API src

Found 832 results.

Reaktivität und Transformation funktioneller Gruppen von Spurenstoffen und organischer Hintergrundmatrix bei der Ozonierung von Abwasser

Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.

Nutzung des Fortschritts in der stabilen Wasserisotopenforschung zur Quantifizierung von art- und interspezifischen ökohydrologischen Rückkopplungsprozessen und Wasserdurchgangszeiten verschiedener Baumbestände

Signifikante Veränderungen hydrologischer Extremereignisse sind zentraler Bestandteil zukünftiger Klimawandelprognosen. Das Verständnis komplexer Wechselwirkungen zwischen Niederschlägen, Wasserspeicherung in Boden und Grundwasser sowie Wasserflüssen im Einzugsgebiet ist eine große Herausforderung in der Ökohydrologie. Die Vegetation spielt dabei eine zentrale Rolle in dem sie 50-70% der terrestrischen Evapotranspiration kontrolliert. Verschiedene Pflanzenarten unterscheiden sich signifikant in ihren Wassernutzungsstrategien. Die Integration solcher Informationen zu artspezifischen Einflüssen auf die Bodeninfiltration und Wurzelwasseraufnahmedynamiken liefern erste Hinweise darauf, wie Bäume Wasser in Richtung ihrer aktiven Wurzelzone leiten können. Dies wird unter zukünftigen klimatischen Bedingungen und bei der Entwicklung von Anpassungsstrategien für eine nachhaltige Waldökosystembewirtschaftung bedeutend. Das Konzept des Wasseralters mittels stabiler Wasserisotopen wird verwendet, um den Beitrag unterschiedlicher Wasserfließwege zum Abfluss und deren Änderungen zu bewerten. Das Wasseralter bietet dabei eine weitere Perspektive, um hydrologische Prozesse besser zu verstehen und Modelle zu optimieren. Jüngste Studien zur Bestimmung von Verweilzeit zeigen, dass besonders die Schnittstellen zwischen den Kompartimenten (z.B. Boden-Atmosphäre oder Boden-Wurzeln) besser berücksichtigt werden muss, um den ökohydrologischen Kreislauf ganzheitlicher zu verstehen. Artspezifische Unterschiede und die komplementäre Ressourcennutzung von Baum-Mischbeständen können dabei Wasserverweilzeiten und -alter im ökohydrologischen Kreislauf verändern. Unsere zentrale Hypothese lautet, dass Artidentität und Wasserkonkurrenz zwischen Baumarten ein Haupttreiber für ökohydrologische Rückkopplungsprozesse zwischen Boden und Bäumen sind. Wir werden unsere zentrale Hypothese in Rein- und Mischbeständen von Tannen und Buchen in einem kombinierten experimentellen (Arbeitspakete (WPs) 1-3) und Modellierungsansatz (WP 4) untersuchen, in dem räumlich hochaufgelöste Messungen von Isotopen sowie hydrometrische und ökophysiologische Messungen mit kontinuierlicher Langzeitüberwachung kombiniert werden, um alle Kompartimente des Wasserkreislaufs des Ökosystems zu quantifizieren. Isotopensignaturen von Wasserflüssen auf natürlichem Niveau werden zunächst über eine neuartige in-situ-Monitoringplattform (SWIP) für ein Jahr (WP 1) beobachtet, um das SWIP-System standortspezifisch zu validieren. In WP 2 werden wir ein Isotopenmarkierungsexperiment durchführen, um die standortspezifische zeitliche Heterogenität der Reaktionszeiten der Ökosystemkompartimente zu quantifizieren, während in WP 3 die Verweilzeiten und das Wasseralter der verschiedenen Kompartimente untersucht werden. WP 4 dient der Modellierung ökohydrologischer Prozesse mittels der erhobenen Daten. Der Fokus wird hier auf der Verbesserung der SWIS-Modellstruktur und der Anpassung an verschiedene Baumstände liegen.

Wasser- und Stoffflüsse an Rändern von Auengrundwasserleitern und ihre Kontrolle durch Untergrundstrukturen

In Flussauen von Flussmittelläufen in gemäßigten Klimazonen ist der Grundwasserstrom typischerweise vornehmlich talabwärts gerichtet. Die hydrologische Funktion der Auengrundwasserleiter hängt allerdings vom Vorhandensein hydrogeologisch relevanter Strukturen ab, und das Grundwassersystem wird stark durch Wasser- und Stoffflüsse über seine Ränder beeinflusst. Das beantragte Projekt zielt daher darauf ab, die hydrogeologischen Steuergrößen für diese Flüsse zu charakterisieren und die relative Bedeutung der Ränder für die Wasserbilanz und den Umsatz gelöster Stoffe in Auengrundwasserleitern zu ermitteln. Als Untersuchungsgebiet dient die Ammeraue bei Tübingen (Südwestdeutschland), die typisch für Auengebiete entlang von Flussmitteläufen in gemäßigten Klimazonen ist und bereits von den Antragstellern im Rahmen des SFB1253 CAMPOS untersucht wurde. Für die Modellierung und Vorhersage der hydrologischen Funktion des Auengrundwasserleiters und seiner Ränder ist es wichtig, die räumliche Lage, Geometrie und die Eigenschaften hydraulisch leitfähiger Strukturen an den Auenrändern zu erkunden. Unsere Untersuchungen zielen daher darauf ab, geologische Strukturelemente an den Auenrändern zu charakterisieren, die die Gesamtflüsse des Grundwassers und der darin gelösten Stoffe durch den Auengrundwasserleiter bestimmen. Hierfür entwickeln wir arbeits- und kosteneffiziente Methoden, mit denen sich die räumliche Ausdehnung und Geometrie der Ränder (mittels geophysikalischer Methoden) abbilden und die hydraulische Konnektivität zu den Auengrundwasserleitern (mittels hydraulischer Methoden) charakterisieren lassen. Mit besonderem Fokus auf die identifizierten hydrogeologisch relevanten Strukturelemente an den Auenrändern wollen wir die Wasserflüsse und die Stoffströme bestimmen, die die Ränder des Auengrundwasserleiters passieren, um ihre relativen Beiträge innerhalb des Auengrundwasserleiters zu quantifizieren. Wir untersuchen hierfür insbesondere die zeitliche Grundwasserdynamik, um zu bestimmen, unter welchen hydrologischen Bedingungen ein erhöhter Wasseraustausch stattfindet. Die experimentellen Projektergebnisse fließen in ein konsistentes numerisches Grundwassermodell ein, um hydrogeologische Messungen vorherzusagen und die Ergebnisse der dynamischen Austauschflüsse zu interpretieren. Schließlich werden wir die geologischen Informationen, die in den verschiedenen Untersuchungsschritten und in vorherigen Arbeiten gesammelt wurden, umfassend geologisch interpretieren. Dies ermöglichst es, die maßgeblichen geologischen Prozesse zu identifizieren, die das Vorkommen und die Wirkung durchlässiger Strukturen an den Rändern von Auengrundwasserleitern bestimmen sowie die Austauschprozesse über die Ränder kontrollieren. Dieser Ansatz erlaubt es, unsere Ergebnisse auf andere Standorte zu übertragen und zu verallgemeinern.

Aufklärung der molekularen Mechanismen der Biotransformation organischer Spurenverunreinigungen aus dem Abwasser und ihr Einfluss auf natürliche Oberflächengewässer

Gemische organischer Spurenstoffe, die durch menschliche Aktivität entstehen und in die Umwelt gelangen, sind ein großes ökologisches Risiko. Die biologische Abwasserbehandlung leistet einen wichtigen Beitrag, den Eintrag solcher Spurenverunreinigungen in die Umwelt zu verringern, doch variiert die Reinigungsleistung stark zwischen einzelnen Schadstoffen und Abwasserbehandlungsanlagen. Obwohl mikrobieller Abbau das Potenzial hat, Spurenstoffe aus der Umwelt zu entfernen, sind die schadstoffabbauenden mikrobiellen Stämme und Enzyme in komplexen biologischen Systemen wie Belebtschlamm meist unbekannt. Zudem gibt es klare Hinweise auf eine Auswirkung der behandelten Abwässer auf die Ökologie der stromabwärts gelegenen Biofilm-Gemeinschaften, die aber noch wenig untersucht sind. Ziel des geplanten Projektes ist es, die Biotransformation von Schadstoffen in der biologischen Abwasserbehandlung und in deren Vorflutern auf Ebene der mikrobiellen Gemeinschaften, Stämme und Enzyme besser zu verstehen. Wir gehen davon aus, dass die Zusammensetzung bakterieller Gemeinschaften und die chemischen Strukturen der Schadstoffe die beiden Hauptursachen für die beobachteten Unterschiede des Schadstoffabbaus zwischen bakteriellen Gemeinschaften sind. Als Folge davon erwarten wir, dass Bioindikatoren identifiziert werden können, welche die Variabilität der Biotransformation zwischen mikrobiellen Gemeinschaften auf molekularer Ebene erklären können. Um diese Hypothese zu testen, werden wir zunächst einen Feldversuch durchführen, um die Variabilität zwischen Kläranlagen und ihrer Umgebung in Bezug auf die mikrobielle Zusammensetzung und die Biotransformationskapazität systematisch zu quantifizieren. Danach werden wir sequenz- und aktivitätsgelenkte Laborexperimente durchführen, um Bakterienstämme und Enzyme zu identifizieren, die für die Biotransformation von Spurenstoffen im Belebtschlamm verantwortlich sind. Letztlich werden wir die durch die Laborexperimente gewonnenen Erkenntnisse dazu nutzen um Bioindikatoren zu identifizieren, welche die Biotransformation in natürlichen und technischen mikrobiellen Gemeinschaften erklären können. Die in diesem Projekt gewonnenen molekularen Erkenntnisse können dazu beitragen, das Entfernen von Spurenstoffen in Kläranlagen zu optimieren und so die Auswirkungen auf die nachgelagerten Umweltkompartimente zu minimieren, die Entwicklung besser abbaubarer Chemikalien zu unterstützen und die Methoden für die chemischen Risikobewertung zu verbessern. Darüber hinaus wird das Projekt eine Reihe von Ressourcen hervorbringen, darunter die erste bakterielle Stammsammlung aus Belebtschlamm, umfangreiche Daten zu Biotransformationsraten, sowie validierte Enzyme zur Biotransformation. Diese Ergebnisse und Ressourcen werden für weitere Forschungsprojekte zur Verfügung stehen, und insgesamt zu einem verbesserten Verständnis der Biotransformationsprozesse während der Abwasserreinigung und in der natürlichen Umwelt beitragen.

Thermohydraulische Prozesse während der Wasserinfiltration in gefrorenen Boden mit Auswirkungen auf Geogefahren unter dem Einfluss des Klimawandels

Der Klimawandel betrifft die Hydrologie in alpinen Regionen in besonderem Maße durch Temperaturanstieg, mehr und intensiveren Regenereignissen, auch während der Wintermonate. Diese Veränderungen führen zu vermehrten Naturgefahren wie übermäßigem Oberflächenabfluss und Murenabgänge. Einer der Gründe für solche Ereignisse ist eine reduzierte Infiltrationskapazität des (teil-)gefrorenen Bodens. Wenn Regen- oder Schmelzwasser nicht ausreichend infiltrieren kann, induziert der Oberflächenabfluss eine Bodenerosion, was zu Murenabgängen führen kann. Wenn Wasser entlang präferentieller Fließwege in tiefere Schichten infiltriert und zwischen gefrorenen Schichten der Porendruck steigt, so kann dies zu mechanischem Versagen des Hanges führen. Durch signifikanten Oberflächenabfluss findet kaum Grundwasserneubildung statt und die puffernde Wirkung des Grundwasserkörpers entfällt. Dies ist besonders für Regionen, in denen Schnee- und Gebirgswasser wesentlich zum Grundwasserhaushalt beitragen von großer Bedeutung. In diesem Projekt wird die thermo-hydraulische Wechselwirkung zwischen infiltrierendem Wasser und Boden bei Temperaturen unter dem Gefrierpunkt untersucht. Dazu werden hochentwickelte Modellansätze, numerische Simulationswerkzeuge, sowie Versuche im Labor wie im Gelände eingesetzt. Präferentielle Fließwege, z.B. Makroporen durch Wurzelwachstum oder Wurmlöcher, im Boden sind dabei wesentlich, denn sie ermöglichen eine schnellere Infiltration des Wassers in den Boden und weisen zudem eine anderes Einfrier- und Auftauverhalten auf als kleine Poren der Bodenmatrix. Das Verständnis des Einflusses von Makroporen auf das Gefrieren und Schmelzen von Wasser während der Infiltration ist daher wesentlich für jede weitere Analyse. Wasserinfiltration wird durch die Temperatur der beteiligten Phasen bestimmt. Das infiltrierende Wasser ist wärmer als der Gefrierpunkt, während der Boden gefroren ist. Die Temperaturentwicklung der einzelnen Phasen hängt vom Wärmeübertrag zwischen den Phasen ab. Da Wärmeübertrag und hydraulischer Fluss stark gekoppelt und zudem rund um den Gefrierpunkt sehr dynamisch sind, bedarf es besonderer Sorgfalt bei der theoretischen Beschreibung des thermohydraulischen Verhaltens. Mit einem tiefgreifenden Verständnis vom Einfluss präferenzieller Fließwege und dem Wärmeübertrag zwischen den beteiligten Phasen können spezifische geologische und meteorologische Gegebenheiten identifiziert werden, welche entweder extremen Oberflächenabfluss oder Hangversagen verursachen. Dieses Wissen kann in der Vorsorge als auch im Grundwassermanagement alpiner Gebiete Anwendung finden.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Submarine Grundwasser-Systeme - Analyse ihrer Entwicklung anhand geochemischer Modelle

Submarine Grundwasservorkommen sind ein globales Phänomen in küstennahen Sedimenten. Im Verlaufe der letzten ca. 20 Jahre wurden weltweit vermehrt Anstrengungen unternommen, submarine Grundwasservorkommen räumlich zu erfassen, um, unter anderem, eine bessere Abschätzung über die damit verbundenen Mengen an submarin gespeichertem Süßwasser zu erhalten sowie deren Bedeutung für Schelf-Ökosysteme bzw. globale Elementkreisläufe zu erfassen. Trotz der bisherigen Anstrengungen fehlt es derzeit immer noch an einem grundlegenden Verständnis der Entstehungsprozesse submariner Grundwasservorkommen sowie deren zeitlicher und räumlicher Entwicklung. Eine große Unbekannte ist in vielen Fällen, ob vorhandene Vorkommen rezent noch aktiv von Land aus gespeist werden oder von den Landsystemen abgeschnitten sind und somit Relikte früherer Umweltbedingungen darstellen. Die hier vorgeschlagenen Untersuchungen setzen an dieser übergeordneten Fragestellung an. Ziel ist es, anhand von IODP Bohrdaten der Legs 317 (Neuseeland) und 313 (New Jersey, USA), numerische 1D und 2D Transport-Reaktions-Modelle zu entwickeln, die insbesondere auf die Abbildung geochemischer Prozesse und die damit verbundene Verteilung gelöster Stoffe im Porenwasser abzielen. Unser derzeitiges Verständnis zur Entstehung und Entwicklung submariner Grundwasservorkommen in den genannten Gebieten beruht im Wesentlichen auf den Ergebnissen großräumiger, hydrogeologischer Modelle. Deren Ergebnisse können allerdings gemessene Element-Verteilungsmuster im Porenwasser aufgrund der unzureichenden, räumlichen Auflösung nicht wiedergeben und stehen darüber hinaus zum Teil in direktem Widerspruch zu einigen geochemischen Indikatoren. In diesem Antrag schlagen wir daher eine genaue Analyse dieser Widersprüche vor. Auf Grundlage der vorhandenen Porenwasserdaten sollen die geplanten 1D/2D Modellierungen insbesondere dazu dienen, den zeitlichen Verlauf der Grundwasserdynamik im Bereich der Bohrungen zu erfassen und abzubilden. Dabei ist das übergeordnete Ziel, eine bessere Bewertung submariner Grundwasservorkommen hinsichtlich ihrer nachhaltigen Nutzung sowie ihrer Bedeutung innerhalb globaler Elementkreisläufe zu ermöglichen.

Forschergruppe (FOR) 5288: Schnell und unsichtbar: Zwischenabfluss durch einen interdisziplinären Multi-Standort-Ansatz bezwingen, Teilprojekt: SSF ANGLE - Dynamik und Fließwege des Zwischenabflusses im Vergleich von verschiedenen Hängen

Die hydrologische Dynamik von Hängen, insbesondere des Zwischenabflusses (SSF), ist komplex und variiert in Raum und Zeit. Verfügbare Studien beschränken sich oft auf einzelne Hänge oder Niederschlagsereignisse, so dass die Übertragung dieser Erkenntnisse auf andere Einzugsgebiete mit großen Unsicherheiten verbunden ist. Eine Regionalisierung erfordert daher eine Quantifizierung der hydrologischen Dynamik von Hängen und der Faktoren, die die räumlichen und zeitlichen Muster des unterirdischen Zwischenabflusses beeinflussen. Eng mit der hydrologischen SSF-Dynamik verbunden ist der Export von organischem Kohlenstoff aus den Böden in den Vorfluter. Woher der Kohlenstoff aber genau kommt, ist noch weitgehend unklar, da die genauen Fließwege des SSF nicht bekannt sind.Wir schlagen daher einen kombinierten hydro-biogeochemischen Ansatz vor, der die Hanggrundwasserdynamik mit stabilen Wasserisotope und die wasserlösliche organische Substanz (WSOM; Konzentration, Absorption und Fluoreszenz) in 480 Standorten an 100 Hängen in vier Einzugsgebieten im Mittel- und Hochgebirge (Sauerland, Erzgebirge, Schwarzwald, Alpen) kombiniert. Ziel ist, empirische Beziehungen zwischen verschiedenen Hangformen (z.B. konvergente, divergente und planare Hangformen, Fließweglängen und Talformen), Gesteins- und Bodeneigenschaften und der Grundwasserdynamik abzuleiten, um die räumliche Variabilität und Stabilität von unterirdischen hydrologischen Prozessmustern (z.B. Fließrichtungen, Verweilzeiten, hydrochemische und biochemische Zusammensetzung) zu quantifizieren.Zur Identifizierung repräsentativer Hänge, werden vor der Instrumentierung eine GIS-basierte Landschaftsanalyse und Modellierung mit dem Abflussmodell RoGeR durchgeführt, die topografische, Boden- und Landnutzungsinformationen sowie die räumliche Verteilung von Gebieten, in denen eine Dominanz von SSF erwartet wird, einbeziehen. Die Grundwasserdynamik wird durch Messungen des durch SSF initiierten Grundwasserspiegels an insgesamt 480 Grundwasserrohren an den ausgewählten Hängen erfasst. An allen 480 Standorten werden zweimal (trockene und nasse Bedingungen) Bodenproben in 12 bzw. 6 Tiefen zur Bestimmung der stabile Isotope und WSOM entnommen, um die vertikalen und lateralen unterirdischen Fließwege sowie die räumliche Diskretisierung der Herkunftsräume für den SSF zu beurteilen. Die Analyse der Bodenproben erfolgt im Labor durch TOC-Analyzer, Fluoreszenz Spektrometrie und Isotopen-Analyzer. Der Einsatz von multivariaten statistischen Techniken und maschinellen Lernwerkzeugen wird helfen, zeitliche und räumliche Muster von unterirdischen hydrologischen Prozessen zu identifizieren. Mit dem Modell RoGeR werden zur Vorhersage von SSF-Flüssen, -Richtungen und -Dynamik die Konnektivität zwischen Hang und Bach untersucht, einschließlich der Ausdehnung der beitragenden Fläche. Diese Kenntnisse können nachfolgend zur Vorhersage des Transports von organischem Kohlenstoff vom Hang zum Bach verwendet werden.

Optimierte Eisen-Biokohle-Komposite zum Abbau von halogenierten Verbindungen in Umweltmedien: Synthese-Strategien und Reaktionsmechanismen

Die rasante Urbanisierung und Industrialisierung in den vergangenen Jahrzehnten hat zu einer Vielzahl von Umweltkontaminationen mit halogenierten organischen Verbindungen (HOCs) sowohl in China als auch Europa geführt. Ziel des vorgeschlagenen Projektes ist es, neue Erkenntnisse und ein vertieftes Prozessverständnis für die Synthese von biobasierten nFe(0)/Pd/C-Kompositen und deren Reaktionen mit HOCs in der Grundwasserreinigung zu gewinnen. Dies beinhaltet die Identifizierung von Synthese-optionen für Partikel mit maßgeschneiderten und verbesserten Eigenschaften mithilfe der Hydrothermalen Karbonisierung (HTC). Ein tiefgreifendes mechanistisches Verständnis der beteiligten Prozesse, d.h. Sorption, Reaktion und Transport reaktiver Spezies so-wie Katalyse sowie deren Synergien dient einer zielgerichteten Optimierung der Partikel und der Erkundung ihrer Anwendungsgebiete. Die nFe(0)/Pd/C-Komposite sollen speziell für die in-situ Grundwasserreinigung geeignet sein und verbesserte Eigenschaften insbesondere für solche Anwendungsfälle besitzen, bei denen bekannte Konzepte der in-situ-Sanierung mit Nanopartikeln (Nanoremediation) nicht greifen. Die synergistische Kombination verschiedener Wirkprinzipien erlaubt Multikatalyse-Prozesse sowie die sequentielle Behandlung von verschiedenen Kontaminanten. Zunächst werden verschiedene Optionen für die Einbettung von Metallen in oder auf die Kohlepartikel untersucht, die erhaltenen Produkte detailliert durch physikalisch-chemische Methoden charakterisiert und auf ihre Reaktivität getestet. Danach werden Reaktionen in Batch-Ansätzen für die Aufklärung der zugrundeliegenden Mechanismen, wie das Zusammenspiel von Pd, Kohleoberfläche und Fe-Spezies, der beteiligten Reaktionswege und reaktiven Spezies, durchgeführt. Weiterhin werden Optionen für Multikatalyse und sequentielle Reduktions-/Oxidationsprozesse untersucht. Abschließend werden die entwickelten Materialien und Prozesse im Labor für die Behandlung von Wasser von kontaminierten Standorten in Deutschland und China erprobt. Dieses kooperative Forschungsvorhaben von chinesischen und deutschen Partnern wird zu einem signifikanten Fortschritt in der Sanierungsforschung für industriell kontaminierte Standorte, insbesondere auch in China, führen.

Beeinflusst der Klimawandel die Mobilität von persistenten und mobilen organischen Mikroschadstoffen im Wasserkreislauf?

Einige persistente und mobile organische Mikroschadstoffe (OMP) wurden kürzlich in aquatischen Umgebungen im Bereich von ng/L bis µg/L gefunden. Dies ist wahrscheinlich auf ihre bemerkenswert hohe Mobilität zurückzuführen, die zu einer starken Neigung zur Dispersion in Wasserressourcen führt und somit Herausforderungen bei der Sanierung darstellt. Die gesteigerten Nachweisraten dieser OMP resultieren aus den neuesten Fortschritten in quantitativen analytischen Methoden. Bewirtschaftete Grundwasseranreicherungssysteme (MAR), einschließlich Uferfiltration (BF) und künstliche Grundwasseranreicherung, werden seit über 150 Jahren erfolgreich in Europa sowie in anderen Teilen der Welt zur Trinkwasserversorgung eingesetzt. Zahlreiche aktuelle Studien haben die Schicksale (Persistenz und Biotransformation) verschiedener OMP in Laborversuchen zur Simulation von BF untersucht. Jedoch bleibt das Schicksal vieler nachgewiesener OMP in Oberflächengewässern und MAR-Systemen unbekannt, insbesondere unter realistischen und variablen klimatischen Bedingungen wie Temperaturschwankungen, UV-Strahlung und Niederschlag. Weitere Forschung ist erforderlich, um die Wirksamkeit von MAR bei der Entfernung persistenter und mobiler OMP sowie die Anpassungsfähigkeit von MAR-Systemen an den Klimawandel zu untersuchen. Dieses Projekt zielt darauf ab, die Auswirkungen des Klimawandels (einschließlich Temperaturschwankungen, Fluktuationen im Wasserfluss und Niederschlag/Abfluss) auf das Schicksal neu auftretender Schadstoffe sowohl in Oberflächengewässern als auch in BF-Systemen zu untersuchen. Die Studie wird den Einfluss von partikulärer organischer Materie, verschiedenen Wasserqualitätsparametern (wie Trübung, gelöste organische Substanz, Eisen, Mangan und Nitrat), hydraulischer Verweilzeit und Redox-Bedingungen auf die Entfernung von OMP untersuchen. Darüber hinaus wird auch die Entfernung von OMP durch Pflanzen untersucht werden. Chargen, Laborversuche, Versuche unter realistischen Bedingungen und Mesokosmenexperimente werden eingesetzt, um die Schicksale von OMP in BF zu bewerten. Darüber hinaus wird die Mobilität von OMP in Oberflächengewässern durch Mesokosmen-Teichexperimente bewertet. Die aus diesen Experimenten gesammelten Daten werden systematisch genutzt, um ein Vorhersagemodell mithilfe eines maschinellen Lernansatzes zu entwickeln und Einblicke in die Schicksale von OMP zu bieten.

Lakes as components of the Tibetan Plateau climate system (LaTiCS): Internal mixing processes and lake-atmosphere interaction

Lakes of the Tibetan Plateau are the major components of the regional climate system. However, mechanisms of heat transport within the lakes and the lake-atmosphere interaction in the Tibetan Plateau remain largely unknown and limit the quantitative understanding of the contribution made by the Tibetan Plateau lake system into regional and global climate variability. The proposed project aims at (i) revealing specific features of the thermal and mixing regime of lakes on Tibetan Plateau at time scales from microturbulent to seasonal ones, and (ii) study the characteristics of energy and water cycle at the interface between atmosphere and lakes. By this, the project will provide unique information about the feedbacks and mechanisms between the thermal regime of lakes and climatic and hydrological factors in the Tibetan Plateau. The specific goals of the project are the following: (i) to understand the characteristics of the heat and mass exchange between lakes and the atmosphere, to qualify the influence factors; (ii) to estimate the thermal characteristics of lakes, their seasonal variability with respect to the heat and mass exchange at the lake-atmosphere interface; (iii) to improve and test the lake parameterization scheme applicable to conditions of the Tibetan Plateau area, and apply it into a regional atmospheric model; (iv) to investigate the feedbacks between Tibetan Plateau lakes and the atmosphere by means of coupled modeling. The outcomes of the project will provide a basis for further projections on the local water resources and regional climate conditions. To achieve the proposed goals the project will combine numerical models with field studies on the largest freshwater lake in the Yellow River source region of the Tibetan Plateau (Ngoring Lake) and the nearby salt lake (Hajiang Salt Pond). The project team joins together the leading group on lake physics from Germany with the meteorological research group from China intensively working on lakes as components of climatic system of the Tibetan Plateau, ensuring by this fundamental and interdisciplinary character of the proposed study.

1 2 3 4 582 83 84