API src

Found 838 results.

Süßwasserperlmuscheln als Archive für stabile Isotopen in Fließgewässern

Isotopendaten von Fließgewässern sind von essentieller Bedeutung, um unser Verständnis und Modelle für hydrologische, ökologische, biogeochemische und atmosphärische Prozesse zu verbessern. Jedoch läßt sich das volle Potential wegen viel zu kurzer und unvollständiger Zeitreihen gar nicht ausschöpfen. Hier schlagen wir einen innovativen Beitrag vor, um zur Lösung des Problems, nämlich limitierter Gewässerisotopen-Archive, beizutragen: die Nutzung von Süßwassermuscheln als langzeitliche delta18O-Archive von Fließgewässern. Im Rahmen einer Pilotstudie haben wir die Sauerstoffisotopendaten von Muschelschalen (kompiliert aus 10 Studien) analysiert, die von 18 Lokalitäten aus insg. 16 Flüssen unterschiedlicher geographischer Breiten weltweit stammen. Wir haben signifikante Zusammenhänge zwischen delta18O-Werten des Niederschlags, des Fließgewässers und der Muschelschalen ermittelt. Sowohl die Wasser- als auch die Schalendaten weisen relativ zum Niederschlag stark gedämpfte saisonale Amplituden auf. Aufbauend auf dieser Studie wollen wir nun multidekadische Rekonstruktionen von delta18O-Werten in Fließgewässern vornehmen. Zunächst wollen wir prüfen, ob sich die Wassertemperatur - als wichtige Voraussetzung zur präzisen Rekonstruktion des delta18O-Wertes des Wassers aus delta18O-Werten der Schalen - aus der (a) Zuwachsrate, (b) mikrostruktureller Merkmale und/oder (c) elementchemischer Daten der Schalen rekonstruieren lassen. Dann wollen wir testen inwiefern sich hochauflösende in-situ Messungen der delta18O-Werte der Schalen via SIMS komplementär zur traditionellen naßchemischen Methode via CF-IRMS (Stichwort: Micromilling oder Microdrilling) eignen, vor allem mit welcher Genauigkeit. Insbesondere könnte SIMS, dank wesentlich kleinerer, flacherer Probenpunkte, für langsam wachsende Schalenabschnitte in späten Lebensstadien der Tiere von großem Nutzen sein. Außerdem lassen sich die Meßpunkte wesentlich präziser zeitlich alignieren. Schließlich wollen wir die rekonstruierten delta18O(Wasser)-Zeitreihen von drei Einzugsgebieten in Luxemburg, Schweden und Deutschland mit multidekadischen delta18O-Niederschlags-Zeitreihen vergleichen, um über das derzeitige Verständnis zur Kontrolle der geologischen Begebenheiten auf hydrologische Funktionen hinauszugehen. Wir testen die Hypothese, daß Änderungen im Abfluss-Regime eines Einzugsgebiets (ausgelöst durch den Klimawandel) mechanistisch zu einer Modifikation des Wasseranteils führen, der über schnelle Fließwege zum Strom fließt - mit der zusätzlichen Annahme, daß das Ausmaß dieser Modifikation durch das Gestein moduliert wird. Um unsere Hypothese zu prüfen, bauen wir auf einer Metrik auf, nach der der Anteil jungen Wassers (Fyw) proportional zur Abflußmenge steigt und dadurch einen Anstieg des proportionalen Beitrags schneller Durchläufe bei hohen Abflußmengen aufzeigt. Dieser Ansatz ist besonders geeignet für die Bestimmung von Transitzeiten des Wassers in stationären und heterogenen Einzugsgebieten.

Molekulare und ökophysiologische Diversität von Phytoplankton-Pilz Systemen

Pilzparasiten auf Phytoplankton sind ubiquitär und stellen eine integrale Komponente aquatischer Ökosysteme dar. Trotz zunehmender Hinweise, dass diese parasitischen Pilze eine wichtige Rolle für verschiedenste Ökosystemfunktionen spielen - via top-down Kontrolle von Phytoplanktonblüten und alternativen Kohlenstoff- und Nährstoffflüssen - sind sie noch immer stark vernachlässigt und wenig erforscht. Insbesondere methodische Gründe sind dafür verantwortlich, so sind sie morphologisch schwierig zu identifizieren und werden daher häufig übersehen. Neuerdings zeigen Untersuchungen von Umwelt-DNA eine unerwartet hohe Diversität von meist noch nicht beschriebenen Pilzen in aquatischen Ökosystemen. Ein bedeutender Teil dieser noch unbekannten Sequenzen gehört zu den parasitischen Pilzen auf Phytoplankton. Bis heute bleiben diese jedoch noch weitgehend unsichtbar für mikrobielle Ökologen, da sie bisher nur einen kleinen Anteil der beschriebenen Arten von parasitischen Pilzen auf Phytoplankton in den Sequenzdatenbanken ausmachen. Daher, ist die Hauptaufgabe dieses Projektes, diese Lücke zwischen morphologischen und molekularen Studien mit klassischen Kultivierungsverfahren und kultivierungsunabhängigen modernen Ansätzen zu überbrücken. Dies erlaubt der Umweltgenomik, einen direkten Zugang zu taxonomischem Wissen, das während mehr als einem Jahrhundert generiert wurde. Ferner wird die Verbindung von Diversitäts- und Funktionsanalyse aquatischer Pilze ermöglicht. Die phylogenetische Integration dieser bisher stark vernachlässigten Gruppe parasitischer Pilze auf Phytoplankton wird einen wichtigen Beitrag darstellen, um die evolutionären Schlüsselereignisse der basalen Pilze an der Wurzel des Pilzstammbaumes zu verstehen. Die zweite Aufgabe soll sein, unser Wissen zu den ökophysiologischen Eigenschaften der Phytoplankton-Pilz-Interaktionen zu entschlüsseln. Zusätzlich erlaubt das einzigartige Set von Modellsystemen, physiologische Experimente durchzuführen, die die Bedeutung von Temperatur und Licht auf die Interaktion von wohl-definierten Phytoplankton-Pilzkulturen beleuchten und die taxonomische sowie ökologische Variabilität (Spezialist vs. Generalist) untersuchen. Diese Studien werden wichtige, bisher noch fehlende Grunddaten bzgl. Taxon-spezifischen und Trait-abhängigen physiologischen Antworten von Phytoplankton-Pilz Interaktionen liefern. Solche Daten sind sehr wichtig, um jetzige und zukünftige Vorhersagen von Pilzinfektionen und ihren Auswirkungen auf die Phytoplanktondynamik sowie auf die des gesamten Nahrungsnetzes im Zusammenhang mit den momentanen globalen Veränderungen zu verbessern.

Makro-Skala-Modellierungskonzepte für das Wachstum und den advektiven Transport von Bakterien in mit zwei Phasen gesättigten porösen Medien

Poröse Medien bieten exzellente Lebensbedingungen für Bakterien, da ihr Lebensraum geschützt ist aber trotzdem eine kontinuierliche Nahrungezufuhr möglich ist. Folglich existieren Mikroorgansimen in vielen natürlichen und technischen porösen Medien und haben dort einen großen Einfluss. Wenn diese für technische oder industrielle Anwendungen genutzt werden, ist es sehr wichtig die Wechselwirkungen zwischen Strömung, Transport und mikrobiologischen Prozessen zu verstehen. In der Literatur ist eine Vielzahl von Modellierungsmethoden vorhanden, jedoch sind diese in der Regel unter einphasigen Strömungsbedingungen entwickelt worden. Es ist schwierig mikrobiologische Prozesse in den natürlichen und komplexen Porenstrukturen von Gesteinen (wie z.B. Anhaften/Ablösen und Bildung von Biofilmen) zu beobachten und demzufolge sind diese Prozesse unzureichend erforscht. In diesem Projekt werden künstliche Strukturen geschaffen, die den Porenstrukturen des Gesteins nachempfunden sind und dafür benutzt, das Verhalten von Bakterien in mit zwei Phasen gesättigten porösen Medien zu untersuchen. Diese transparenten sozusagen zweidimensionalen Mikromodelle erlauben eine direkte Beobachtung der mikrobiologischen Prozesse, wie z.B. Wachstum, Transport und Anhaftung/Ablösung von Bakterien, durch mikroskopische Auswertungen. Die Bakterien, die für die experimentellen Untersuchungen eingesetzt werden, gehören zu der Klasse der methanogenen Archaeen. Die detaillierte Interpretation der experimentellen Ergebnisse durch Bilddatenverarbeitung erlaubt es, zeitlich und räumlich aufgelöste Datensätze für die Anzahl, Struktur und Bewegung der Bakterien zu erzeugen. Aus diesen Datensätzen wird ein verbessertes mathematisches Modell entwickelt, welches das Wachstum und die Bewegung von Bakterien in mit zwei Phasen gesättigten porösen Medien beschreibt. Das Modell soll das bakterielle Wachstum unter nicht-nährstofflimitierten Bedingungen, das Vorhandensein von verschiedenen bakteriellen Strukturen (Plankton und Biofilm), die individuellen Bewegungseigenschaften und die Anhaftungs- und Ablösevorgänge berücksichtigen. Um das neu entwickelte Modell zu testen und zu parametrisieren, wird es auf Basis eines diagonal-impliziten Runge-Kutta-Verfahrens, welches für die stark nicht-linearen Quellterme gut geeignet ist, numerisch umgesetzt. Die Anwendung des theoretischen Modells bezieht sich auf die Technologie der Untergrundmethanisierung, in welcher das injizierte Gasgemisch aus Wasserstoff und Kohlenstoffdioxid durch mikrobiologische Reaktionen in Methan umgewandelt wird.

Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Merkmalsvariabilität und Verteidigungskosten in gekoppelten bi-trophischen Plankton-Biofilm-Systemen: Effekte auf Räuber-Beute Dynamiken und Koexistenz

Im Fokus unseres Teilprojektes steht die Untersuchung der Effekte von Merkmalsvariabilität auf die Dynamiken innerhalb von Räuber-Beute-Systemen. Hierfür wird die Merkmalsvariabilität in der Beutegilde durch die phänotypische Plastizität des Beutebakteriums Pseudomoas putida abgebildet, welches in der Lage ist, sowohl Biofilme als auch Plankton zu bilden. Die Merkmalsvariabilität der Räubergilde ergibt sich aus den verschiedenen Nahrungspräferenzen der Räuberorganismen; Paramecium tetraurelia (ein Ciliat) ernährt sich ausschließlich von planktischen Bakterien, während die Amöbe Acanthamoebae castellanii ausschließlich Biofilm konsumiert. Es wurde ein neuartiges Chemostatensystem entwickelt, welches die separate Manipulation der Plankton- und der Biofilmphase erlaubt. Diese System ermöglicht es uns erstmalig, die Verteidigungskosten der Beutephänotypen gegenüber des jeweilig spezialisierten Räubers gezielt zu manipulieren. In der zweiten Förderperiode möchten wir das etablierte System nutzen und folgende vier Hypothesen testen, welche bereits durch erste Modelsimulationen unterstützt wurden:1) Merkmalsvariabilität in der Räubergilde erhöht den Kohlenstofffluss durch das System, weil die Akkumulation von Biomasse im fraßgeschützten Beutephänotyp verhindert wird.2) Phänotypische Plastizität der Beute kann indirekt die Koexistenz der Räuber fördern. Modellsimulationen weisen darauf hin, dass der Biofilmräuber im Ein-Räuber-System ausstirbt, da die Beute in den geschützten Phänotypen wechselt.3) In Weiteren werden wir uns auf die Systemdynamiken fokussieren und die Hypothese testen, dass ausgeglichene Verteidigungskosten innerhalb der Beutegilde zu zyklischen Systemdynamiken führen. Um das zu testen, werden wir die Wachstumsraten von beiden Beutephänotypen manipulieren. Das Planktonwachstum wird mit Antibiotika reduziert und das Biofilmwachstum durch erhöhte Kohlenstoffverfügbarkeit im Substrat erhöht.4) Abschließend erhöhen wir die Komplexität des Systems und fügen einen weiteren Beuteorganismus zu, welcher über eine höhere Biofilm- und eine geringere Planktonwachstumsrate verfügt. Die dadurch entstehende genotypische Variation und phänotypische Plastizität erhöhen die Merkmalsvariabilität in der Beutegilde. Mit diesem System testen wir die Hypothese, dass Merkmalsvariabilität in der Räubergilde die Koexistenz zweier sich konkurrierenden, phänotypisch plastischen Beutearten fördert.Diese Hypothesen werden in enger Vernetzung von Chemostatexperimenten und mathematischer Modellierung getestet. Das Projekt wird in Zusammenarbeit mit der DynaTrait-Gemeinschaft durchgeführt, insbesondere mit Gruppen welche ebenfalls bi-trophische Systeme untersuchen.

Forschergruppe (FOR) 5903: Nachhaltige Rurbanität - Ressourcen, Gesellschaft und Regulierungssysteme, Teilprojekt: Koordinationsfonds

Die menschliche Gesellschaft zeichnet sich durch komplexe soziale Organisationsformen aus, die im Laufe der Zeit weltweit vielfältige Siedlungsmuster hervorgebracht haben. Stadtgrenzen markieren eine willkürliche Trennung zwischen einem (urbanen) Innenraum unter starker menschlicher Kontrolle und einem (ruralen) Äußeren, das stärker natürlichen, biophysikalischen Prozessen ausgesetzt ist. Tatsächlich sind aber beide Räume seit jeher eng miteinander verknüpft, und werden mit immer intensiverer Nutzung natürlicher Ressourcen zunehmend durch rural-urbane Transformationsprozesse geprägt. Im Anthropozän haben Urbanisierung und die damit verbundenen sozialen und ökologischen Veränderungen globale Dimensionen erreicht. "Rurales" und "Urbanes" gehen dabei auf verschiedenen Skalenebenen immer wieder neue Beziehungen ein und werden zu einer sich oft selbst organisierenden Einheit von großer wissenschaftlicher, gesellschaftlicher und politischer Bedeutung. Der vorliegende Antrag zur Einrichtung der Forschungsgruppe „Nachhaltige Rurbanität“ befasst sich mit diesem Phänomen und begreift es als einen sich ständig neu erfindenden Zustand des Seins und Werdens. Geleitet von drei übergeordneten Hypothesen nutzen die 10 natur- und sozialwissenschaftlichen Projekte Fallstudien in rurbanen Ballungsgebieten Indiens, Westafrikas und Marokkos, um Wirkmechanismen, Folgen und Steuerungsprozesse von Rurbanität beispielhaft zu untersuchen. Ein interdisziplinärer, sozial-ökologischer Forschungsansatz erlaubt die Schaffung von Synergien zwischen den Fachkulturen und verschiedenen Wissenschaftsdisziplinen, unter Einbeziehung von Perspektiven des Globalen Südens. Dieser gemeinsame Rahmen ist Voraussetzung dafür, kontextuelle empirische Forschung mit theoriegeleiteten analytischen Vergleichen zu verbinden, sowie innovative Methoden für die Systemanalyse und die Synthese der Ergebnisse zu nutzen. Dadurch lassen sich rural-urbane Transformation und das daraus abgeleitete Phänomen der Rurbanität in seiner skalen- und regionsübergreifenden Komplexität verstehen und dessen zentrale Implikationen für eine nachhaltige Landnutzungs- und Gesellschaftsentwicklung bewerten.

Einfluss von Energiequellen auf die Wege der Phosphorbindung durch Biofilme in fluvialen Ökosystemen

In aquatischen Ökosystemen ist der Nährstoffkreislauf eine entscheidende Ökosystemfunktion. Sowohl Stickstoff (N) als auch Phosphor (P) sind essentielle Nährstoffe für aquatische Lebensformen, doch im Übermaß verursachen Stickstoff und Phosphor Eutrophierung. Eutrophierung ist eine globale Beeinträchtigung des Ökosystems, bei der ein Überschuss an Nährstoffen die Struktur und Funktion von Süßwasserökosystemen verändert. Die wichtigsten Auswirkungen der Eutrophierung sind eine übermäßige Zunahme der Algenbiomasse und -produktivität, eine Beeinträchtigung der physikalisch-chemischen Wasserqualität (d. h. Zunahme von Farbe, Geruch und Trübung), anoxische Gewässer, Fischsterben und Einschränkungen der Wassernutzung für Erholungszwecke. Die Eutrophierung ist seit den späten 1980er Jahren in ganz Europa als erhebliches Umweltproblem erkannt worden und stellt auch heute noch eine Herausforderung dar. Um ein gesundes Ökosystem zu erhalten, sollte der Phosphorgehalt im Wasser kontrolliert werden. Phosphor wird nicht vollständig aus dem aquatischen Ökosystem entfernt, sondern von einem Kompartiment (d. h. Wasser) in ein anderes (d. h. Flussbettsubstrate und/oder Biota) immobilisiert. Bei dieser P-Immobilisierung spielen mikrobielle Biofilme eine Schlüsselrolle, indem sie gelösten Phosphor aus dem Wasser einschließen. Dieser Einschluss kann in zwei verschiedenen Pools erfolgen (d. h. intrazellulär oder extrazellulär). Das Wissen über die biologischen Mechanismen des Biofilm-P-Einschlusses in aquatischen Ökosystemen ist jedoch nach wie vor begrenzt. Außerdem kann die Fähigkeit von Biofilmen, P einzuschließen, von ihren Stoffwechselprofilen abhängen. Genauer gesagt bestimmt der C-bezogene Stoffwechsel die Fähigkeit von Biofilmen, organische Verbindungen zu mineralisieren und für ihr Wachstum zu nutzen, und der P-bezogene Stoffwechsel ist mit ihrer Fähigkeit verbunden, verschiedene P-Quellen aufzunehmen. Aus diesem Grund erwarte ich, dass die Fähigkeit aquatischer Ökosysteme, P aus aquatischen Ökosystemen aufzunehmen, von der Struktur und Aktivität der Biofilme abhängt. Das Hauptziel dieses Projekts ist es, zu verstehen, wie Energiequellen in Flussökosystemen die Wege der P-Einlagerung innerhalb von Biofilmen beeinflussen. Insbesondere soll (i) geklärt werden, wie die Kombination von autotrophen und heterotrophen Energiequellen (d. h., (ii) die Auswirkung autotropher und heterotropher Energiequellen auf den C- und P-Stoffwechsel in Biofilmen und ihre Verbindung zu den P-Einlagerungspools zu testen und (iii) die Muster der intrazellulären P- und extrazellulären P-Einlagerungswege in Biofilmen und die Stoffwechselprofile mit den Längsgradienten des Lichts und der Qualität des gelösten Sauerstoffs in Flussökosystemen zu verknüpfen.

Export von organischem Kohlenstoff aus Islands Gletschern: Quantifizierung, Herkunft und Kohlenstoffflüsse in Gletscherbächen

Gletscher sind bedeutende Speicher organischen Kohlenstoffs (OC) und tragen zum Kohlenstofffluss vom Festland zum Meer bei. Aufgrund des Klimawandels wird eine Intensivierung dieser Flüsse erwartet. Der Export von OC aus Gletschern wurde weltweit in verschiedenen Regionen quantifiziert, trotzdem liegen keine vergleichbaren Daten für Island vor, obwohl sich dort die größte europäische außerpolare Eiskappe befindet. Um die globalen Prognosen der glazialen Kohlenstofffreisetzung zu verbessern, ist es das Ziel dieses Pilotprojektes, den Export von gelöstem und partikulärem organischen Kohlenstoff (DOC, POC) aus Islands Gletschern erstmalig zu quantifizieren und neue Kooperationen mit isländischen Wissenschaftler/innen für gemeinsame zukünftige Forschungsprojekte aufzubauen. Hierzu werden 4 Feldkampagnen zu unterschiedlichen Jahreszeiten sowie Treffen mit isländischen Kollegen/innen durchgeführt. In jeder Feldkampagne werden von 23 Gletschern der Eiskappen Vatnajökull, Langjökull, Hofsjökull, Myrdalsjökull und Snaeellsjökull Eisproben entnommen, um die biogeochemische Diversität des glazialen OC zu charakterisieren sowie dessen Export in Verbindung mit Massenbilanzen zu quantifizieren. In Gletscherbächen werden Wasserproben entnommen, um den Austrag von OC direkt am Gletschertor zu bestimmen sowie die Kohlenstoffflüsse entlang von 6 Gletscherbächen mit unterschiedlicher Länge (2 km bis 130 km) beginnend am Gletschertor bis zur Mündung zu untersuchen. Wie sich der Gletscherrückgang langfristig auf ein Gletscherbachökosystem auswirkt, wird durch die taxonomische Bestimmung von Makroinvertebraten im Vergleich zur Bestimmung von Prof. Gíslason aus dem Jahre 1997 beurteilt. Gleichzeitig werden in diesem Gletscherbach Wasserproben zum eDNA-Barcoding entnommen, um eine rasche und gering invasive Methode zur laufenden Beobachtung des zukünftigen Einflusses der Gletscherrückgang zu entwickeln. Vor Ort werden Wassertemperatur, elektr. Leitfähigkeit, pH-Wert, gelöster Sauerstoff, Trübung und Chlorophyll alpha gemessen. Innovative Labormethoden (HPLC, DNA-Barcoding, Picarro, GC, TOC) werden zur Analyse des OC im Eis und Wasser (DOC, DIC, POC, Fluoreszenz, Absorption), der Nährstoffe (P-PO4, N-NO3, N-NO2, N-NH4), stabiler Isotope (18O, 2H), Chlorophyll alpha, CO2 und aquatischen Organismen eingesetzt. Die Anwendung statistischer Methoden (Faktorenanalyse, Hauptkomponentenanalyse) basierend auf Anregungs- und Emissionsmatrizen erlauben die Quellen des OC im Gletschereis sowie -schmelzwasser zu bestimmen und die räumliche Vielfalt des OC zu erklären. Das gewonnene Wissen wird zur Verbesserung globaler Prognosen glazialer Kohlenstofffreisetzung beitragen sowie einen intensiven Einblick in das glaziale Ökosystem geben. Für die antragstellenden Nachwuchswissenschaftler/innen entstehen vielversprechende Kooperationen mit isländischen Wissenschaftlern/innen, fokussierend auf die zeitlichen sowie räuml. Aspekte der glazialen Kohlenstoffflüsse sowie das Ökosystem Gletscher

Aufklärung der mikrobiellen Nitratumsetzung in einem Süßwasserhabitat bei Anwesenheit von Methan, Nitrat und Ammonium: Koppelung von n-damo (Nitrat/Nitrit-abhängige anaerobe Methanoxidation) und Anammox (anaerobe Oxidation von Ammonium)

In diesem Projekt wollen wir in einem Süßwasserhabitat die Koppelung der nitratabhängigen Methanoxidation (n-damo) mit dem Anammox Prozess nachweisen. Messungen der stabilen Isotope im Methan, Nitrat, Nitrit, Ammonium und DIC und molekularbiologische Methoden sollen helfen, diese Prozesse zu entschlüsseln. Zudem wollen wir klären, wie die Erkenntnis von einströmendem Grundwasser in das Habitat (Interaktion zwischen Grundwasser und Seewasser) zu erklären ist, dass die für die Prozesse (n-damo, Anammox, Methanogenese) benötigten stabilen Umwelt- bzw. anoxischen Redoxbedingungen vorliegen.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt B 03: Verhalten von Mikroplastik im System Fließgewässer - Grundwasser

Fließgewässer gelten als Haupteintragspfad von Mikroplastik (MP) in marine Ökosysteme. Allerdings ist über das Transportverhalten und den Verbleib von MP in Flüssen und Bächen nur sehr wenig bekannt. Ebenso bestehen große Wissenslücken bezüglich der Migration von MP an der Schnittstelle zwischen Oberflächenströmung und der hyporheischen Zone (HZ, Grenzzone zwischen Fließgewässern und angrenzenden Grundwasserleitern), sowie der Mobilität von MP innerhalb der HZ. In B03 wollen wir das hydrodynamische Transportverhalten von MP in fluvialen Systemen einschließlich der HZ erforschen. Darüber hinaus soll auch der Einfluss biotischer Tranportmechanismen auf das Sedimentationsverhalten von MP erforscht werden. In der ersten Phase des SFB wollen wir diesen Themenbereich zunächst für einfache Modellsysteme untersuchen.

Einfluss von Vergletscherung, Permafrost und tektonischen Bedingungen auf die Ausbreitung von Radionukliden im Fernfeld eines Tiefenlagers nach einem potenziellen Schadensfall

Die Entsorgung nuklearer Abfälle in geologischen Tiefenlagern muss in Gebieten erfolgen, die vom Grundwasserstrom ausreichend isoliert bleiben. Andernfalls können Fluidströmungsprozesse bei einer gestörten Entwicklung des Endlagers die Migration von Radionukliden in die Biosphäre begünstigen. Nur wenige Studien befassen sich mit den Folgen des weiträumigen Radionuklidtransports in solchen Worst-Case-Szenarien. Die hydrogeologischen Bedingungen des Gesamtsystems in der Nachbetriebsphase werden sich jedoch letztendlich von denen zum Zeitpunkt des Endlagerbaus unterscheiden und werden sowohl von äußeren Faktoren (z.B. Klimawandel) als auch von intrinsischen Beckeneigenschaften stark beeinflusst. Dieses Vorhaben im Bereich der Umweltrisiken zielt darauf ab, die Auswirkungen von (i) Vereisung, (ii) Permafrost und (iii) tektonischen Ereignissen auf die hydrologischen und hydromechanischen Grenzen zu untersuchen, die den großräumigen Grundwasserfluss in der Nähe von hypothetischen Abfalldeponien bestimmen. Zu diesem Zweck dient der Yeniseisky-Standort (YS) in Russland, ein potenzielles geologisches Tiefenlager für radioaktive Abfälle in kristallinem Gestein, als Fallstudie, der auf einzigartige Weise alle drei oben genannten Merkmale der geologischen Umgebung umfasst. Multiphysikalische Simulationen von thermisch-hydraulisch-mechanisch-chemisch gekoppelten Prozessen (THM-C) werden angewendet, um Szenarien der Fernfeld-Radionuklidentwicklung im Extremfall eines Endlagerstörfalls zu liefern. Die Neuartigkeit der THM-C-Modelle und der Zugang zu einer einzigartigen Datenbank der YS werden das klassische Verständnis von anomaler Fluid-, Wärme- und Massentransportvorgänge innerhalb tektonisch aktiver Becken erweitern. Während sich das vorgeschlagene Vorhaben auf die Thematik der nuklearen Entsorgungsforschung bezieht, können die den entwickelten Modellen zugrunde liegenden physikalischen und numerischen Konzepte auf eine Vielzahl von Nutzungsszenarien der Geosphäre (z.B. CO2-Speicherung, Abfallentsorgung, Entstehung seismischer Ereignisse) angewendet werden. Darüber hinaus sind entsprechende Benchmarkstudien in ähnlichen kristallinen geologischen Formationen geplant.

1 2 3 4 582 83 84