API src

Found 835 results.

Reaktionen von Chlordioxid mit stickstoffhaltigen Schadstoffen in der Wasseraufbereitung: Mechanismen und Produktbildung

Chlordioxid (ClO2) wird weltweit zur Oxidation und Desinfektion eingesetzt, wenngleich über die Reaktionen des Chlordioxids noch wenig bekannt ist. So haben erst kürzlich erschiene Arbeiten gezeigt, dass es bei der Reaktion von ClO2 zur Bildung von freiem Chlor kommen kann, welches bei der Desinfektion und Schadstoffabbau sowie bei der Bildung von Transformations- und Nebenprodukten berücksichtigt werden muss. Das vorliegende Projekt behandelt die Reaktionen von ClO2 mit Schadstoffen. Dabei sollen N-haltige Verbindungen untersucht werden, die einen Großteil der in der aquatischen Umwelt vorhandenen Schadstoffe ausmachen. Ziel der Untersuchungen ist es zunächst die pH-wertabhängige Reaktionskinetik von N-haltigen organischen Modellverbindungen zu bestimmen um die Stoffe zu identifizieren, die ein hohes Potenzial haben durch ClO2 abgebaut zu werden. Dann werden die elementaren Reaktionsschritte anhand der "reaktiven" Modellverbindungen untersucht und Reaktionsmechanismen ermitteln. Hierbei werden auch sekundäre Oxidationsmittel, die aus Reaktionen des ClO2 entstehen können (freies Chlor und freies Brom und Iod) erfasst. Die mechanistischen Untersuchungen umfassen zudem die Rolle des Sauerstoffs und der Peroxylradikale in ClO2 Reaktionen, die bisher kaum diskutiert wurden. Schließlich werden Transformationsprodukten bestimmt. Aus den erarbeiteten Daten werden Reaktionsmechanismen abgeleitet und angewendet um die Bildung von Transformationsprodukten für komplexere Schadstoffe zu vorherzusagen. Die Vorhersagen werden daraufhin sowohl in synthetischen wässrigen Lösungen als auch in realen Wässern anhand von realen N-haltigen Schadstoffen überprüft. Insgesamt soll dabei das Verständnis der ClO2 Reaktionen unter Berücksichtigung der sich bildenden sekundären Oxidationsmittel soweit verbessert werden, dass signifikante wissenschaftliche Fortschritte erreicht werden die in der Praxis der Wasseraufbereitung etwa zur Abschätzung der Abbaubarkeit von N-haltigen Schadstoffen und der Bildung von transformations- und Nebenprodukten genutzt werden können.

Entschlüsselung der Treiber der Partitionierung des Wasserhaushalts in seine Komponenten mittels stabiler Isotope, hydrologischer Modellierung und maschinellem Lernen für verschiedene Landschaften

Das Verständnis für die Partitionierung des Niederschlag (P) in Abfluss (Q), Transpiration (T) und Verdunstung (E) in verschiedenen hydro-klimatologischen Regionen ist wichtig, um die Auswirkungen des Globalen Wandels auf den Wasserhaushalt und den biogeochemischen Kreislauf vorherzusagen. Trotz der Relevanz sind die zugrundeliegenden Prozesse und die Möglichkeiten zur Vorhersage limitiert, da vor allem die Partitionierung der Evapotranspiration (ET) in T und E, aufgrund eines Mangels an Messmethoden und an Daten für die Modellvalidierung, auf Einzugsgebietsskale schwierig ist. Dieses Projekt zielt darauf ab, diese Einschränkung zu überwinden, indem es die T/ET-Verhältnisse in Einzugsgebieten unterschiedlicher Skale untersucht und die dominierenden Mechanismen des Wasserverlusts (T, E, Q) mit der Einzugsgebietsphysiographie in Verbindung bringt. Hier werden Methoden des maschinelles Lernen eingesetzt, um Muster und Korrelationen zu identifizieren. Das Projekt untersucht diverse Einzugsgebiete weltweit welche vorhandene Daten für stabile Isotope (18O und 2H des Wassermoleküls) in den Wasserhaushaltskomponenten aufweisen. Das langjährige Mittel der Partitionierung des Niederschlags und der Evapotranspiration wird für mehrere Hundert Einzugsgebiete mit vorhandenen niederfrequenten Isotopendaten durchgeführt unter Anwendung der Isotopen- und Wassermassenbilanz. Zusätzlich wird für einen Satz von elf Einzugsgebiete mit höherer Datenverfügbarkeit die Partitionierung mittels des hydrologischen Modells isoWATFLOOD für eine feinere zeitlicher Auflösung durchgeführt. Abschließend wird maschinelles Lernen verwendet um die Partitionierung und die dominierenden Wasser-Verlustmechanismen in Einzugsgebieten anhand der Physiogeographie abzuschätzen.

Verbundlabor "Umweltverhalten von Polymeren in Boden-Gewässer-Vegetationskompartimenten

Ziel des Vorhabens ist die deutliche Verbesserung der Geräteausstattung des Verbundlabors zur Untersuchung des Umweltverhaltens von anthropogenen Stoffen in Gewässer-, Boden- und Vegetationskompartimenten. Ausgehend von aktuellen Forschungsprojekten steht das Umweltverhalten von Polymeren, insbesondere Mikroplastik im Fokus. Die neuen Geräte sollen von verschiedenen Akteuren genutzt wer-den, neben forschungsstarken Professuren, Nachwuchsforschende, wissenschaftliche Mitarbeitende und Promovierende, die in Projekten zu Mikroplastik, Bodenkunde, Wasserwesen und Vegetationstechnik tätig sind. Mit der Forschung zur Mikroplastik, der Entwicklung der Mikroplastikanalyse durch Elektroseparation in Verbindung mit der Differenzkalorimetrie und eines neuen Herstellverfahrens für Mikroplastikstandards und -referenzmaterialien hat die HTWD bereits ein Alleinstellungsmerkmal erreicht, was sich in Patenten und Publikationen widerspiegelt. Die Geräteauswahl ist primär auf die Weiterentwicklung der Mikroplastikforschung und ihrer Anwendungsbreite ausgerichtet, soll aber ebenso Projekte zur Untersuchung anderer anthropogener Stoffe und zum Umweltverhalten von Polymerwerkstoffen fördern. Die Mikroplastik-Verbundforschung der HTWD wurde ausgehend von fakultätsübergreifenden Lehrangeboten entwickelt und bildet den Kern des Verbundlabors, dessen Gründung die Hochschulleitung initial durch Sondermittel unterstützt hat. Mikrowellenaufschluss, Durchflusszentrifuge, TED-GC-MS, Durchflusszytometer und Thermowaage sollen nun vorhandene Lücken in der Probenvorbereitung und -aufbereitung schließen, neue Möglichkeiten für die Analytik bei hohem Probendurchsatz bieten und verbesserte Nachweisgrenzen für Mikro- und Nanoplastik ermöglichen. Der Ausbau stärkt die Umweltforschung im Bereich Materialforschung, Böden, Wasser und Vegetation, um das Verhalten anthropogener Stoffe in komplexen Umweltkompartimenten besser zu verstehen und die Auswirkungen menschlicher Eingriffe in die Umwelt sinnvoll zu gestalten. Die synergistische, fakultätsübergreifende Forschung zu Fragen der produktiven Land- und Gewässernutzung, der Energieproduktion, der Kontamination von Böden und Gewässern und der Rolle der Vegetation als anzeigendes, verbindendes und gestaltendes Element soll neue Erkenntnisse und Technologien für eine nachhaltige Entwicklung generieren. Eine moderne analytische Ausstattung ist dazu unerlässlich. Deren Beschaffung übersteigt die Möglichkeiten der Hochschule und kann nicht auf anderem Weg finanziert werden. Die HTWD kann durch die beantragte Ausstattung Alleinstellungsmerkmale weiterentwickeln und die Vorteile der fakultätsübergreifenden Kooperation demonstrieren. Offenheit zur interdisziplinären Zusammenarbeit ist ebenso gelebte Praxis wie die Berücksichtigung neuer Schwerpunkte und aktueller Trends, eine bevorzugte Förderung junger Wissenschaftler und Begleitung durch Maßnahmen für chancengerechte Forschung, um eine nachhaltige Zukunftsfähigkeit zu gewährleisten.

Modellierung anaerober Umsetzungsprozesse mit dem Anaerobic Digestion Modell No. 1 (ADM1)

Für die mathematische Beschreibung anaerober Prozesse wurde von der IWA das Anaerobic Digestion Modell No. 1 (ADM1) entwickelt. Das ADM1 berücksichtigt einen allgemein gültigen Satz von Substraten und biochemischen Prozessen und wurde zunächst für die anaerobe Schlammstabilisierung entwickelt. Für die kinetischen Parameter werden Größenordnungen vorgegeben, die jedoch hohe Schwankungen aufweisen. Kalibrierte Stoffdaten und Angaben für die Zulaufcharakterisierung und -fraktionierung unterschiedlicher Abwässer fehlen. Eine Abbildung von reaktorspezifischen Bedingungen zur Behandlung industrieller Abwässer (z.B. für UASB-Reaktoren oder EGSB-Systeme) erfordert den Aufbau von mehrstufigen angepassten Modellen, die neben dem vierstufigen Prozess auch die entsprechenden verfahrenstechnischen Stufen abbilden. Die Ziele des Vorhabens sind:1.Modellentwicklung für verfahrenstechnische Varianten der anaeroben Industrieabwasserbehandlung zur verbesserten Abbildung aller Umsetzungsprozesse (z.B. UASB-Reaktor, zweistufiger Prozess; Verlängerungsphase des Antrages: EGSB-Reaktors, Modellkalibrierung, Übertragbarkeit auf großtechnische Anlagen),2. Bestimmung der wesentlichen Modellparameter und ihren Schwankungsbreiten durch Sensitivitätsanalysen, Kalibrierung und Validierung der Modelle mit Daten aus anaeroben Batchuntersuchungen und kontinuierlich betriebenen anaeroben Laborversuchen,3. Ermittlung von abwasser- und biomassenspezifischen Stoffdaten für eine Fraktionierung der Inhaltsstoffe industrieller Abwässer und von kinetischen Parametern der Biomasse im Rahmen von Laboruntersuchungen zur Anpassung des ADM1.

Aquatische Pilz-Biodiversität: Entwicklung von Wissen und Strategien zur Prioritätensetzung und Entwicklung von Maßnahmen für den Naturschutz

Aquatische Pilze (AF) sorgen für Gesundheit, Funktion und Widerstandsfähigkeit von aquatischen Ökosystemen; doch ist ihre biologische Vielfalt weitgehend unbekannt. AF sind von allen wichtigen Erhaltungsplänen und -strategien unbeachtet und die derzeitigen Schutzgebiete (PAs), z. B. Natura-2000-Netz und Ramsar-Konvention beinhalten keine strategischen Überlegungen zur AF-Vielfalt und -Funktionalität. Dank enormer Fortschritte in der Sequenzierung und des kombinierten transdisziplinären Fachwissens der FUNACTION-Partner werden wir zum ersten Mal Wissen zur taxonomischen, phylogenetischen und funktionellen Vielfalt von AF aufbauen, um AF-fokussierte Strategien für ihre Erhaltung zu entwickeln. FUNACTION wird i) eine paneuropäische Karte der Pilzbiodiversität erstellen, um Muster und Triebkräfte der AF-Vielfalt auf europäischer Ebene zu identifizieren, die für eine datengestützte Erhaltung benötigt werden (WP1; THEME1); ii) die AF-Vielfalt über die verschiedenen räumlich-zeitlichen Skalen in PA vs. Nicht-PA auf ihre Eignung testen und bewerten (taxonomisch, phylogenetisch und funktionell), z.B. die Wirksamkeit beim Schutz der AF-Vielfalt, -Funktionen und -Dienstleistungen (WP2; THEME1,2,3); iii) Aufbau von Wissen und Strategien zur Überwachung (z. B. im Rahmen der Wasserrahmenrichtlinie 2000/60/EG) und Erhaltung von AF (Planung neuer PA im Rahmen der EU Biodiversitätsstrategie für 2030) und der damit verbundenen Ökosystemfunktionen (WP3,4; THEMA1,3) sowie Leitlinien zu deren Ausweitung auf globaler Ebene und iv) Sicherstellung einer effektiven Einbindung, Kommunikation und Informationsweitergabe an die Öffentlichkeit, Interessengruppen (nationale, europäische und globale Manager und politische Entscheidungsträger) und die wissenschaftliche Gemeinschaft (WP5). Die Identifizierung paneuropäischer Muster der AF-Diversität (WP1) in 16 Ländern wird ergänzt durch Datensätze von ca. 500 Standorten aus 26 europäischen Ländern (estnische FunAqua-Projektpartnern). Um eine breite geografische Streuung innerhalb Europas und repräsentative bioklimatische und Umweltgradienten zu gewährleisten, werden Fallstudien in allen Partnerländern (Estland, Deutschland, Italien, Portugal, Schweden und der Schweiz) (WP2) durchgeführt. Unsere Metabarcoding- und Metagenomanalysen erlauben einzigartige Einblicke in die Pilz- und Eukaryontenvielfalt und -funktion, die zusammen mit Klima, Landnutzung und anderen wichtigen Umweltvariablen in harmonisierte Leitlinien und Beispiele für eine wirksame Bewirtschaftungs- und Erhaltungsplanung in Europa eingesetzt werden. Um diese Ziele zu erreichen, fördert FUNACTION (Konsortium transnationaler, interdisziplinärer Experten (incl. IUCN)) den Austausch von Wissen, die Mobilität und Ausbildung der nächsten Generation von Wissenschaftlern und Managern und somit die europäische Kompetenz in diesem Bereich. FUNACTION baut ein effektives, langfristiges Kooperationsnetz zur Bewertung und zum Erhalt der AF-Diversität in Europa auf.

Der Einfluß der Bildung von Thioarsen-Spezies auf die Arsen-Komplexierung an natürliches organisches Material

Unter anoxischen Bedingungen wird Arsen (As) in Form von Arsenit vermeintlich vollständig über Schwefel(S)-Gruppen an natürliches organisches Material (NOM) gebunden. Laborexperimente zeigten, dass selbst unter oxischen Bedingungen die Halbwertszeit mehr als 300 Tage betrug, damit sogar größer war als die von Arsenit an Eisen(Fe)(III)-Oxyhydroxiden. Global betrachtet heißt das, dass z.B. Moore, die reich an Organik und Sulfid sind, wichtige quantitative As-Senken sind. Allerdings wurden alle mechanistischen Studien bisher so durchgeführt, dass Arsenit einem zuvor gebildeten S(-II)-NOM zugegeben wurde. In einem System, das As(III), S(-II) und NOM enthält, spielt aber auch die As(III)-S(-II)-Komplexierung in Lösung unter Bildung von Thioarseniten ((H2AsIIIS-IInO3-n)-, n=1-3) und Thioarsenaten ((HAsVS-IInO4-n)2-, n=1-4) eine Rolle. Unsere zentrale Hypothese ist, dass die Kinetik der Thioarsen-Spezies-Bildung in Lösung schneller ist als die Sorption von As(III) und S(-II) an NOM und dass daher Thioarsen-Spezies das Ausmaß und die Kinetik der As-Sorption an Organik bestimmen. Auch die kompetitive Sorption an gleichzeitig auftretenden (meta)stabilen Fe-Mineralen wird vom bekannten Verhalten von Arsenit abweichen. Aufgrund ihrer Instabilität und einem Mangel an reinen Standards, ist über das Sorptionsverhalten von Thioarseniten bislang nichts bekannt. Für Thioarsenate gibt es keine Information zum Bindungsverhalten an NOM, aber es ist bekannt, dass die Sorption an verschiedenen Fe(III)-Mineralen geringer ist als die von Arsenit. Wir postulieren, dass Thioarsenate weniger und langsamer als Arsenit an S(-II)-NOM binden, da kovalente S-Bindungen in Thioarsenaten die Affinität für S(-II)-NOM Komplexierung verringern. An Fe(III)-NOM sollte die Bindung geringer sein in Analogie zur bekannten geringeren Affinität für Fe(III)-Minerale. Wir postulieren weiter, dass die Sulfidierung eine schnellere und größere As-Mobilisierung bewirkt als die zuvor untersuchte Oxidation, da abiotische Oxidation langsam ist, die As-S-Komplexierung in Lösung aber spontan und so As-Bindungen an NOM und Fe-Minerale schwächt. Um unsere Hypothesen zu testen, werden wir Batch-Experimente durchführen mit Mono- and Trithioarsenat-Standards und einem Arsenit-Sulfid Mix (der Thioarsenite enthält) bei pH 5, 7 und 9 an zwei ausgewählten NOMs (Federseemoor Torf und Elliott Soil Huminsäure; jeweils unbehandelt, S(-II)- und Fe(III)-komplexiert). Wir werden Sorptionsaffinität und -kinetik, sowie mittels Röntgenabsorptionsspektroskopie Bindungsmechanismen bestimmen. Die Stabilität der (Thio)arsen-beladenen NOMs wird unter oxidierenden aber auch unter sulfidischen Bedingungen studiert und präferenzielle Bindung in binären Systemen (Kombinationen aus Fe-Oxyhydroxiden, Fe(III)-NOM, S(-II)-NOM und Fe-Sulfiden) untersucht. Ziel ist, As-Bindungsmechanismen in S(-II)-Fe(III)-NOM-Systemen besser zu verstehen, um vorhersagen zu können, unter welchen Bedingungen As Senken zu As Quellen werden können.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt B 03: Verhalten von Mikroplastik im System Fließgewässer - Grundwasser

Fließgewässer gelten als Haupteintragspfad von Mikroplastik (MP) in marine Ökosysteme. Allerdings ist über das Transportverhalten und den Verbleib von MP in Flüssen und Bächen nur sehr wenig bekannt. Ebenso bestehen große Wissenslücken bezüglich der Migration von MP an der Schnittstelle zwischen Oberflächenströmung und der hyporheischen Zone (HZ, Grenzzone zwischen Fließgewässern und angrenzenden Grundwasserleitern), sowie der Mobilität von MP innerhalb der HZ. In B03 wollen wir das hydrodynamische Transportverhalten von MP in fluvialen Systemen einschließlich der HZ erforschen. Darüber hinaus soll auch der Einfluss biotischer Tranportmechanismen auf das Sedimentationsverhalten von MP erforscht werden. In der ersten Phase des SFB wollen wir diesen Themenbereich zunächst für einfache Modellsysteme untersuchen.

Die Rolle von Viren beim mikrobiellen Schadstoffabbau

Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.

Bewertung der elementaren Quecksilberausgasung aus Boden-Grundwassersystemen mit passiven Luftprobenehmern: Methodenentwicklung und -implementierung

Quecksilber (Hg) ist ein redox-aktives Element in Böden und Grundwasser, das leicht von oxidierten Spezies (Hg2+) in die reduzierte Form (Hg0) übergeht. Elementares Hg (Hg0) ist leicht flüchtig und begünstigt somit die Verteilung der kondensierten Phasen (Feststoffe und Flüssigkeiten) in die Gasphase, in der es in der Umwelt sehr beständig ist. Dieser Prozess führt zu Quecksilberemissionen in die Atmosphäre, die den aktiven Hg-Pool im globalen Hg-Kreislauf erhöhen und zu gesundheitlichen Auswirkungen auf Mensch und Umwelt führen können. Diese Prozesse treten vor allem in Boden-Grundwassersystemen auf, die durch Hg kontaminiert wurden. Moore sind hierbei ein besonderes Boden-Grundwassersystem, in dem hohe und variable Grundwasserspiegel und Torfzersetzung zu einer besonderen Biogeochemie, extremen Redoxgradienten und der Entstehung von Hg0 und hochtoxischem Methyl-Hg führen können. Obwohl die Ausgasung von Hg aus Böden grundsätzlich bekannt ist , ist wenig über die Freisetzung von Hg0 aus Grundwasser, tiefen Bodenhorizonten Mooren bekannt. Zudem gibt es bisher keine Methode, mit der die Bildung und die Menge von Hg0 in der Gasphase von Aquiferen bestimmt werden kann. Das Projekt präsentiert einen neuartigen Forschungsansatz, um diesen kritischen Prozess im biogeochemischen Hg-Zyklus zu untersuchen und aufzuklären. Die Methode zur Bewertung der Hg0-Ausgasung aus Grundwasser, tiefen Bodenhorizonten und Mooren basiert auf einem neuartigen, passiven (nicht elektrischen) Probenahmeansatz unter Verwendung von passiven durchströmten Hg-Luftprobenehmern (MerPAS), die in Grundwasserbrunnen eingesetzt werden oder in Boden- / Mooren vergraben werden. Die Methodenentwicklung erfordert eine vollständige Kalibrierung speziell für diese neuartige Anwendungen unter Verwendung von automatisierten/gepumpten Hg(0)-Messungen am selben Ort und eine vollständige Beschreibung der Methodenunsicherheit, die sowohl durch Labor- als auch durch Feldstudien bewertet wird. Die Messungen sind im Bereich von drei Hg-kontaminierten Standorte in Süddeutschland und der Schweiz sowie der Moore in Nord-deutschland und den Julischen Alpen (Slowenien) durchzuführen. Die im Untergrund installierten Passivsampler werden durch überirdische MerPAS-Sampler mit hoher räumlicher Auflösung ergänzt, bei denen der oberirdische horizontale und vertikale Gradient der Hg(0)-Verteilung erfasst wird, um die Hg0-Flüsse zwischen dem Untergrund und der Atmosphäre zu quantifizieren. Unsere Untersuchungen haben das Potenzial, Zonen mit verstärkter Hg(0)-Bildung und aktiver Hg-Redoxchemie in Boden-Grundwassersystemen zu identifizieren. Das Verständnis der hierbei ablaufenden Prozesse und die Quantifizierung der Hg-Flüsse in Boden-Grundwassersystemen ist grundlegend um deren Bedeutung auf verschiedenen Skalen im biogeochemischen Kreislauf zu verstehen.

Ermittlung der großräumigen Sensitivität von Grundwasserressourcen gegenüber dem Klimawandel

Die Klimakrise verändert zunehmend die räumliche und zeitliche Verfügbarkeit von Grundwasser, der wichtigsten globalen Süßwasserressource. Das quantitative Verständnis der Interaktion von Grundwasser und Klima, vor allem auf nationaler und kontinentaler Skala, ist wichtig für ein optimal angepasstes Grundwassermanagement. Bisher ist das Wissen über die großskalige Sensitivität der Grundwasserressourcen auf den Klimawandel jedoch sehr limitiert. Das Ziel des hier vorgestellten Projektes ist die Erforschung der Auswirkungen des Klimawandels und der damit einhergehenden Umweltveränderungen auf den quantitativen Zustand von Grundwasserressourcen auf national-kontinentaler Skala. Etablierte prozessbasierte Modelle (PBMs) zur hydro(geo)logischen Modellierung auf großer Skala (meist „Global Hydrological Models“ - GHMs) sind starke Vereinfachungen der Realität und unterliegen daher deutlichen Limitationen und Unsicherheiten. Im Gegensatz zu anderen PBMs, weisen GHMs daher begrenzte physikalische Konsistenz und Interpretierbarkeit auf und ihre Anwendung kann zu irreführenden Schlussfolgerungen über die Verfügbarkeit von Grundwasser vor dem Hintergrund des Klimawandels führen. Vor allem die Übertragbarkeit auf datenarme Regionen ist nur eingeschränkt möglich. In den letzten Jahren haben sich Deep Learning (DL) Modelle als präziser und leicht übertragbarer alternativer Ansatz in der Modellierung von Wasserressourcen etabliert. Für die Modellierung von Oberflächengewässern wurde zudem gezeigt, dass DL auch spezialisierte PBMs übertreffen kann. Das vorgeschlagene Projekt möchte sich die gewonnenen Erkenntnisse zunutze machen und ein DL-Modell zur Untersuchung der Sensitivität von Grundwasser auf den Klimawandel auf kontinentaler Skala aufbauen. Hierfür wird ein „big data“ Ansatz gewählt, der Daten von >2200 Einzugsgebieten in Nordamerika nutzt (Erweiterung denkbar). Ein solches Modell kann lernen, Wissen über verschiedene Regionen zu transferieren, gewinnt somit stark an Generalisierungsfähigkeit (z.B. auf datenarme Regionen) und schlussendlich an Vertrauenswürdigkeit. Weiterhin soll das Problem von fehlenden, interpretierbaren und physikalisch konsistenten Modellen im nationalen Maßstab angegangen werden, indem physikalisches Wissen und Prozesse in die DL-Modelle eingebaut werden. Durch diese Ansätze soll ein plausibles, interpretierbares und vor allem vertrauenswürdiges Modell entstehen, welches sich zur Untersuchung von Klimawandelszenarien eignet. Die genannten Aspekte sind hierbei besonders kritisch, da für Zeiträume in der Zukunft keine Validierung möglich ist. Das entwickelte Modell dient anschließend der Beantwortung der übergeordneten Fragestellung, und die Auswirkungen des Klimawandels auf die Grundwasserressourcen werden anhand der Daten von Klimamodellen auf Basis von RCP bzw. SSP Szenarien untersucht. Weiterhin werden spezialisierte Untersuchungen (Szenarien) zum Einfluss einzelner Einflussfaktoren (z.B. Landnutzung) durchgeführt.

1 2 3 4 582 83 84