API src

Found 838 results.

Thermohydraulische Prozesse während der Wasserinfiltration in gefrorenen Boden mit Auswirkungen auf Geogefahren unter dem Einfluss des Klimawandels

Der Klimawandel betrifft die Hydrologie in alpinen Regionen in besonderem Maße durch Temperaturanstieg, mehr und intensiveren Regenereignissen, auch während der Wintermonate. Diese Veränderungen führen zu vermehrten Naturgefahren wie übermäßigem Oberflächenabfluss und Murenabgänge. Einer der Gründe für solche Ereignisse ist eine reduzierte Infiltrationskapazität des (teil-)gefrorenen Bodens. Wenn Regen- oder Schmelzwasser nicht ausreichend infiltrieren kann, induziert der Oberflächenabfluss eine Bodenerosion, was zu Murenabgängen führen kann. Wenn Wasser entlang präferentieller Fließwege in tiefere Schichten infiltriert und zwischen gefrorenen Schichten der Porendruck steigt, so kann dies zu mechanischem Versagen des Hanges führen. Durch signifikanten Oberflächenabfluss findet kaum Grundwasserneubildung statt und die puffernde Wirkung des Grundwasserkörpers entfällt. Dies ist besonders für Regionen, in denen Schnee- und Gebirgswasser wesentlich zum Grundwasserhaushalt beitragen von großer Bedeutung. In diesem Projekt wird die thermo-hydraulische Wechselwirkung zwischen infiltrierendem Wasser und Boden bei Temperaturen unter dem Gefrierpunkt untersucht. Dazu werden hochentwickelte Modellansätze, numerische Simulationswerkzeuge, sowie Versuche im Labor wie im Gelände eingesetzt. Präferentielle Fließwege, z.B. Makroporen durch Wurzelwachstum oder Wurmlöcher, im Boden sind dabei wesentlich, denn sie ermöglichen eine schnellere Infiltration des Wassers in den Boden und weisen zudem eine anderes Einfrier- und Auftauverhalten auf als kleine Poren der Bodenmatrix. Das Verständnis des Einflusses von Makroporen auf das Gefrieren und Schmelzen von Wasser während der Infiltration ist daher wesentlich für jede weitere Analyse. Wasserinfiltration wird durch die Temperatur der beteiligten Phasen bestimmt. Das infiltrierende Wasser ist wärmer als der Gefrierpunkt, während der Boden gefroren ist. Die Temperaturentwicklung der einzelnen Phasen hängt vom Wärmeübertrag zwischen den Phasen ab. Da Wärmeübertrag und hydraulischer Fluss stark gekoppelt und zudem rund um den Gefrierpunkt sehr dynamisch sind, bedarf es besonderer Sorgfalt bei der theoretischen Beschreibung des thermohydraulischen Verhaltens. Mit einem tiefgreifenden Verständnis vom Einfluss präferenzieller Fließwege und dem Wärmeübertrag zwischen den beteiligten Phasen können spezifische geologische und meteorologische Gegebenheiten identifiziert werden, welche entweder extremen Oberflächenabfluss oder Hangversagen verursachen. Dieses Wissen kann in der Vorsorge als auch im Grundwassermanagement alpiner Gebiete Anwendung finden.

Eine neuartige Beschreibung des Wärmetransports zwischen Flüssigkeiten und rauen Rissflächen in porösen Gesteinen

Wärmetransfer in geklüfteten porösen Medien ist ein essentieller Prozess im Erdinnern. Er ist Triebkraft für zahlreiche Naturphänomene, wie Geysire, hydrothermische und vulkanische Systeme, als auch für Naturgefahren wie Gesteinsbrüche und Erdbeben. Er bildet die Grundlage für industrielle Anwendungen, etwa im Bereich Geothermie. Die Fließbewegung in Risssystemen kann recht gut beschrieben werden. Es existiert eine breite Auswahl an Ansätzen, u. a. aus der Kontinuumsmechanik, multiple Medien und die explizite Beschreibung von Klüften. Allerdings haben existierende Modelle für den Wärmetransfer zwei große Schwachpunkte: Oft wird ein thermisches Gleichgewicht zwischen Gestein und Fluid vorausgesetzt und die Rolle der Risse vernachlässigt. Beides ist eng miteinander verbunden, da Risse mit hohen Fließgeschwindigkeiten eine Ursache für ein thermisches Ungleichgewicht sind und eine passende Beschreibung des Wärmetransfers in Rissen fehlt. In diesem Projekt wird ein neuartiges Modell entwickelt, um Wärmetransfer in Klüften unter Berücksichtigung mikroskopischer Rissoberflächenmorphologie zu beschreiben. Aktuelle Laborexperimente erlauben eine Analyse dieser Prozesse in bisher unbekannter Genauigkeit und ermöglichen einen tief gehenden Vergleich mit theoretischen Modellen. Oberflächenrauhigkeit, Öffnungsweite und Kontaktfläche beeinflussen Fließfeld wie Wärmetransfer. Gleichzeitig verändert Temperatur die Fluideigenschaften, und Risscharakteristiken hängen vom Spannungsfeld ab, welches wiederum von Temperatur und Fluiddruck abhängt. Ein passendes Wärmemodell muss daher auch hydraulische und mechanische Prozesse berücksichtigen, was in einem vollständig gekoppelten thermisch-hydraulisch-mechanischen Modell resultiert. Die theoretische Modellentwicklung beginnt mit einfachen Geometrien, um gute Vergleichbarkeit mit Laborergebnissen von externen Projektpartnern im Centimeterbereich zu ermöglichen. Daran schließt sich die Erweiterung auf komplexe Kluftnetzwerke an. Um auch für Anwendungen mit hunderten Metern Ausdehnung geeignet zu sein, wird das Modell mit statistischen Methoden skaliert und durch andere Parameter beschrieben, wie der Rissdichte. Anwendung auf Feldskala und Vergleich mit Messungen dienen zur Evaluation. Eine Einbindung des entwickelten Modells in eine Auswahl an wissenschaftlichen Softwareprogrammen ist geplant. Dieser innovative Ansatz kann in unterschiedlichen Modellen unabhängig von der gewählten Rissrepräsentation verwendet werden. Das vorgeschlagene Projekt schließt die lang existierende Lücke einer über die Skalen konsistenten Beschreibung des Wärmetransfers in geklüfteten porösen Medien unter Berücksichtigung statischer wie dynamischer Größen. Erstmals wird es möglich sein den Einfluss und die Interaktion einzelner Bedingungen und Gegebenheiten auf den Wärmetransfer und -transport im Detail zu untersuchen. Die Bestimmung der transferierten Wärme in natürlichen und industriellen Anwendungen wird sich dadurch signifikant verbessern.

Experimentelle und numerische Untersuchungen zur dichtegetriebenen Einlösung von CO2 und damit verbundener Lösung von Karbonaten in Karstwasser

Die Rolle dichtegetriebener CO2-Einlösung in Karstsystemen ist bislang nicht gut verstanden. Es ist bekannt, dass in Wasser gelöstes CO2 die Verkarstung antreibt, und dass dieses CO2 zu einem wesentlichen Teil biogenen Ursprungs ist; produziert von Mikroorganismen im Boden oder durch Wurzelatmung. Karbonatlösung findet vorwiegend oberflächennah statt. Niederschlagswasser, welches durch die ungesättigte Bodenzone sickert und mit CO2 angereichert wird, führt zu sogenannter Denudation (Absenkung der Landoberfläche). Aber warum wachsen Hohlräume auch tief im Innern des Gesteins? Der erste Erklärungsansatz ist die Mischungskorrosion, welche darauf beruht, dass beim Zusammentreffen zweier unterschiedlicher Wasserströme immer ein kalkaggressives Mischwasser entsteht. Der zweite Mechanismus beruht auf nichtlinearer Lösungskinetik, wobei angenommen wird, dass Wasser einen Teil seiner „Lösungskraft“ bis tief ins Gestein hinein behält. Unsere neue These behandelt einen zusätzlichen, dritten, und bislang unterschätzten Mechanismus, der Wasserkörper mit CO2 anreichern kann: dichtegetriebene Einlösung. In einem jüngst publizierten Artikel konnten wir zeigen, dass dichtegetriebene Einlösung am Karstwasserspiegel ruhende Wasserkörper mit CO2, und damit mit neuer „Lösungskraft“, anreichern kann, und zwar auf einer Zeitskala von Wochen bis Monaten. Was bislang aufgrund von enormer Komplexität nicht untersucht wurde, ist das reaktive Transportsystem infolge der Interaktion von dichtegetriebener CO2-Einlösung mit Kalkgestein. Dichtegetriebene CO2-Einlösung findet zum Beispiel in einer Kluft von gegebener Öffnungsweite statt. Diese Öffnungsweite beeinflusst die Strömung und wächst durch Karbonatlösung an, wodurch ein womöglich selbstverstärkender Prozess mit weiterer Einlösung in Gang kommt. Übergeordnet soll dieses Projekts dazu beitragen, die Rolle dichtegetriebener CO2-Einlösung im Vergleich zu bereits bekannten Mechanismen der Mischungskorrosion und der nichtlinearen Lösungskinetiken besser zu verstehen. Um deren Interaktion auf geologischen Zeitskalen zu verstehen, ist einzig die Modellierung zweckdienlich, validiert mit anspruchsvollen, gut kontrollierten Labor- und Feldexperimenten. Das numerische Modell löst die Navier-Stokes-Gleichungen, wobei die Dichte abhängig von den Konzentrationen der gelösten Komponenten ist. Die Validierung des Modells soll die Kopplung von reaktiver Strömung, angetrieben durch dichtegetriebene Lösung im Kalk-Kohlensäure-System, mit dadurch verursachter Morphologieänderung der Kalkgesteinsoberflächen berücksichtigen. Zusammengefasst sollen- numerische Modelle durch systematische Validierung der Simulationsplattform DuMux mit Daten aus kontrollierten Experimenten verbessert werden.- CO2-Eintragsraten in Karstwasser infolge von dichtegetriebener Einlösung und Reaktion an Kalkgesteinsoberflächen quantifiziert werden.- die entsprechenden Karbonatlösungsraten und die Veränderungen auf der Kalkgesteinsoberfläche quantifiziert werden.

Intergration von hydrologischen, hydrogeologischen, bodenphysikalischen und hydrodynamischen Prozessen durch partikelbasierte Simulation

Eine integrierte Hydrosystemmodellierung ist aufgrund verschiedener räumlicher und zeitlicher Skalen sowie der Komplexitätsstufen der beteiligten Prozesse herausfordernd. Dennoch erfordern viele hydrologische Fragestellungen eine ganzheitliche Betrachtung durch eine fundierte Prozessbeschreibung mit einer Umsetzung in Modellkonzepte. Zu diesen Fragestellungen zählen beispielsweise Risikoanalysen und Modellierungen von Sturzfluten, die sowohl hydrologische als auch hydrodynamische Prozesse beinhaltet. Das Ziel des Projekts ist die integrierte Berücksichtigung von hydrologischen, hydrogeologischen, bodenphysikalischen und hydrodynamischen Prozessen innerhalb eines einzigen Modells. Dieser neuartige Modelltyp basiert auf der numerischen Interpolationsmethodik SPH (smoothed particle hydrodynamics) in Verbindung mit innovativen Skalierungsmethoden. Im Gegensatz zu etablierten Euler basierten Methoden erfolgt die zeitliche Integration über die dynamischen Partikel und nicht über ein starres Gitter. Für hydrodynamische Fragestellungen wird die SPH Methode bereits eingesetzt, eine Einbeziehung von hydrologischen, hydrogeologischen oder bodenphysikalischen Prozessen erfolgte bisher jedoch nicht, obwohl die Methodik aufgrund der numerischen Stabilität und flexiblen Erweiterbarkeit das Potential dazu besitzt. Die Umsetzung der Prozessbeschreibungen erfolgt durch die GPU-CUDA Technik für Nvidia Grafikkarten. Die innovative dynamische Skalierung ermöglicht die Übertragbarkeit von Prozessen der Wasserbewegung auf reale hydrologische Einzugsgebiete. Diese Skalierung basiert auf Ähnlichkeits-Konzepten aus der Bodenphysik. Daten zu den Böden und der Vegetation werden in Eigenschaftsfeldern bereitgestellt, wobei die einzelnen Parameter durch Verteilungsfunktionen beschrieben werden. Die Zuordnung der Parameter zu den Partikeln durch multiple Wahrscheinlichkeiten erfolgt in Analogie zu den Variationen in natürlichen Systemen. Die Dichte und Geschwindigkeit der Partikel werden über die Eigenschaftsfelder beeinflusst, während die Partikeleigenschaften die dynamische Skalierung vorgeben. Meilenstein 1 ist ein voll funktionsfähiges Modellsystem mit einer detaillierten Prozessbeschreibung auf der Plot Skala. Berücksichtigt werden die Interaktionen des Wassers mit der Vegetationszone, der ungesättigten und gesättigten Zone. Meilenstein 2 ist auf den Transfer des Detailmodells auf größere Skalen ausgerichtet (Skalierung). Meilenstein 3 umfasst die erfolgreiche Anwendung des Modells auf der Einzugsgebietsskala samt Validierung anhand umfangreicher Beobachtungsdaten (Hühnerwasser). Nach der Validierung wird das integrierte Modellsystem für Anwendungen mit hohen Wechselwirkungen zwischen verschiedenen Prozessskalen eingesetzt. Das Ziel ist die Bereitstellung einer zuverlässigen und realistischen Grundlage in Bereichen wie Sturzfluten oder Bewässerung, um Schadenpotentiale oder den Bewässerungsbedarf zu beurteilen.

Anreicherung von aromatischen Aminen in Textilien und ihre Umweltemission durch Waschwasser

In Innenräumen findet sich eine Vielzahl von Chemikalien, die aus Gegenständen, Materialien oder durch menschliche Aktivitäten freigesetzt werden und ein Risiko für aquatische Ökosysteme darstellen können, falls entsprechende Chemikalien in den Wasserkreislauf gelangen. Wir stellen die Hypothese auf, dass aromatische Amine (AA), die aus Innenräumen emittiert werden, in Oberflächengewässer eingetragen werden und dort signifikant zur Belastung und der damit verbundenen Mutagenität beitragen. Gewaschene Textilien, die durch Emissionsquellen in Innenräumen mit AA kontaminiert sind, wirken als Überträger dieser Substanzen in Abwässer. Die Berücksichtigung dieses Übertragungsweges kann uns helfen, das Auftreten von AA ohne klare Emissionsquellen in Oberflächengewässern besser zu verstehen. In vielen Studien wird berichtet, dass AAs, welche in Innenräumen beispielweise durch Rauchen und Grillen von Fleisch entstehen, die Hauptursache für Mutagenität in Oberflächengewässern und häuslichen Abwässern sind. Sie können durch gasförmige und Partikeldepostion auf Textilien adsorbiert werden. Daher wollen wir den Übertragungsweg von AA aus Innenräumen in Oberflächengewässer im Hinblick auf die folgenden vier Aspekte untersuchen: (i) Stoffgruppen-spezifisches Non-target-Screening zum Nachweis der gesamten Verbindungsklasse in allen Matrizes entlang des dargestellten Expositionspfades, d.h. in Extrakten von Textilien, Staub, Waschwasser, Abwasser und Oberflächenwasser; (ii) Instrumente zum Monitoring aromatischer Amine aus Abwässern und Oberflächengewässern mittels selektiver Anreicherung, um ihren Verbleib in Kläranlagen und das damit verbundene Risiko für Wasserorganismen zu entschlüsseln; (iii) Charakterisierung der Aufnahme AA durch Textilien durch gasförmige und Partikeldeposition und ihre Verteilung in Innenräumen durch Expositionsexperimente im Labor und realen Innenräumen und (iv) Anwendung aller entwickelten Instrumente und Methoden in Kombination mit diagnostischen Mutagenitätstests zur Aufklärung der angenommenen Emissionswege. Hierbei werden Textilbelastung in Innenräumen mit verschiedenen AA-Quellen berücksichtigt, Waschexperimente durchgeführt und Proben aus Kläranlagen und Abwasserauffangbecken entnommen, um die quellenbezogenen Muster und die wichtigsten AA zu identifizieren, die die beobachtete mutagene Aktivität verursachen. Mit diesem Ansatz wollen wir die Kenntnislücke zwischen Innenraumexpsosition und der Umweltexposition schließen. In diesem Projekt wird das Fachwissen eines deutschen und eines tschechischen Forschungsinstituts kombiniert. Es umfasst das Target-, Suspect- und Non-target-Screening nach organischen Schadstoffen in komplexen Umweltmischungen, die Detektion von Mutagenität und den zugrundeliegenden Chemikalien in Oberflächenwasser mit wirkungsorientierter Analytik und passiver Probenahme in verschiedenen Umweltmatrizes, sowie die Berücksichtigung von Verteilungsmechanismen von Verbindungen in Innenräumen.

Nachhaltigkeitsbewertung der Bewässerungslandwirtschaft: Rebound-Effekte im halbtrockenen Usbekistan

Hauptziel des Projektantrages ist die Untersuchung der Nachhaltigkeit der Bewässerungslandwirtschaft in den semiariden Regionen Usbekistans durch die Bewertung neuer wassersparender Technologien und ihrer Rebound-Effekte mit Fokus auf Belastungen durch den Klimawandel. Das spezifische Ziel besteht darin, die Auswirkungen der Einführung wasser- und energiesparender Bewässerungstechnologien zu untersuchen und mögliche Rebound-Effekte zu quantifizieren. Die spezifischen Projektaktivitäten sind in vier Arbeitsprogramme gegliedert: (1) Bestandsaufnahme und vorbereitende Arbeiten - eine allgemeine Analyse der aktuellen Situation bei der Einführung von Bewässerungstechnologien und Auswahl von Fallstudien; (2) Dokumentation und Bewertung von wasser- und energiesparenden Technologien; (3) Untersuchung einer Ex-ante-Folgenabschätzung für ein nachhaltiges Wasser- und Energiemanagement, einschließlich möglicher Rebound-Effekte sowie Projektionen für die Zukunft mit Stakeholdern; (4) Synthese und Validierung der Ergebnisse der Folgenabschätzung und Identifizierung von Schlüsselfaktoren für ein nachhaltiges Management von wasser- und energiesparenden Technologien. Innovative Ansätze, wie die Fuzzy-set qualitative comparative analysis (fsQCA) und das Water Evaluation and Planning System (WEAP)-Modell, werden für die Kontextanalyse eingesetzt und mit einer gut etablierten partizipativen Folgenabschätzungsmethode kombiniert.Das vorgeschlagene Forschungsprojekt wird einen Beitrag zu den Zielen der Initiative "Grünes Zentralasien" leisten, insbesondere im Hinblick auf eine effizientere Wassernutzung und bessere technische Lösungen. Eine kürzlich von der usbekischen Regierung ergriffene Initiative - die Verabschiedung der Strategie zur Entwicklung der Wasserressourcen 2020-2030, die vorsieht, dass bis 2030 wassersparende Bewässerungstechnologien auf 2 Mio. ha (ca. 50 % der gesamten bewässerten Fläche) installiert werden sollen - wird die Landwirte wahrscheinlich dazu ermutigen, diese Technologien einzusetzen. Allerdings können diese Reformen auch zu einem Anstieg des Wasser- und Energieverbrauchs bei der Nahrungsmittelproduktion führen. Es gibt immer mehr Belege dafür, dass Effizienzverbesserungen bei der Bewässerungswassernutzung mit Rebound-Effekten einhergehen können, d.h. mit Verhaltensänderungen bei Landwirten und Verbrauchern, die die erwarteten Ressourceneinsparungen ganz oder teilweise ausgleichen. Daher sollten die Forschungsergebnisse zum Ex-ante-Wasserverbrauch und zur Rehabilitierung und Erhaltung der Bodengesundheit in den Trockengebieten Usbekistans evidenzbasiertes Wissen über die beabsichtigte und tatsächliche Nachhaltigkeit von neu installierten wasser- und energiesparenden Technologien liefern.

Überlebensstrategie und Pathogenität von Clostridioides difficile in Abwasser, Klärschlamm, Oberflächengewässer, Gülle, Futtermittel und Silage - Behandlungsmöglichkeiten zur Risikominimierung (SUPER safe)

Das strikt anaerobe, Endosporen-bildende Bakterium Clostridioides difficile ist der Verursacher von nosokomialen Durchfallerkrankungen bei Mensch und Tier. Eine C. difficile Infektion (CDI) erfolgt meist nach einer Antibiotikabehandlung welche die Darmflora schädigt und bei der Wiederbesiedlung das Auskeimen von C. difficile ermöglicht. Weltweit ist eine Zunahme der Inzidenz so wie ein schwerer Verlauf von CDI zu beobachten was die Gesundheitskosten in die Höhe treibt und verstärkte Maßnahmen zur Infektions-Prävention und Kontrolle der Ausbreitung erfordert. Die Behandlung einer CDI wird dadurch erschwert dass Endosporen resistent gegenüber einer Antibiotikabehandlung sind. Vegetative Zellen und Sporen des Darmbesiedlers C. difficile werden mit den Fäzes ausgeschieden und können so in die Umwelt gelangen. C. difficile wird in Fäkal-belasteten Matrices wie Abwasser, Klärschlamm, Gülle und in mit Fäkalien in Berührung gekommenem Viehfutter oder Silage nachgewiesen. Durch den rasanten Anstieg der Anaerobtechnologie in Biogasanlagen zur Schlamm- oder Güllebehandlung kann davon ausgegangen werden, dass C. difficile in solchen Milieus überlebt oder sich sogar vermehrt und mit den Gär-Rückständen als Dünger in der Umwelt verbreitet wird. Ziel des geplanten Forschungsvorhabens ist, solche fäkal-belasteten Proben zu identifizieren und daraus C. difficile zu quantifizieren und Isolate zu charakterisieren. Neben dem Nachweis der Gene der Virulenzfaktoren für das Enterotoxin A und Cytotoxin B und dem binären Toxin CDT werden die Isolate einer Ribotypisierung und einer Antibiotikaempfindlichkeitstestung zur MHK Bestimmung unterzogen. Zudem sollen auch Antibiotika-Resistenzgene sowie konjugative Transposons nachgewiesen werden. Zum quantitativen Nachweis von C. difficile und dem Antibiotikaresistenz-vermittelnden konjugativen Transposon Tn5397 soll eine qPCR etabliert werden die es ermöglicht, Zellzahlen und Pathogenität von C. difficile in Fäkal-belasteten Proben zu bestimmen. Bedingt durch den hohen Stellenwert der Anaerobtechnologie für die Abwasserreinigung und Güllebehandlung sollen im Labormaßstab Biogasreaktoren aufgebaut und unter 'Realbedingungen' betrieben werden, um das Überleben, eine Vermehrung oder die Reduktion/Elimination von C. difficile Zellen/Sporen sowie die Exkretion des konjugativen Transposons Tn5397 zu testen. Diese Versuche sollen auch in Laboranlagen zur Simulation der konventionellen Güllelagerung sowie nach Behandlung in einer Labor-Ozonierungs- und UV-Entkeimungsanlage durchgeführt werden. Letztere werden unter anderem als vierte Reinigungsstufe zur Abwasserbehandlung in der Praxis empfohlen. Nur in Kombination von Umweltmikrobiologie und Verfahrenstechnik können die gesetzten Ziele erreicht und neues Wissen generiert werden um Aussagen bezüglich der Überlebensfähigkeit, Pathogenität und Verbreitungspfaden von C. difficile zu treffen und um das Infektionsrisiko für Mensch und Tier besser abschätzen zu können.

Grundlagen der Phytoremediation von Mikroplastik aus Böden und Sedimenten

Forschungsthema: Die Beschreibung der Anreicherungen von Mikroplastik (MP) an und in Pflanzenwurzeln lässt hoffen, dass das für Umweltschadstoffe etablierte Prinzip der Phytoremediation zur Entfernung von MP aus der Umwelt genutzt werden kann. Jedoch sind die zur Gestaltung der Technologie notwendigen Grundlagen nur ansatzweise untersucht und verstanden. Daher wollen wir als Voraussetzung für die Entwicklung von Phytoremediationsverfahren die Grundlagen der Wirkung von MP auf Bodenqualität und -prozesse an der Schnittstelle von Vegetation und Gewässerdynamik am Beispiel von Flussauen untersuchen. Ziel des Projekts ist ein Verständnis von Prozessen in Böden und Sedimenten, die durch Anreicherung von MP an und in Vegetationsbeständen verändert werden. Dies umfasst am Beispiel ausgewählter Flussauen einer stark anthropogen beeinflussten Bundeswasserstraße (Elbe) im Vergleich zum einzigen erhaltenen Wildflusssystem Europas, der Vjosa, die Einflüsse von MP auf Kohlenstoffumsatz, räumliche und zeitliche Verteilung und Verhaltensdynamik von MP in Flussauen sowie die Bedeutung von Pflanzen für eine Entfernung von MP, einschließlich der dafür notwendigen Adaption, Entwicklung und Optimierung erforderlicher Analysemethoden.

Aquatisch-terrestrische Kopplung: Export von mehrfachungesättigten Fettsäuren aus aquatischen Ökosystemen durch Insekten und mögliche Konsequenzen für terrestrische Konsumenten

Der Transport von organischem Material über Ökosystemgrenzen hinweg kann die Produktivität benachbarter Systeme entscheidend beeinflussen. Emergierende aquatische Insekten sind erheblich am Transport von organischem Material aus Binnengewässern in angrenzende terrestrische Systeme beteiligt. Mögliche Effekte von Nährstoffflüssen auf angrenzende Nahrungsnetze hängen in erster Linie von der Menge der transferierten Biomasse ab; ob angrenzende Nahrungsnetze auch von qualitativen Unterschieden in der transferierten Biomasse beeinflusst werden können wurde noch nicht untersucht. Ziel des Projekts ist es, denn Export von essentiellen mehrfachungesättigten Fettsäuren (PUFA) aus stehenden Binnengewässern durch emergierende Insekten zu quantifizieren, um den möglichen Transfer dieser potentiell limitierenden Nährstoffe in angrenzende terrestrische Habitate und deren Bedeutung für terrestrische Konsumenten abschätzen zu können. Emergenzfallen werden auf verschiedenen Seen installiert, um habitatspezifische Unterschiede im PUFA-Export erfassen zu können. Teichexperimente mit markierten Substraten (stabile Isotope) sollen dabei helfen, den PUFA-Export über emergierende Insekten, den Eintrag und die Verteilung aquatischer PUFA in angrenzenden terrestrischen Habitaten und den Beitrag aquatischer PUFA zur Ernährung terrestrischer Konsumenten abzuschätzen. In Laborexperimenten mit wirbellosen Prädatoren (Spinnen) wird untersucht, ob diese eine Präferenz für aquatische Insekten zeigen und ob sich aquatische und terrestrische Insekten in ihrer Futterqualität aufgrund einer unterschiedlichen PUFA-Zusammensetzung unterscheiden. Die erarbeiteten Ergebnisse werden das Verständnis von Nährstoffflüssen über Systemgrenzen hinweg und deren Bedeutung für angrenzende Habitate entscheidend verbessern.

Verbundlabor "Umweltverhalten von Polymeren in Boden-Gewässer-Vegetationskompartimenten

Ziel des Vorhabens ist die deutliche Verbesserung der Geräteausstattung des Verbundlabors zur Untersuchung des Umweltverhaltens von anthropogenen Stoffen in Gewässer-, Boden- und Vegetationskompartimenten. Ausgehend von aktuellen Forschungsprojekten steht das Umweltverhalten von Polymeren, insbesondere Mikroplastik im Fokus. Die neuen Geräte sollen von verschiedenen Akteuren genutzt wer-den, neben forschungsstarken Professuren, Nachwuchsforschende, wissenschaftliche Mitarbeitende und Promovierende, die in Projekten zu Mikroplastik, Bodenkunde, Wasserwesen und Vegetationstechnik tätig sind. Mit der Forschung zur Mikroplastik, der Entwicklung der Mikroplastikanalyse durch Elektroseparation in Verbindung mit der Differenzkalorimetrie und eines neuen Herstellverfahrens für Mikroplastikstandards und -referenzmaterialien hat die HTWD bereits ein Alleinstellungsmerkmal erreicht, was sich in Patenten und Publikationen widerspiegelt. Die Geräteauswahl ist primär auf die Weiterentwicklung der Mikroplastikforschung und ihrer Anwendungsbreite ausgerichtet, soll aber ebenso Projekte zur Untersuchung anderer anthropogener Stoffe und zum Umweltverhalten von Polymerwerkstoffen fördern. Die Mikroplastik-Verbundforschung der HTWD wurde ausgehend von fakultätsübergreifenden Lehrangeboten entwickelt und bildet den Kern des Verbundlabors, dessen Gründung die Hochschulleitung initial durch Sondermittel unterstützt hat. Mikrowellenaufschluss, Durchflusszentrifuge, TED-GC-MS, Durchflusszytometer und Thermowaage sollen nun vorhandene Lücken in der Probenvorbereitung und -aufbereitung schließen, neue Möglichkeiten für die Analytik bei hohem Probendurchsatz bieten und verbesserte Nachweisgrenzen für Mikro- und Nanoplastik ermöglichen. Der Ausbau stärkt die Umweltforschung im Bereich Materialforschung, Böden, Wasser und Vegetation, um das Verhalten anthropogener Stoffe in komplexen Umweltkompartimenten besser zu verstehen und die Auswirkungen menschlicher Eingriffe in die Umwelt sinnvoll zu gestalten. Die synergistische, fakultätsübergreifende Forschung zu Fragen der produktiven Land- und Gewässernutzung, der Energieproduktion, der Kontamination von Böden und Gewässern und der Rolle der Vegetation als anzeigendes, verbindendes und gestaltendes Element soll neue Erkenntnisse und Technologien für eine nachhaltige Entwicklung generieren. Eine moderne analytische Ausstattung ist dazu unerlässlich. Deren Beschaffung übersteigt die Möglichkeiten der Hochschule und kann nicht auf anderem Weg finanziert werden. Die HTWD kann durch die beantragte Ausstattung Alleinstellungsmerkmale weiterentwickeln und die Vorteile der fakultätsübergreifenden Kooperation demonstrieren. Offenheit zur interdisziplinären Zusammenarbeit ist ebenso gelebte Praxis wie die Berücksichtigung neuer Schwerpunkte und aktueller Trends, eine bevorzugte Förderung junger Wissenschaftler und Begleitung durch Maßnahmen für chancengerechte Forschung, um eine nachhaltige Zukunftsfähigkeit zu gewährleisten.

1 2 3 4 582 83 84