Der Klimawandel betrifft die Hydrologie in alpinen Regionen in besonderem Maße durch Temperaturanstieg, mehr und intensiveren Regenereignissen, auch während der Wintermonate. Diese Veränderungen führen zu vermehrten Naturgefahren wie übermäßigem Oberflächenabfluss und Murenabgänge. Einer der Gründe für solche Ereignisse ist eine reduzierte Infiltrationskapazität des (teil-)gefrorenen Bodens. Wenn Regen- oder Schmelzwasser nicht ausreichend infiltrieren kann, induziert der Oberflächenabfluss eine Bodenerosion, was zu Murenabgängen führen kann. Wenn Wasser entlang präferentieller Fließwege in tiefere Schichten infiltriert und zwischen gefrorenen Schichten der Porendruck steigt, so kann dies zu mechanischem Versagen des Hanges führen. Durch signifikanten Oberflächenabfluss findet kaum Grundwasserneubildung statt und die puffernde Wirkung des Grundwasserkörpers entfällt. Dies ist besonders für Regionen, in denen Schnee- und Gebirgswasser wesentlich zum Grundwasserhaushalt beitragen von großer Bedeutung. In diesem Projekt wird die thermo-hydraulische Wechselwirkung zwischen infiltrierendem Wasser und Boden bei Temperaturen unter dem Gefrierpunkt untersucht. Dazu werden hochentwickelte Modellansätze, numerische Simulationswerkzeuge, sowie Versuche im Labor wie im Gelände eingesetzt. Präferentielle Fließwege, z.B. Makroporen durch Wurzelwachstum oder Wurmlöcher, im Boden sind dabei wesentlich, denn sie ermöglichen eine schnellere Infiltration des Wassers in den Boden und weisen zudem eine anderes Einfrier- und Auftauverhalten auf als kleine Poren der Bodenmatrix. Das Verständnis des Einflusses von Makroporen auf das Gefrieren und Schmelzen von Wasser während der Infiltration ist daher wesentlich für jede weitere Analyse. Wasserinfiltration wird durch die Temperatur der beteiligten Phasen bestimmt. Das infiltrierende Wasser ist wärmer als der Gefrierpunkt, während der Boden gefroren ist. Die Temperaturentwicklung der einzelnen Phasen hängt vom Wärmeübertrag zwischen den Phasen ab. Da Wärmeübertrag und hydraulischer Fluss stark gekoppelt und zudem rund um den Gefrierpunkt sehr dynamisch sind, bedarf es besonderer Sorgfalt bei der theoretischen Beschreibung des thermohydraulischen Verhaltens. Mit einem tiefgreifenden Verständnis vom Einfluss präferenzieller Fließwege und dem Wärmeübertrag zwischen den beteiligten Phasen können spezifische geologische und meteorologische Gegebenheiten identifiziert werden, welche entweder extremen Oberflächenabfluss oder Hangversagen verursachen. Dieses Wissen kann in der Vorsorge als auch im Grundwassermanagement alpiner Gebiete Anwendung finden.
Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.
Ziel des Projektes ist es, die Bedeutung wandernder Sandrippel für das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus in Fließgewässerökosystemen aufzuklären. Die etablierten Konzepte zur Sedimentstörung in der Fließgewässerökologie fokussieren auf katastrophale Hochwasserereignisse, die tiefe Erosionen und drastische Verlagerungen der Sedimente bewirken. In Gewässern mit einem hohen Anteil sandiger Sedimente kommt es allerdings bereits bei geringen Abflüssen zu einer periodischen Umlagerung der Bettsedimente in Form wandernder Sandrippel. Diese Sandrippel bedecken, abhängig von der Sedimentfracht, zunehmende Bereiche der Gewässersohle, streckenweise sogar bis zu 100%. Aufgrund des weltweit zunehmenden Feinsedimenteintrags aus den Einzugsgebieten sind Sandrippel ein weit verbreitetes Phänomen in Bächen und Flüssen. Dennoch gibt es zum Einfluss der Sandrippel auf die Fließgewässerökologie nur sehr wenige Untersuchungen, deren Ergebnisse sich teilweise widersprechen. Wir postulieren, dass wandernde Sandrippel abhängig von ihrem Deckungsgrad auf der Sohle das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus des gesamten Gewässers bestimmen. In originären experimentellen Ansätzen untersuchen wir i) die Auswirkungen der Sedimentumlagerung innerhalb wandernder Sandrippel, ii) die Interaktion der Rippelbereiche mit den umliegenden stabilen Sohlbereichen eines Gewässerabschnitts und den Gesamtmetabolismus im Abschnitt und iii) den Return (= Dynamik nach Beendigung der Sedimentumlagerung). Die Bewegung der Sande in wandernden Sandrippeln wird in einer Mikrokosmenanlage simuliert und der Einfluss von Umlagerungsfrequenz, Licht- und Nähstoffregime auf die Respiration, die Primärproduktion und das mikrobielle Nahrungsnetz untersucht. Die Auswirkungen zunehmender Bedeckung der Sohle mit wandernden Sandrippeln auf nahe stabile Sohlbereiche und den Gesamtmetabolismus von Gewässerabschnitten werden in 16 Rinnen einer Fließgewässersimulationsanlage erforscht. In diesen Experimenten werden zudem der Return von mikrobiellen Gemeinschaften und Gesamtmetabolismus mit erfasst. Die Experimente werden ergänzt und validiert durch in situ Messungen in Bächen und Flüssen. Dabei werden die abiotisch Bedingungen im Porenraum wandernder Sandrippel und naheliegender stabiler Sande sowie der lokale Metabolismus mit einer neu entwickelten Sonde gemessen und das mikrobielle Nahrungsnetz und der Kohlenstofftransfer in diesen Sohlbereichen erfasst. Die Synthese der Ergebnisse wird Klarheit schaffen über die Bedeutung wandernder Sandrippel für die mikrobiellen Gemeinschaften und den Stoffumsatz in Fließgewässern. Die zu erwartenden Erkenntnisse werden auch eine bessere Bewertung wandernder Sandrippel ermöglichen und sind somit Grundlage für Schutz und Management der Gewässerfunktionen.
Das Kapillare Einfangen von CO2-Gas und deren nachfolgende Auflösung sind zwei wichtige Speicherprozesse der CCS (Carbon Capture Storage)-Technologie, die im Rahmen des beantragtes Projektes untersucht werden sollen. Das zentrale Ziel ist ein Upscaling von porenskaligen Eigenschaften getrappter Gascluster mittels universellen Skalengesetzen, wie sie von der Perkolationstheorie vorhergesagt werden. Erstmals wird ein analytisches Näherungsverfahren zur Berechnung der effektiven Auflösungsrate angewendet und durch vergleichende Makroskala-Modellierungen (MIN3P und TOUGH2) getestet. Von grundlegendem Interesse ist die Frage, unter welchen Bedingungen, die im Projekt untersuchten porösen Medien zur gleichen Universalitätsklasse gehören, und welchen Einfluss, Porenstruktur, Mikrostruktur der Festkörperoberfläche und heterogene Benetzbarkeit auf den Trapping-Prozess haben. Methodisch wird mittels micro-Computertomographie und Bildanalyse sowohl die Porenstruktur, Porenraumtopologie und mittels Clusteranalyse die Geometrie und statische Verteilung getrappter Gascluster analysiert und quantifiziert. Die Dynamik des Trapping-Verhaltens wird mittels optischer Visualisierung in Glaskugel-Monolayer untersucht. Die Fluide werden so gewählt, dass sie Proxies für die CO2-Injektion in Tiefenaquifere darstellen. Die zu erwartenden Ergebnisse sind sowohl von grundlegendem Interesse als auch von großer praktischer Relevanz, da sie Prognose-Modellierungen zur CCS-Technologie und zur Grundwasserreinigung (Auflösung residualer NAPL (non aqueous phase liquid) bzw. von Mischgasphasen) verbessern.
Ziel des Projektes ist es, am Beispiel von Bewässerungslandwirtschaft in kleinen Einzugsgebieten Usbekistans den Wasser-Energie-Ernährungsnexus (Water-Energy-Food nexus, WEF) besser zu verstehen, und Optionen für seine nachhaltige Bewirtschaftung zu entwickeln. Nachhaltige Bewirtschaftung bedeutet in diesem Fall sowohl die Bereitstellung von Wasser für Kraftwerke und die Feldbewässerung (Level 1), als auch für Minimierung der Bodenversalzung, so dass die Böden langfristig für die Ernährungsproduktion und weitere Ökosystemleistungen erhalten bleiben (Level 2). Am Beispiel von Fallstudien in drei Wassereinzugsgebieten wird aufbauend auf hydrologischen, landwirtschaftlichen und institutionenökonomischen Kontextanalysen ein analytischer Rahmen mit Indikatoren entwickelt und für partizipative, ex-ante Nachhaltigkeitsbewertungen von Szenarien des WEF Nexus Managements genutzt. Das Projekt ist in vier Arbeitspakete gegliedert: (1) Analyse von 28 Einzugsgebieten bezüglich hydrologischer, agronomischer und sozio-ökonomischer Parameter und Auswahl von drei Fallstudiengebieten, (2) detaillierte Kontextanalyse in den drei Fallstudiengebieten mittels Stakeholderkonsultationen, Dokumentenanalyse und ergänzender Satellitendatenauswertung zur Ermittlung der wesentlichen Faktoren für ein nachhaltiges WEF Management und zur Entwicklung eines analytischen Rahmens mit Indikatoren für die Nachhaltigkeitsbewertung; (3) Entwicklung von Management Szenarien und Durchführung von partizipativen Nachhaltigkeitsbewertungen in Workshops mit Stakeholdern, die mittels des analytischen Rahmens ausgewählt wurden; (4) Synthese und Validierung der Ergebnisse aus den drei Fallstudien und Ableitung von übertragbaren Determinanten für das nachhaltiges Management des WEF-Nexus für Einzugsgebiete in Usbekistan. Der Ansatz kombiniert theoretische Konzepte aus der Institutionenökonomie (z.B. Collective Action, Polycentric Governance, Mental Models) mit wissenschaftlich etablierten Methoden der Kontextanalyse (fuzzy-set Qualitative Comparative Analysis fsQCA) und der Nachhaltigkeitsbewertung (Framework of Participatory Impact Assessment FoPIA), um die wesentlichen Nachhaltigkeitsaspekte und die damit verbundenen Konflikte für den WEF Nexus am Beispiel der Bewässerungslandwirtschaft in Usbekistan besser zu verstehen. Usbekistan hat die UN-Agenda 2030 unterzeichnet und sich damit zur Umsetzung der 17 Nachhaltigkeitsziele verpflichtet. Das vorgeschlagene Forschungsprojekt möchte in einem integrierten Ansatz die wissenschaftliche Grundlage dafür verbessern.
Soil structure determines a large part of the spatial heterogeneity in water storage and fluxes from the plot to the hillslope scale. In recent decades important progress in hydrological research has been achieved by including soil structure in hydrological models. One of the main problems herein remains the difficulty of measuring soil structure and quantifying its influence on hydrological processes. As soil structure is very often of biogenic origin (macropores), the main objective of this project is to use the influence of bioactivity and resulting soil structures to describe and support modelling of hydrological processes at different scales. Therefore, local scale bioactivity will be linked to local infiltration patterns under varying catchment conditions. At hillslope scale, the spatial distribution of bioactivity patterns will be linked to connectivity of subsurface structures to explain subsurface stormflow generation. Then we will apply species distribution modelling of key organisms in order to extrapolate the gained knowledge to the catchment scale. As on one hand, bioactivity influences the hydrological processes, but on the other hand the species distribution also depends on soil moisture contents, including the feedbacks between bioactivity and soil hydrology is pivotal for getting reliable predictions of catchment scale hydrological behavior under land use change and climate change.
Unterirdische Transportpfade im Hainich CZE sind komplex und bestimmt von der Heterogenität und Reaktivität des Aquifer-Materials. Der Transport von Tonmineralen aus der Bodenzone wird unter Verwendung synthetischer Tonmineral-Nanopartikel mit der multi-methodischen massenspektrometrischen Plattform untersucht. Der besondere Schwerpunkt liegt auf der Dynamik, Steuerung und Rückkopplung des Spurenelementtransports auf das unterirdische Mikrobiom der Critical Zone vom Labormaßstab bis zum projektübergreifenden Feldexperiment.
Städte haben ihre Wurzeln im Untergrund. Hier befinden sich die Fundamente von Gebäuden und ein wesentlicher Anteil der urbanen Infrastruktur. Zugleich dient der Untergrund als Wasserreservoir und als Quelle für erneuerbare Energie. Ein bisher wenig beachtetes Phänomen sind die sogenannten Urbanen Wärmeinseln im Untergrund (UWIU), die sich oft unbemerkt über Jahrzehnte ausbreiten. Sie reichen häufig über das gesamte Stadtgebiet, in dem erheblich höhere Boden- und Grundwassertemperaturen zu finden sind als in der ungestörten, ländlichen Umgebung. Die Ursachen hierfür sind vielfältig und gerade die langfristige Entwicklung von UWIUs ist noch heute ungeklärt. Um Empfehlungen für eine möglichst proaktive Nutzung des städtischen Untergrunds in der Zukunft zu erstellen, gilt es, die treibenden Prozesse und Faktoren zu ergründen, die UWIUs in verschiedenen Städten verursachen. Das Kernthema dieses Projekts ist, erstmalig die thermischen Bedingungen unter zwei chinesischen und deutschen Städten, Nanjing und Köln, zu vergleichen. Die teilnehmenden Wissenschaftler haben weitreichende Erfahrung in der Erforschung von UWIUs in ihren Ländern und in Vorarbeiten bereits eine umfassende Datenbasis von Boden- und Grundwassertemperaturen gesammelt. Kernziel ist es, diese mit einem neuen gemeinsamen Messprogramm zu aktualisieren und aus der vergangenen und aktuellen Entwicklung der beobachteten UWIUs auf die zukünftige Temperaturentwicklung im Untergrund zu schließen. Dies wird erreicht durch ergänzende Laborversuche und umfassende numerische Simulationen, die insbesondere die zeitliche Entwicklung der Landnutzung berücksichtigen. Die Ergebnisse für die Städte in Deutschland und China werden verglichen und so individuell von gemeinsamen Charakteristiken unterschieden. Auf diese Weise werden allgemeingültige Zusammenhänge erschlossen, die sich auch auf weitere weniger erforschte Städte übertragen lassen und dort Prognosen zur zukünftigen UWIU-Entwicklung ermöglichen.
In aquatischen Ökosystemen ist der Nährstoffkreislauf eine entscheidende Ökosystemfunktion. Sowohl Stickstoff (N) als auch Phosphor (P) sind essentielle Nährstoffe für aquatische Lebensformen, doch im Übermaß verursachen Stickstoff und Phosphor Eutrophierung. Eutrophierung ist eine globale Beeinträchtigung des Ökosystems, bei der ein Überschuss an Nährstoffen die Struktur und Funktion von Süßwasserökosystemen verändert. Die wichtigsten Auswirkungen der Eutrophierung sind eine übermäßige Zunahme der Algenbiomasse und -produktivität, eine Beeinträchtigung der physikalisch-chemischen Wasserqualität (d. h. Zunahme von Farbe, Geruch und Trübung), anoxische Gewässer, Fischsterben und Einschränkungen der Wassernutzung für Erholungszwecke. Die Eutrophierung ist seit den späten 1980er Jahren in ganz Europa als erhebliches Umweltproblem erkannt worden und stellt auch heute noch eine Herausforderung dar. Um ein gesundes Ökosystem zu erhalten, sollte der Phosphorgehalt im Wasser kontrolliert werden. Phosphor wird nicht vollständig aus dem aquatischen Ökosystem entfernt, sondern von einem Kompartiment (d. h. Wasser) in ein anderes (d. h. Flussbettsubstrate und/oder Biota) immobilisiert. Bei dieser P-Immobilisierung spielen mikrobielle Biofilme eine Schlüsselrolle, indem sie gelösten Phosphor aus dem Wasser einschließen. Dieser Einschluss kann in zwei verschiedenen Pools erfolgen (d. h. intrazellulär oder extrazellulär). Das Wissen über die biologischen Mechanismen des Biofilm-P-Einschlusses in aquatischen Ökosystemen ist jedoch nach wie vor begrenzt. Außerdem kann die Fähigkeit von Biofilmen, P einzuschließen, von ihren Stoffwechselprofilen abhängen. Genauer gesagt bestimmt der C-bezogene Stoffwechsel die Fähigkeit von Biofilmen, organische Verbindungen zu mineralisieren und für ihr Wachstum zu nutzen, und der P-bezogene Stoffwechsel ist mit ihrer Fähigkeit verbunden, verschiedene P-Quellen aufzunehmen. Aus diesem Grund erwarte ich, dass die Fähigkeit aquatischer Ökosysteme, P aus aquatischen Ökosystemen aufzunehmen, von der Struktur und Aktivität der Biofilme abhängt. Das Hauptziel dieses Projekts ist es, zu verstehen, wie Energiequellen in Flussökosystemen die Wege der P-Einlagerung innerhalb von Biofilmen beeinflussen. Insbesondere soll (i) geklärt werden, wie die Kombination von autotrophen und heterotrophen Energiequellen (d. h., (ii) die Auswirkung autotropher und heterotropher Energiequellen auf den C- und P-Stoffwechsel in Biofilmen und ihre Verbindung zu den P-Einlagerungspools zu testen und (iii) die Muster der intrazellulären P- und extrazellulären P-Einlagerungswege in Biofilmen und die Stoffwechselprofile mit den Längsgradienten des Lichts und der Qualität des gelösten Sauerstoffs in Flussökosystemen zu verknüpfen.
Die Akkumulation von Methan (CH4) in sauerstoffhaltigen Wasserschichten wurde kürzlich für viele Binnengewässern und Ozeangebiete beschrieben. In unserem DFG-Projekt Aquameth (GR1540/21-1) haben wir daher die wichtigste Literatur in einem Review zusammengefasst und die möglichen Mechanismen für dieses Phänomen im Stechlinsee evaluiert. Indem wir ein online System für CH4 Messungen entwickelt haben, konnten wir die enge Kopplung der räumlich-zeitlichen Dynamik von Algen (z.B. Blaualgen und Cryptophyten) und CH4 in den oxischen Wasserschichten des Sees zeigen. Obwohl der vor kurzem beschriebene Methylphosphonat-Metabolismus im See vorkommt, haben wir zahlreiche Hinweise, dass Algen das CH4 während der Photosynthese direkt produzieren. Jedoch sind die genauen Mechanismen sowie der Anteil des im sauerstoffreichen Wasser gebildeten CH4 am gesamten CH4 Fluss in die Atmosphäre unklar. Durch die Kombination der Expertise von zwei etablierten Arbeitsgruppen, die sich ideal ergänzen, möchten wir die genaue Chemie und Biologie der CH4 Bildungs- und Oxidations-prozesse untersuchen, um die Rolle von Seen für den regionalen und globalen CH4 Kreislauf besser zu verstehen. Daher soll das komplette CH4 Budget von zwei Seen detailliert quantifiziert werden, d.h. CH4-Quellen und -Senken werden mit einem Massenbalance-Ansatz untersucht und mit in situ Inkubationsexperimenten verknüpft. Unsere zwei ausgesuchten Seen (Stechlinsee und Willersinnweiher) repräsentieren zwei Hauptseentypen der gemäßigten Zone (tief/Nährstoff-arm und flach /Nährstoff-reich), die gut von beiden Institutionen untersucht und biogeochemisch charakterisiert wurden. In diesen Seen hängen die spezifischen Prozesse der CH4 Bildung, Akkumulation und Freisetzung in die Atmosphäre von dem komplizierten Wechselspiel von physikalischen, chemischen und biologischen Faktoren sowie bestimmten Organismen ab. Daher ist unser Hauptziel, dieses komplizierte Wechselspiel zwischen Umweltvariablen und den CH4 Prozessen und ihre globale Bedeutung zu entschlüsseln. Unser Hypothesen sind: (1) Die Methanproduktion ist direkt mit der Photosynthese verbunden und CH4 kann bei bestimmten Umweltbedingungen, z.B. Nährstofflimitation, direkt von photo-autotrophen Organismen gebildet werden. (2) Die Methanbildung ist von der -oxidation durch die räumlich-zeitliche Trennung der methanotrophen Aktivität in sauerstoffhaltigen Wasserkörpern entkoppelt. (3) Methan an der Temperatursprungschicht ist das Produkt aus einem komplizierten Wechselspiel von biologischen, chemischen und physikalischen Prozessen. (4) Die erhöhten CH4 Konzentration in der oberen oxischen Wasserschicht erleichtert den Gasaustausch mit der Atmosphäre. Obwohl die CH4 Anreicherung in den oberen Wasserschichten stark vernachlässigt wurde, könnte sie eine wichtige fehlende Verbindung im globalen CH4 Budget sein. Um diese Hypothesen zu überprüfen, sollen Feld- und Labormessungen gemeinsam durch beide Teams durchgeführt werden.
| Origin | Count |
|---|---|
| Bund | 814 |
| Type | Count |
|---|---|
| Förderprogramm | 814 |
| License | Count |
|---|---|
| offen | 814 |
| Language | Count |
|---|---|
| Deutsch | 610 |
| Englisch | 590 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 795 |
| Topic | Count |
|---|---|
| Boden | 797 |
| Lebewesen und Lebensräume | 637 |
| Luft | 510 |
| Mensch und Umwelt | 814 |
| Wasser | 800 |
| Weitere | 814 |