Datenassimilationsansatz mit dem Stand-alone-WRF-Hydro (Noah-MP) Modell anwenden und untersuchen, wie simulierte Zustände und Flüsse verbessert werden. Mittels inverser Modellierung ermitteln wir, wie gut die Datenassimilation zur Optimierung statischer Bodenparameter genutzt werden kann. Abschließend analysieren wir den Austausch von Feuchte an der Grenzfläche zwischen Land und Atmosphäre unter Verwendung des voll gekoppelten hydrologisch-atmosphärischen Modellierungssystems WRF-Hydro.

Methane Emissions from Impounded Rivers: A process-based study at the River Saar

Methane emissions from inland water bodies are of growing global concern since surveys revealed high emissions from tropical reservoirs and recent studies showed the potential of temperate water bodies. First preliminary studies at the River Saar measured fluxes that exceed estimates used in global budgets by one order of magnitude. In this project we will investigate the fluxes and pathways of methane from the sediment to the surface water and atmosphere at the River Saar. In a process-based approach we will indentify and quantify the relevant environmental conditions controlling the potential accumulation of dissolved methane in the water body and its release to the atmosphere. Field measurements, complemented by laboratory experiments and numerical simulations, will be conducted on spatial scales ranging from the river-basin to individual bubbles. We will further quantify the impact of dissolved methane and bubble fluxes on water quality in terms of dissolved oxygen. Special emphasize will be put on the process of bubble-turbation, i.e. bubble-mediated sediment-water fluxes. The project aims at serving as a reference study for assessing methane emissions from anthropogenically altered river systems.

Die Rolle von Viren beim mikrobiellen Schadstoffabbau

Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.

1 2 3 4 575 76 77