API src

Found 838 results.

Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie

Zwischenabfluss (ZA) ist ein bedeutender Abflussbildungsprozess in gebirgigen Einzugsgebieten der feucht-gemäßigten Klimazonen. Obwohl ZA bereits seit den 1970er Jahren intensiv untersucht wird, ist es ein noch immer schwer zu erfassender Prozess in der Einzugsgebietshydrologie. Es ist unklar, welche wesentlichen Faktoren dessen räumliche und zeitliche Verteilung steuern und wie dieser Prozess in Niederschlag-Abfluss-Modellen parametrisiert werden kann. Um diese Forschungslücke zu schließen, wird das wissenschaftliche Netzwerk, Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie, gegründet, in dem aktuelle Probleme zur1) Identifizierung maßgeblicher Einflussfaktoren des ZA,2) Parametrisierung des ZA in N-A-Modellen sowie3) zu bestehenden Ansätze der Kalibrierung und Validierung des ZA diskutiert werden. Das Netzwerk setzt sich aus den Nachwuchswissenschaftler/innen Sophie Bachmair, Theresa Blume, Katja Heller, Luisa Hopp, Ute Wollschläger, Thomas Graeff, Oliver Gronz, Andreas Hartmann, Bernhard Kohl, Christian Reinhardt-Imjela, Martin Reiss, Michael Rinderer und Peter Chifflard (PI) zusammen. Sie werden die genannten Probleme kritisch reflektieren und Forschungsdefizite als Basis für ein gemeinsames Forschungsprojekt erarbeiten, das als Forschergruppe realisiert und bei der Deutschen Forschungsgemeinschaft eingereicht wird. Das Arbeitsprogramm des Netzwerkes wird in insgesamt 6 Workshops umgesetzt, die jeweils etwa 3 Tage dauern und als moderierte, problemlösungsorientierte Workshops organisiert sind. Spezifische Fragestellungen werden zuerst in Kleingruppen erörtert und anschließend in der gesamten Gruppe diskutiert und dokumentiert. Das Ziel eines jeden Workshops ist die Erarbeitung von Hypothesen, die die Grundlage des Forschungsantrages darstellen. In den ersten vier Workshops werden die Themen 1) Zwischenabfluss: Warum? Wann? Wo? 2)Identifizierung maßgeblicher Einflussfaktoren, 3) (Boden-) hydrologische Modellkonzepte und 4) Kalibrierungs- und Validierungsansätze bearbeitet. Die international ausgezeichneten Wissenschaftler/innen Nicola Fohrer, Ilja van Meerveld, Doerthe Tetzlaff, Axel Bronstert, Olaf Kolditz, Gunnar Lischeid, Brian McGlynn und Markus Weiler nehmen an den ersten vier Workshops als Gäste teil und tragen zu den Diskussionen und der Hypothesenbildung bei. Im fünften und sechsten Workshop wird eine Projektskizze, die zur Beantragung einer Forschergruppe bei der DFG notwendig ist, verfasst und fertiggestellt. Die insgesamt sechs Workshops werden durch wissenschaftliche Exkursionen in experimentelle Untersuchungsgebiete, in denen der ZA ein maßgebende Prozess ist, ergänzt und an den Instituten der Mitglieder des Netzwerkes durchgeführt: Universitäten Marburg, Trier, Dresden, Durham (USA), UFZ Leipzig und BfW Innsbruck. Dadurch bestehen zusätzliche Kooperationen mit M. Casper, J. Fleckenstein, A. Kleber, G. Markart,F. Reinstorf, H.-J. Vogel, H. Zepp, und E. Zehe.

Biogeochemische Prozesse bei wiedereinsetzender Strömung und Sedimenttransport: Ein umfassendes Konzept für temporäre und permanente Fließgewässer

Das Projekt soll die Mechanismen klären, die die Biogeochemie (Metabolismus und Stickstoffaufnahme der mikrobiellen Gemeinschaft) in verschiedenen Chronologien der Wiederaufnahme des Flusses mit und ohne Sedimenttransport modulieren. Die Wiederaufnahme der Strömung nach der Trocknung wird als biogeochemisches Heißmoment betrachtet, bei dem hohe Metabolismusraten und Stickstoffaufnahme durch die Häufigkeit der vorherigen Trocknung beeinflusst werden. Die Mechanismen, die diesen Heißmoment modulieren, sind wenig bekannt. Bisher waren es vor allem Einzelfaktorstudien in temporären Bach- und Flussökosystemen. Allerdings treten Intermittenz und Wiederaufnahme der Strömung zunehmend auch in mehrjährigen Gewässerökosystemen auf und die Oberflächenströmung impliziert oft Sedimenttransport (z.B. Wanderrippel, Oberstufenebene), insbesondere in sandigen Gewässern. Darüber hinaus kann die Wiederaufnahme der Strömung verschiedenen Chronologien folgen, wie z.B. sofort bei Regen oder langsam bei steigendem Grundwasser, und die Konzentrationen von Nährstoffen und Kohlenstoff, die bei der Wiederaufnahme der Strömung ausgelaugt werden, können auch die biogeochemische Reaktion beeinflussen. Ich schlage ein neues allgemeines Konzept von 'intermittierenden Bachlebensräumen' für alle Bereiche eines Bachbettes vor, die trotz variabler Wechselwirkungen von Faktoren irgendwann trocken sind (z.B. Oberflächenwassermangel). Die hier vorgeschlagene Untersuchung der Mechanismen bei verschiedenen Chronologien der Strömungswiederaufnahme, gekoppeltem Sedimenttransport und in temporären und mehrjährigen Gewässerökosystemen wird zeigen, ob eine solche allgemeine und integrative Sichtweise angewendet werden kann. Die Wechselwirkungen von Strömungswiederaufnahme, Sedimenttransport, Nährstoff- und Kohlenstoffkonzentrationen und Trocknungshäufigkeit werden in Mikrokosmosversuchen mit Sedimentgemeinschaften von intermittierenden Lebensräumen aus mehrjährigen und temporären Strömen untersucht. Die Antwortvariablen unter Beachtung sind: Kohlenstoffstoffwechsel, gemessen an Veränderungen der Sauerstoffkonzentration in der Dunkelheit und im Licht, Netto-Stickstoffaufnahme durch Zugabe des stabilen Isotops 15N (15NH4Cl) und der Struktur und Architektur (z.B. Biofilm) der mikrobiellen Gemeinschaft (nur für gekoppelten Sedimenttransport). Die Ergebnisse werden zu einem vollständigen mechanistischen Bild der Kohlenstoff- und Stickstoffdynamik Gewässerökosystemen beitragen, die zu starken Strömungsschwankungen und Trocknung neigen. Die Ergebnisse werden es ermöglichen, die Wiederaufnahme der Strömung in die aktuellen Konzepte der Strömungsbiogeochemie zu integrieren. Ein solcher konzeptioneller Rahmen ist der Schlüssel für das Management von Ökosystemen im Mittelmeerraum und immer mehr gemäßigten Strömungen, die aufgrund der zunehmenden Wasserentnahme und des Klimawandels trocken werden.

Ein System zur Vorhersage von Dürren und zum Wassermanagement in der semiariden Region Ceará - Erkenntnistransfer-Projekt

Das hier beantragte Wissenstransferprojekt soll die Anwendungsreife von Ergebnissen aus zwei früheren DFG-Forschungsprojekten zu Wasserbewirtschaftungsfragen in semi-ariden Regionen erreichen. Der Fokus wird dabei auf der Methodenübertragung und Ergebnisnutzung für die Entwicklung eines Dürrevorhersage und -managementsystems liegen. Die hier erwähnten DFG-Projekte sind: Sediment Export from large Semi-Arid catchments: Measurements and Modelling), und Generation, transport and retention of water and suspended sediments in large dryland catchments: Monitoring and integrated modelling of fluxes and connectivity phenomena. Der Praxispartner ist die Behörde für Meteorologie und Wasserressourcen des Bundesstaates Ceara (FUNCEME) im Nordosten Brasiliens. Diese führt auch Prognosen für das wasserwirtschaftliche System Cearas durch, welches durch eine stark negative klimatische Wasserbilanz und mehrere tausend (meist kleine) Stauseen gekennzeichnet ist. Es ist vorgesehen, das existierende Wasserbewirtschaftungssystem SIGA von FUNCEME mit dem prozessbasierten hydrologischen Modell WASA-SED zu kombinieren. Das WASA-SED Modell, welches aus den o.g. DFG-Projekten stammt, wurde spezifisch für semiaride meso-skalige Einzugsgebiete konzipiert und entwickelt. Damit werden die charakteristischen hydrologischen Prozesse, einschließlich von Transport- und Konnektivitätsphänomenen im Gewässernetz und den Stauseen simuliert. Die geplanten Arbeiten sind in verschiedene Ebenen gruppiert: (1) Integration des WASA-SED-Modells mit dem SIGA-System um den regionalen Wasserbehörden und Flussgebietskommissionen eine direkte Information über aktuelle und prognostizierte Werte der Stauseefüllungen, Abflüsse an bestimmten Flussabschnitten und anderen Wasserressourcen zu ermöglichen; (2) Effiziente Kommunikation der Ergebnisse mit verschiedenen Stakeholdergruppen und Möglichkeit zur Weiternutzung der Ergebnisse. (3) Anwendung von WASA-SED im Vorhersagemodus, d.h. Nutzung von kurzfristigen und saisonalen meteorologischen Vorhersagen zur Prognose der Wasserverfügbarkeit bei unterschiedlichen Vorhersagezeiträumen. (4) Nutzung der prozess-basierten Struktur von WASA-SED um Effekte sich ändernder Randbedingungen zu untersuchen, besonders bzgl. des dichten Netzes aus Stauanlagen. Wir erwarten aus dem Projekt auch Impulse für neue Forschungsfragen als Ergebnis der Integration der Wasserbewirtschaftung und -infrastruktur in das Modellsystems, so evtl.: (1) Untersuchung und Modellierung der saisonalen Dynamik der Verluste in semiariden Flusssystemen und Ableitung eines dafür geeigneten Abflussroutingansatzes; (2) Quantifizierung und Modellierung der hydro-sedimentologischen Konnektivität in komplexen, vom Menschen stark geformten Hydrosystemen, einschließlich der Effekte des dichten Stauseenetzes, Wasserüberleitungen und der teilweise künstlich verbundenen Teileinzugsgebiete.

Grundlagen der Phytoremediation von Mikroplastik aus Böden und Sedimenten

Forschungsthema: Die Beschreibung der Anreicherungen von Mikroplastik (MP) an und in Pflanzenwurzeln lässt hoffen, dass das für Umweltschadstoffe etablierte Prinzip der Phytoremediation zur Entfernung von MP aus der Umwelt genutzt werden kann. Jedoch sind die zur Gestaltung der Technologie notwendigen Grundlagen nur ansatzweise untersucht und verstanden. Daher wollen wir als Voraussetzung für die Entwicklung von Phytoremediationsverfahren die Grundlagen der Wirkung von MP auf Bodenqualität und -prozesse an der Schnittstelle von Vegetation und Gewässerdynamik am Beispiel von Flussauen untersuchen. Ziel des Projekts ist ein Verständnis von Prozessen in Böden und Sedimenten, die durch Anreicherung von MP an und in Vegetationsbeständen verändert werden. Dies umfasst am Beispiel ausgewählter Flussauen einer stark anthropogen beeinflussten Bundeswasserstraße (Elbe) im Vergleich zum einzigen erhaltenen Wildflusssystem Europas, der Vjosa, die Einflüsse von MP auf Kohlenstoffumsatz, räumliche und zeitliche Verteilung und Verhaltensdynamik von MP in Flussauen sowie die Bedeutung von Pflanzen für eine Entfernung von MP, einschließlich der dafür notwendigen Adaption, Entwicklung und Optimierung erforderlicher Analysemethoden.

Sonderforschungsbereich (SFB) 1439: Degradation und Erholung von Fließgewässer-Ökosystemen unter multiplen Belastungen, Teilprojekt A21: Reaktionen aquatischer Pilzgemeinschaften auf Stressfaktoren und ihre Folgen für den Laubabbau

Mit Experimenten auf verschiedenen Skalen und verschiedener Komplexität wird die Reaktion von Gemeinschaften aquatischer Pilze sowie von Laubabbau auf multiple Stressoren untersucht. Experimente in Mikrokosmen analysieren die Reaktionen vorgestresster Pilzgemeinschaften auf Temperatur, Salz- und Trockenstress über längere Zeiträume, einschließlich möglicher Erholungsprozesse. Darüber hinaus wird die Nahrungswahl vorgestresster Gammariden zwischen verschiedenen Pilzgemeinschaften untersucht. In dem ExStream Experiment, den Freilandrinnen und den Feldstudien von RESIST werden die Auswirkungen multipler Stressoren auf das Nahrungsnetz mit Schwerpunkt auf den Laubabbau untersucht.

Der Einfluß der Bildung von Thioarsen-Spezies auf die Arsen-Komplexierung an natürliches organisches Material

Unter anoxischen Bedingungen wird Arsen (As) in Form von Arsenit vermeintlich vollständig über Schwefel(S)-Gruppen an natürliches organisches Material (NOM) gebunden. Laborexperimente zeigten, dass selbst unter oxischen Bedingungen die Halbwertszeit mehr als 300 Tage betrug, damit sogar größer war als die von Arsenit an Eisen(Fe)(III)-Oxyhydroxiden. Global betrachtet heißt das, dass z.B. Moore, die reich an Organik und Sulfid sind, wichtige quantitative As-Senken sind. Allerdings wurden alle mechanistischen Studien bisher so durchgeführt, dass Arsenit einem zuvor gebildeten S(-II)-NOM zugegeben wurde. In einem System, das As(III), S(-II) und NOM enthält, spielt aber auch die As(III)-S(-II)-Komplexierung in Lösung unter Bildung von Thioarseniten ((H2AsIIIS-IInO3-n)-, n=1-3) und Thioarsenaten ((HAsVS-IInO4-n)2-, n=1-4) eine Rolle. Unsere zentrale Hypothese ist, dass die Kinetik der Thioarsen-Spezies-Bildung in Lösung schneller ist als die Sorption von As(III) und S(-II) an NOM und dass daher Thioarsen-Spezies das Ausmaß und die Kinetik der As-Sorption an Organik bestimmen. Auch die kompetitive Sorption an gleichzeitig auftretenden (meta)stabilen Fe-Mineralen wird vom bekannten Verhalten von Arsenit abweichen. Aufgrund ihrer Instabilität und einem Mangel an reinen Standards, ist über das Sorptionsverhalten von Thioarseniten bislang nichts bekannt. Für Thioarsenate gibt es keine Information zum Bindungsverhalten an NOM, aber es ist bekannt, dass die Sorption an verschiedenen Fe(III)-Mineralen geringer ist als die von Arsenit. Wir postulieren, dass Thioarsenate weniger und langsamer als Arsenit an S(-II)-NOM binden, da kovalente S-Bindungen in Thioarsenaten die Affinität für S(-II)-NOM Komplexierung verringern. An Fe(III)-NOM sollte die Bindung geringer sein in Analogie zur bekannten geringeren Affinität für Fe(III)-Minerale. Wir postulieren weiter, dass die Sulfidierung eine schnellere und größere As-Mobilisierung bewirkt als die zuvor untersuchte Oxidation, da abiotische Oxidation langsam ist, die As-S-Komplexierung in Lösung aber spontan und so As-Bindungen an NOM und Fe-Minerale schwächt. Um unsere Hypothesen zu testen, werden wir Batch-Experimente durchführen mit Mono- and Trithioarsenat-Standards und einem Arsenit-Sulfid Mix (der Thioarsenite enthält) bei pH 5, 7 und 9 an zwei ausgewählten NOMs (Federseemoor Torf und Elliott Soil Huminsäure; jeweils unbehandelt, S(-II)- und Fe(III)-komplexiert). Wir werden Sorptionsaffinität und -kinetik, sowie mittels Röntgenabsorptionsspektroskopie Bindungsmechanismen bestimmen. Die Stabilität der (Thio)arsen-beladenen NOMs wird unter oxidierenden aber auch unter sulfidischen Bedingungen studiert und präferenzielle Bindung in binären Systemen (Kombinationen aus Fe-Oxyhydroxiden, Fe(III)-NOM, S(-II)-NOM und Fe-Sulfiden) untersucht. Ziel ist, As-Bindungsmechanismen in S(-II)-Fe(III)-NOM-Systemen besser zu verstehen, um vorhersagen zu können, unter welchen Bedingungen As Senken zu As Quellen werden können.

Räumliche Niederschlagsschätzung mit verbesserten Messungen durch Richtfunkstrecken und statistischer Datenfusion

Mit der Steigerung der Rechenleistung, mathematischer Modellierung und satellitengestützter Fernerkundung der Erdoberfläche sind Niederschlagsbeobachtungen nach wie vor eines der schwächsten Glieder in der Beschreibung und im Verständnis des Wasserkreislaufs der Erde. Niederschlagsbeobachtungen sind jedoch eine wesentliche Voraussetzung für das Wassermanagement und insbesondere für die Hochwasserprognose. Dies ist besonders kritisch im Angesicht des Klimawandels und der durch den Menschen verursachten hydrologischen Veränderungen, z.B. aufgrund der raschen Urbanisierung . Opportunistische Sensoren können die räumliche und zeitliche Auflösung von Standard-Niederschlagsmessnetzen erheblich verbessern, indem sie mit Messungen von Geräten ergänzt wird, die ursprünglich nicht für die Niederschlagsmessung vorgesehen waren. Ein Beispiel dafür ist die Verwendung von Dämpfungsdaten kommerzieller Richtfunkstrecken (engl. CMLs) aus Mobilfunknetzen. Im Rahmen dieses trilateralen Projekts zwischen UniA, TUM und CTU werden wir verbesserte Methoden entwickeln, um Niederschlagsraten aus CML-Daten abzuschätzen und mit Radardaten, unter Berücksichtigung spezifischer Beobachtungsunsicherheiten zu kombinieren. Die CML-Niederschlagsschätzung wird durch die Entwicklung eines neuen Kompensationsalgorithmus zur Bestimmung der Dämpfung durch den 'wet-antenna attenuation' (WAA) Effekt verbessert. Dies wird erreicht, indem Erkenntnisse aus einem speziellen Mikrowellentransmissions-Feldexperiment und Labormessungen (durchgeführt durch TUM) mit Daten aus kurzen CMLs (von CTU bereitgestellt) kombiniert werden. Darüber hinaus wird das Potenzial zur Nutzung der von benachbarten CMLs in dichten Netzwerken gebotenen Diversität untersucht (durch CTU). Darüber hinaus werden das Potenzial und die Herausforderungen der CML-Niederschlagsschätzung im aufkommenden E-Band mit CML-Daten (von CTU bereitgestellt) und mittels Labormessungen (an der TUM) untersucht. Verbesserte räumliche Niederschlagsfelder werden durch das Zusammenführen von CML- und Wetterradardaten unter Verwendung des statistischen Ansatzes Random-Mixing (RM) bereitgestellt, für den eine Erweiterung (von UniA) entwickelt wird, um Beobachtungsunsicherheiten zu berücksichtigen. Es werden Methoden entwickelt, um diese Unsicherheiten sowohl für CML- als auch für Radardaten abzuschätzen. Das erweiterte RM wird dann angewendet, um einen einzigartigen grenzüberschreitenden CML- und Radardatensatz (von UniA und CTU bereitgestellt) sowie einen Datensatz von Wetterradar und dichtem städtisches CML-Netzwerk in der Stadt Prag zusammenzuführen.

Modellierung des Verbleibs von organischem Kohlenstoff und Mikroverunreinigungen in biologisch-aktiven Aktivkohlefiltern

Das Vorkommen von organischen Mikroverunreinigungen (OMP) in Gewässern ist aufgrund ihrer potenziellen Bedrohung für die Umwelt und die menschliche Gesundheit sehr kritisch. Kläranlagenabläufe sind eine der Hauptquellen für OMPs; deshalb werden derzeit neue rechtliche Rahmenbedingungen diskutiert und verschiedene Technologien zur Reduktion von OMPs untersucht. Granulierte Aktivkohlefilter (GAK) haben sich als geeignete Technologie zur Entfernung von OMP aus Kläranlagenabläufen etabliert. Neben der adsorptiven Entfernung sind GAK-Filter auch in der Lage, organische Stoffe und OMPs biologisch zu entfernen. Die Phänomene, die diesen adsorptiven und biologischen Abbau steuern, sowie die Synergien zwischen diesen beiden Mechanismen sind von großer Bedeutung, jedoch sind die Prozesse sehr komplex. Zum einen handelt es sich bei Abwässern um Multikomponentengemische, die schwer zu charakterisieren sind, und zum anderen sind die verschiedenen Wechselwirkungen zwischen GAK, Biofilm, OMP und organischen Stoffen nur schwer experimentell zu erfassen. Mathematische Modelle sind ein leistungsfähiges Instrument zur Überwindung solcher experimentellen Hindernisse, zur Analyse verschiedener Szenarien und zur Unterstützung der Planung weiterer Experimente. Anhand von Versuchsdaten wurde ein erstes mathematisches Modell entwickelt, das die Entfernung von gelöstem organischem Kohlenstoff in einem biologisch aktiven GAK-Filter zufriedenstellend beschreiben kann. Dieses Projekt zielt darauf ab, dieses Modell zu verbessern und um neue Schlüsselmerkmale zu erweitern, die für eine weitere Anwendung erforderlich sind. Insbesondere sollen drei Hypothesen getestet werden: (i) Ist es möglich, die Porengrößenverteilung in das Modell aufzunehmen? Die Porengrößenverteilung ist ein Schlüsselparameter für die Charakterisierung der verschiedenen GAK-Typen, daher ist ihre Implementierung in das Modell unerlässlich. Die herkömmlichen Ansätze erfordern jedoch Parameter, die schwer zu bestimmen sind. (ii) Könnte eine mikrobielle Gemeinschaft, die den Stickstoffzyklus einschließt, die Qualität des Modells verbessern? Auf der Grundlage experimenteller Belege, die den biologischen Abbau von OMPs mit der Aktivität von Nitrifikanten in Verbindung bringen, zielt das Projekt darauf ab, co-metabolische Prozesse zu implementieren und ihre Auswirkungen auf die globalen Modellierungsergebnisse zu bewerten. (iii) Wie können einzelne OMPs in das Modell einbezogen und ihr Verhalten zufriedenstellend wiedergegeben werden? Die Vorhersage des Abbaus einzelner OMPs ist von großer Bedeutung. Daher werden exemplarisch vier OMPs in das Modell aufgenommen und als Stellvertreter für den Abbau weiterer OMPs verwendet. Da die mechanistische Beschreibung der OMPs sehr kompliziert werden kann, wird der Ansatz des mechanistischen Modells mit Methoden des maschinellen Lernens kombinieren.

Urban Resistom

The proposed project is a research cooperation between the TU Dresden’s chair of Urban Water Management and the chair of Hydrobiology. The project aims to detect and quantify the contribution of a city’s sewer system on the spread, dynamics and seasonality of antibiotics and antibiotic resistance genes within an urbanized water body. Antibiotic resistance represents a high risk to human health as well as the public health system, due to their presence in, or acquisition by, pathogenic and/or opportunistic bacteria occurring in the environment. One among other emission sources of resistant strains into the environment is the sewer network, which should be exemplary investigated at our study site, the Lockwitzbach catchment within the city of Dresden. Six monitoring stations are already in operation there, equipped with online sensors for water quantity. Four out of six are recording water quality, including auto samplers. Two of the stations are dedicated to river monitoring, four further stations were mounted within the sewer system at rain water outlets and at a combined sewer overflow (CSO) structures, draining into Lockwitzbach. This monitoring network will be used and enhanced for the detection and sampling of specific contributions from the urban drainage network on the presence and dispersion of antibiotic resistances. Event-based and seasonal sampling campaigns coupled with analysis on chemical and microbiological parameters should be performed on water and biofilm samples to detect contribution patterns from the sewer outlets together with seasonal trends in composition and presence of antibiotic resistance in the bacterial community. Furthermore, emission pathways and the remaining of heavy metals from the sewer network, that also select for antibiotic co-resistancence, will be under examination. A particle transport model for the sewer catchment will be coupled with a hydraulic model for stream and sewer network and calibrated to predict gained water quality parameters as well as antibiotic resistant gene discharge patterns. Different treatment methods will be implemented in the model and evaluated. These results will yield valuable information on possible emission scenarios and pathways, as well as their importance on the spread of antibiotic resistance in the aquatic environment.

Die Rolle von Viren beim mikrobiellen Schadstoffabbau

Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.

1 2 3 4 582 83 84