Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Die Transformation des Niederschlages in den Abfluss ist ein wichtiger Prozess des Wasserkreislaufes. Die zumeist verwendeten linearen Modellansätze können allerdings die hohe Nichtlinearität der Transformation in Raum und Zeit nicht abbilden. Grundlage für eine adäquate Abbildung ist das Wissen um die beeinflussenden Faktoren dieser Transformation. Das Ziel dieser Untersuchung ist die Identifikation der dominierenden physiographischen und klimatischen Faktoren sowie deren Auswirkung auf die räumlich-zeitliche Niederschlag-Abfluss (N-A)-Transformation. Für eine Vielzahl an Einzugsgebieten in Österreich werden N-A-Simulationen mit einem hydrologischen Modell durchgeführt, wobei die räumliche Auflösung variiert wird. Die räumlichen Niederschlags- und Abflussgradienten werden vergleichend betrachtet, sowie die Niederschlags- und Abflussspenden als Funktion der Einzugsgebietsskale. Die räumlichen Muster der Abflüsse werden mit denen der physiographischen und klimatischen Faktoren verglichen, um deren Einfluss auf den raum-zeitlichen Transformationsprozess zu bestimmen. Durch die hohe hydrologische Variabilität der betrachteten Einzugsgebiete vom Flachland bis zum Gebirge lassen sich verallgemeinerbare Aussagen erzielen. Die Innovation dieser Untersuchung liegt in der symmetrischen Betrachtung von Niederschlag und Abfluss in Hinblick auf die räumliche und zeitliche Variabilität, und in der gleichzeitigen Betrachtung der Extrema und des Wasserhaushaltes. Die gewonnenen Erkenntnisse sind wichtig für die Ermittlung zukünftiger Abflüsse bei knapper Datenlage und bei klimatischen Veränderungen.
Gletscher sind bedeutende Speicher organischen Kohlenstoffs (OC) und tragen zum Kohlenstofffluss vom Festland zum Meer bei. Aufgrund des Klimawandels wird eine Intensivierung dieser Flüsse erwartet. Der Export von OC aus Gletschern wurde weltweit in verschiedenen Regionen quantifiziert, trotzdem liegen keine vergleichbaren Daten für Island vor, obwohl sich dort die größte europäische außerpolare Eiskappe befindet. Um die globalen Prognosen der glazialen Kohlenstofffreisetzung zu verbessern, ist es das Ziel dieses Pilotprojektes, den Export von gelöstem und partikulärem organischen Kohlenstoff (DOC, POC) aus Islands Gletschern erstmalig zu quantifizieren und neue Kooperationen mit isländischen Wissenschaftler/innen für gemeinsame zukünftige Forschungsprojekte aufzubauen. Hierzu werden 4 Feldkampagnen zu unterschiedlichen Jahreszeiten sowie Treffen mit isländischen Kollegen/innen durchgeführt. In jeder Feldkampagne werden von 23 Gletschern der Eiskappen Vatnajökull, Langjökull, Hofsjökull, Myrdalsjökull und Snaeellsjökull Eisproben entnommen, um die biogeochemische Diversität des glazialen OC zu charakterisieren sowie dessen Export in Verbindung mit Massenbilanzen zu quantifizieren. In Gletscherbächen werden Wasserproben entnommen, um den Austrag von OC direkt am Gletschertor zu bestimmen sowie die Kohlenstoffflüsse entlang von 6 Gletscherbächen mit unterschiedlicher Länge (2 km bis 130 km) beginnend am Gletschertor bis zur Mündung zu untersuchen. Wie sich der Gletscherrückgang langfristig auf ein Gletscherbachökosystem auswirkt, wird durch die taxonomische Bestimmung von Makroinvertebraten im Vergleich zur Bestimmung von Prof. Gíslason aus dem Jahre 1997 beurteilt. Gleichzeitig werden in diesem Gletscherbach Wasserproben zum eDNA-Barcoding entnommen, um eine rasche und gering invasive Methode zur laufenden Beobachtung des zukünftigen Einflusses der Gletscherrückgang zu entwickeln. Vor Ort werden Wassertemperatur, elektr. Leitfähigkeit, pH-Wert, gelöster Sauerstoff, Trübung und Chlorophyll alpha gemessen. Innovative Labormethoden (HPLC, DNA-Barcoding, Picarro, GC, TOC) werden zur Analyse des OC im Eis und Wasser (DOC, DIC, POC, Fluoreszenz, Absorption), der Nährstoffe (P-PO4, N-NO3, N-NO2, N-NH4), stabiler Isotope (18O, 2H), Chlorophyll alpha, CO2 und aquatischen Organismen eingesetzt. Die Anwendung statistischer Methoden (Faktorenanalyse, Hauptkomponentenanalyse) basierend auf Anregungs- und Emissionsmatrizen erlauben die Quellen des OC im Gletschereis sowie -schmelzwasser zu bestimmen und die räumliche Vielfalt des OC zu erklären. Das gewonnene Wissen wird zur Verbesserung globaler Prognosen glazialer Kohlenstofffreisetzung beitragen sowie einen intensiven Einblick in das glaziale Ökosystem geben. Für die antragstellenden Nachwuchswissenschaftler/innen entstehen vielversprechende Kooperationen mit isländischen Wissenschaftlern/innen, fokussierend auf die zeitlichen sowie räuml. Aspekte der glazialen Kohlenstoffflüsse sowie das Ökosystem Gletscher
Die mikrobielle Umsetzung von organischem Material zu dem erneuerbaren Energieträger Methan ist eine bewährte und verbreitete Strategie der effektiven Abfallwirtschaft. In einem solchen methanproduzierenden Milieu nutzen elektrisch verbundene Bakterien und Archaeen direkten Interspezies-Elektronentransfer (DIET), als Alternative zum Interspezies-Formiat- und Wasserstofftransfer (IHT). Grundlegende Aspekte der mikrobiellen Ökologie in Bezug auf DIET sind dabei jedoch noch unerforscht, insbesondere der Stellenwert für die Biogasproduktion. Bis jetzt haben sich Studien zum Großteil auf DIET in Ko-Kulturen von wenigen Modellorganismen beschränkt, die für die Abwasserbehandlung in UASB-Reaktoren (Upflow Anaerobic Sludge Blanket) eine Rolle spielen. Wir beabsichtigen weithin anwendbare Erkenntnisse über die Zusammenhänge der syntrophen mikrobiellen Gemeinschaft und dessen Funktion in mesophilen und thermophilen Biogasreaktoren mit Hilfe moderner molekularbiologischer und mikrobiologischer Methoden zu generieren, um letztendlich eine höhere Prozessstabilität und Effizienz zu ermöglichen. Zentrale Ziele sind die Identifizierung neuer Organismen die an DIET beteiligt sind und das Verständnis der zugrundeliegenden genetischen Mechanismen. Der Schwerpunkt wird auf Bioabfall vergärende Anlagen liegen, die sich wesentlich von mesophilen UASB Reaktoren durch Konstruktion, Betriebsweise, Temperatur und Substratzusammensetzung unterscheiden. Wir vermuten, dass DIET ein weit verbreiteter Alternativprozess zum IHT bei der anaeroben Vergärung von Biomasse ist, wobei beide Prozesse wahrscheinlich parallel ablaufen. In dem vorgeschlagenen Projekt wird DIET erstmals in thermophilen aber auch in mesophilen Systemen Gegenstand der Forschung sein. Ein weiteres Ziel ist die Identifizierung neuer Substrate, die von den syntrophen Konsortien während DIET umgesetzt werden können. Hier wird der Fokus auf syntrophe Propionat- und Butyratoxidierer liegen, die für den anaeroben Abbau von organischem Material eine Schlüsselrolle spielen. Mittels Metagenomik wird das Stoffwechselpotential rekonstruiert und Genexpressionsmuster im Zusammenhang mit IHT und DIET werden mittels Transkriptomik untersucht. DIET ist möglicherweise vorteilhaft für die Stabilität des Vergärungsprozesses, da die Produktion von Wasserstoff umgangen wird, welcher schon in geringer Konzentration die Oxidation von kurzkettigen Fettsäuren inhibieren kann. Deshalb planen wir physiologische Vorteile von DIET gegenüber IHT in Anreicherungskulturen zu untersuchen. Die zu erwartenden Ergebnisse sind essentiell um das Potential der Biogasproduktion im vollen Umfang auszuschöpfen. Darüber hinaus werden die Ergebnisse auch für andere Forschungsgebiete relevant sein, wo elektrisch verbundene Mikroorganismen eine Rolle spielen, beispielsweise bei der Minimierung von Treibhausgasemission in methanogenen Habitaten oder bei der Nutzung in mikrobiellen Brennstoffzellen.
Der biogeochemische Eisenkreislauf stellt ein wichtiges Reaktionsnetzwerk dar, welches einen direkten Einfluss auf umweltrelevante Prozesse in Sedimenten hat. Eisen(II)-oxidierende und Eisen(III)-reduzierende Bakterien kontrollieren zu großen Teilen die (Im)Mobilisierung von Eisen in Sedimenten. Unser klassisches Verständnis vom sedimentären Eisenkreislauf beschreibt, dass die Hauptsubstratquelle (Eisen(II) für Eisen(II)-oxidierende Bakterien die mikrobiellen Eisen(III)-reduktion ist, welcher typischerweise in tieferen Zonen von Redox-stratifizierten Sedimenten ansässig ist. Bislang wurde der Prozess der Eisen(III)-Photoreduktion nicht als signifikante Eisen(II) Quelle in limnische Sedimente betrachtet. In dem beantragten Forschungsprojekt, stellen wir die Hypothese auf, dass die Photoreduktion von Eisen(III) in limnischen Sedimenten eine zusätzliche Eisen(II)-Quelle für Eisen(II)-oxidierende Bakterien in den obersten (teilweise) oxischen und Lichtdurchfluteten Sedimentschichten darstellt. Zu diesem Zweck werden wir hochaufgelöste Licht und geochemische Messungen (O2, gelöstes Fe(II), pH, H2O2) mit Mikrosensoren durchführen und die Eisenmineralogie als Funktion der Lichtqualität (Wellenlänge) und Lichtquantität (Intensität) in Süßwassersedimenten bestimmen. Darüber hinaus werden wir den Einfluss von natürlichen organischen Material auf die Eisen(III)-Photoreduction untersuchen. Zusätzlich werden wir die Rolle von reaktiven Sauerstoffspezies auf die Bioverfügbarkeit von produzierten Eisen(II) in oxischen Sedimenten bestimmen. Dieses Forschungsprojekt untersucht einen Prozess der bislang in Sedimenten vernachlässigt wurde und öffnet die Türen zu einem neuen Verständnis des biogeochemischen Eisenkreislaufs und den assoziierten Eisen(II) Stoffflüssen entlang sedimentärer Redoxgradienten.
Fließgewässer tragen wesentlich zum globalen organischem Kohlenstoffkreislauf und zu der Emission der klimarelevanten Gase Kohlendioxid (CO2) und Methan (CH4) bei. Die Dynamik der CO2-Emissionen wurde mit dem Wasserabfluss und der Hydrologie des Einzugsgebietes in Verbindung gebracht, während CH4 mit dem Biom des Fließgewässers und der umgebenden Landnutzung korrelierte. Die Mehrzahl dieser Studien wurde jedoch an ganzjährig wasserführenden (perennierenden) Fließgewässern und unter stabilem Wasserabfluss durchgeführt, mit einer nur begrenzten Abdeckung von Hochwasserepisoden (Niederschlagsereignissen). Bislang sind daher Gasemissionen von nicht ganzjährig wasserführenden (intermittierenden) Fließgewässern nicht ausreichend in den lokalen und regionalen Kohlenstoff-Budgets enthalten. Diese erlangen jedoch erhöhte Bedeutung, da die aktuellen Prognosen zum Klimawandel darauf hindeuten, dass das Ausmaß und die Häufigkeit schwerer klimatischer Ereignisse wie Überschwemmungen und Dürre wahrscheinlich zunehmen wird. Das vorgeschlagene Projekt zielt darauf ab, diese wichtige Forschungslücke zu schließen, indem die treibenden Kräfte und die jahreszeitliche Relevanz der CO2- und CH4-Emissionen nicht nur in perennierenden sondern auch in intermittierenden Fließgewässern untersucht werden sollen. Das erste Ziel des Projekts ist die Quantifizierung der lokalen Relevanz von ereignisgesteuerten CO2- und CH4-Emissionen aus perennierenden Fließgewässern mittels einer Kombination von i) State-of-the-art Techniken zur Quantifizierung von Gasflüssen über die Wasser-Luft-Grenzfläche, ii) Sensoren nach dem Stand der Technik und In-situ-Gasmessungen und iii) etablierten Verfahren zur Bewertung der mikrobiellen Gemeinschaft und potentieller metabolischer Aktivität Das zweite Projektziel ist die Untersuchung des Kohlenstoff-Kreislaufs und der Gasemissionen von kontinentalen, nicht-perennierenden Fließgewässern, mit Schwerpunkt auf Trocknungs- und Wiederbefeuchtungszyklen. Das Projekt konzentriert sich auf das Einzugsgebiet des Flusses Queich (271 km2) in Rheinland-Pfalz. Der Fluss entspringt in einem natürlichen Reservoir (Biosphärenreservat Pfälzerwald) und fließt entlang eines ausgeprägten Landschaftsgefälles (natürlich bis anthropogen beeinflusst). Diese Umgebung bietet ein ideales Untersuchungsgebiet um die Rolle der Hydrologie und der Bodennutzung für kohlenstoffrelevante Gasemissionen aus Fließgewässern zu erforschen. Das übergeordnete Ziel des Projekts ist die Quantifizierung der Beiträge von episodischen (ereignisbasierten) Einflüssen und von saisonalen Trocknungs-Wiederbefeuchtungszyklen zum lokalen und regionalen Kohlenstoff-Kreislauf. Die Projektdaten werden mit zusätzlichen hydrologischen und biogeochemischen Daten in bestehenden geografischen Informationssystemen kombiniert, um die Entwicklung von Upscaling-Verfahren zu ermöglichen, die die oben genannten Beiträge schließlich in umfangreiche Budgets für den Kohlenstoffkreislauf überführen können.
Ziel des Projektes ist es, die Bedeutung wandernder Sandrippel für das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus in Fließgewässerökosystemen aufzuklären. Die etablierten Konzepte zur Sedimentstörung in der Fließgewässerökologie fokussieren auf katastrophale Hochwasserereignisse, die tiefe Erosionen und drastische Verlagerungen der Sedimente bewirken. In Gewässern mit einem hohen Anteil sandiger Sedimente kommt es allerdings bereits bei geringen Abflüssen zu einer periodischen Umlagerung der Bettsedimente in Form wandernder Sandrippel. Diese Sandrippel bedecken, abhängig von der Sedimentfracht, zunehmende Bereiche der Gewässersohle, streckenweise sogar bis zu 100%. Aufgrund des weltweit zunehmenden Feinsedimenteintrags aus den Einzugsgebieten sind Sandrippel ein weit verbreitetes Phänomen in Bächen und Flüssen. Dennoch gibt es zum Einfluss der Sandrippel auf die Fließgewässerökologie nur sehr wenige Untersuchungen, deren Ergebnisse sich teilweise widersprechen. Wir postulieren, dass wandernde Sandrippel abhängig von ihrem Deckungsgrad auf der Sohle das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus des gesamten Gewässers bestimmen. In originären experimentellen Ansätzen untersuchen wir i) die Auswirkungen der Sedimentumlagerung innerhalb wandernder Sandrippel, ii) die Interaktion der Rippelbereiche mit den umliegenden stabilen Sohlbereichen eines Gewässerabschnitts und den Gesamtmetabolismus im Abschnitt und iii) den Return (= Dynamik nach Beendigung der Sedimentumlagerung). Die Bewegung der Sande in wandernden Sandrippeln wird in einer Mikrokosmenanlage simuliert und der Einfluss von Umlagerungsfrequenz, Licht- und Nähstoffregime auf die Respiration, die Primärproduktion und das mikrobielle Nahrungsnetz untersucht. Die Auswirkungen zunehmender Bedeckung der Sohle mit wandernden Sandrippeln auf nahe stabile Sohlbereiche und den Gesamtmetabolismus von Gewässerabschnitten werden in 16 Rinnen einer Fließgewässersimulationsanlage erforscht. In diesen Experimenten werden zudem der Return von mikrobiellen Gemeinschaften und Gesamtmetabolismus mit erfasst. Die Experimente werden ergänzt und validiert durch in situ Messungen in Bächen und Flüssen. Dabei werden die abiotisch Bedingungen im Porenraum wandernder Sandrippel und naheliegender stabiler Sande sowie der lokale Metabolismus mit einer neu entwickelten Sonde gemessen und das mikrobielle Nahrungsnetz und der Kohlenstofftransfer in diesen Sohlbereichen erfasst. Die Synthese der Ergebnisse wird Klarheit schaffen über die Bedeutung wandernder Sandrippel für die mikrobiellen Gemeinschaften und den Stoffumsatz in Fließgewässern. Die zu erwartenden Erkenntnisse werden auch eine bessere Bewertung wandernder Sandrippel ermöglichen und sind somit Grundlage für Schutz und Management der Gewässerfunktionen.
Die Rolle dichtegetriebener CO2-Einlösung in Karstsystemen ist bislang nicht gut verstanden. Es ist bekannt, dass in Wasser gelöstes CO2 die Verkarstung antreibt, und dass dieses CO2 zu einem wesentlichen Teil biogenen Ursprungs ist; produziert von Mikroorganismen im Boden oder durch Wurzelatmung. Karbonatlösung findet vorwiegend oberflächennah statt. Niederschlagswasser, welches durch die ungesättigte Bodenzone sickert und mit CO2 angereichert wird, führt zu sogenannter Denudation (Absenkung der Landoberfläche). Aber warum wachsen Hohlräume auch tief im Innern des Gesteins? Der erste Erklärungsansatz ist die Mischungskorrosion, welche darauf beruht, dass beim Zusammentreffen zweier unterschiedlicher Wasserströme immer ein kalkaggressives Mischwasser entsteht. Der zweite Mechanismus beruht auf nichtlinearer Lösungskinetik, wobei angenommen wird, dass Wasser einen Teil seiner „Lösungskraft“ bis tief ins Gestein hinein behält. Unsere neue These behandelt einen zusätzlichen, dritten, und bislang unterschätzten Mechanismus, der Wasserkörper mit CO2 anreichern kann: dichtegetriebene Einlösung. In einem jüngst publizierten Artikel konnten wir zeigen, dass dichtegetriebene Einlösung am Karstwasserspiegel ruhende Wasserkörper mit CO2, und damit mit neuer „Lösungskraft“, anreichern kann, und zwar auf einer Zeitskala von Wochen bis Monaten. Was bislang aufgrund von enormer Komplexität nicht untersucht wurde, ist das reaktive Transportsystem infolge der Interaktion von dichtegetriebener CO2-Einlösung mit Kalkgestein. Dichtegetriebene CO2-Einlösung findet zum Beispiel in einer Kluft von gegebener Öffnungsweite statt. Diese Öffnungsweite beeinflusst die Strömung und wächst durch Karbonatlösung an, wodurch ein womöglich selbstverstärkender Prozess mit weiterer Einlösung in Gang kommt. Übergeordnet soll dieses Projekts dazu beitragen, die Rolle dichtegetriebener CO2-Einlösung im Vergleich zu bereits bekannten Mechanismen der Mischungskorrosion und der nichtlinearen Lösungskinetiken besser zu verstehen. Um deren Interaktion auf geologischen Zeitskalen zu verstehen, ist einzig die Modellierung zweckdienlich, validiert mit anspruchsvollen, gut kontrollierten Labor- und Feldexperimenten. Das numerische Modell löst die Navier-Stokes-Gleichungen, wobei die Dichte abhängig von den Konzentrationen der gelösten Komponenten ist. Die Validierung des Modells soll die Kopplung von reaktiver Strömung, angetrieben durch dichtegetriebene Lösung im Kalk-Kohlensäure-System, mit dadurch verursachter Morphologieänderung der Kalkgesteinsoberflächen berücksichtigen. Zusammengefasst sollen- numerische Modelle durch systematische Validierung der Simulationsplattform DuMux mit Daten aus kontrollierten Experimenten verbessert werden.- CO2-Eintragsraten in Karstwasser infolge von dichtegetriebener Einlösung und Reaktion an Kalkgesteinsoberflächen quantifiziert werden.- die entsprechenden Karbonatlösungsraten und die Veränderungen auf der Kalkgesteinsoberfläche quantifiziert werden.
Geklüftete Festgesteine haben eine große Bedeutung als Grundwasserleiter und für die petrothermale Geothermie. Eine Herausforderung ist es immer, die strukturellen Merkmale der Festgesteine und jene Kluftsysteme zu erkunden, die für Fließ- und Transportprozesse bedeutend sind. Je genauer die Charakterisierung erfolgt, umso verlässlicher können diese Prozesse mit numerischen Modellen simuliert werden. Zwar gibt es mit numerischen Modellen beeindruckende Möglichkeiten zur effizienten, realistischen, hochauflösenden und gekoppelten Simulation, allerdings lässt sich der Datenbedarf solcher Modelle durch die verfügbaren Erkundungsverfahren kaum decken. Besonders jene standortspezifischen Eigenschaften wie die Kluftgeometrien erfordern angepasste Erkundungsverfahren. Zudem werden nach erfolgreicher Erkundung auch effiziente Methoden benötigt, um die erhobenen Daten in das numerische Modell zu integrieren. Das vorliegende Projekt widmet sich der Anwendung von tomographischen Bohrlochtests mit Wasser (Druck) und Tracer (Salztracer, thermisch) zur Charakterisierung von jenen für Grundwasserfluss und Transport relevanten Klüften. Über die Kombination von Multi-Level-Tests mit mehreren Bohrlöchern wird die räumliche Rekonstruktion von Kluftgeometrien ermöglicht. Eine zentrale Innovation ist die Inversion der aufgezeichneten tomographischen Signale über ein flexibles Bayessches Verfahren, das iterativ Kluftorientierungen, -längen und Kluftdichte anpasst (Inversmodell). Es wird kombiniert mit einer effizienten numerischen Implementierung und Simulation des diskreten Kluftnetzwerks (Vorwärtsmodell). Aufbauend auf den vielversprechenden Ergebnissen aus Vorarbeiten wird das vorgestellte Diskrete-Kluftnetzwerk-Inversionsverfahren hier weiterentwickelt und zur robusten Schätzung von zwei- (2D) und dreidimensionalen (3D) Kluft-Wahrscheinlichkeiten verwendet. Dies wird sowohl über die Anwendung von synthetischen Datensätzen aus virtuellen Bohrlochtests erreicht, als auch mithilfe von Druck- und thermischen Tracerdaten aus in-situ-Experimenten in Kluftgesteinen.
Das XEROS-Projekt zielt darauf ab, die Extreme der jüngsten europäischen Dürreereignisse im Vergleich zu einer 500-jährigen Benchmark-Periode durch ein verbessertes Prozessverständnis der Entstehung von Dürren zu bewerten. Dabei besteht die Möglichkeit, dass das Ausmaß der europäischen Dürreereignisse seit Beginn des 21. Jahrhunderts, die zu einer Reihe von extrem heißen und trockenen Sommern geführt haben, geringer ist als bisher angenommen. Die zugrundeliegende Analyse wird eine Multi-Modell-Rekonstruktion der hydrologischen Variablen unter Verwendung von paläoklimatischen Rekonstruktionsdaten verwenden. Zur Abschätzung der räumlich-zeitlichen Dynamik der Oberflächen- und Untergrundwasserkomponenten werden aktuelle hydrologische Modelle und Landoberflächenmodelle verwendet. Dies ermöglicht ein besseres Verständnis der historischen Charakterisierung von großen Dürreereignissen und eine explorative Analyse der für die Entstehung von Dürren maßgeblichen atmosphärischen Parameter. Ein besseres Verständnis der Unsicherheiten in der Vergangenheit wird es ermöglichen, zukünftige hydroklimatische Bedingungen in ganz Europa zuverlässiger zu prognostizieren. Dies wird durch die Einschränkung der (zukünftigen) Klimamodellsimulationen anhand der verfügbaren (vergangenen) beobachteten und rekonstruierten hydroklimatischen Variablen erreicht. Der große Vorteil dieses Projekts besteht darin, dass die Modellierungs-infrastruktur kürzlich von unserem Team für Europa aufgebaut wurde. Darüber hinaus zielt dieses Projekt darauf ab, zwei Forschungsgruppen mit komplementären wissenschaftlichen Kompetenzen zusammenzubringen: die in Deutschland ansässigen Bewerber (UFZ) verfügen über eine starke Expertise im Verständnis und der Modellierung des komplexen Zusammenspiels von hydrologischen Prozessen zwischen Land und der Oberfläche, während die in Tschechien ansässigen Bewerber (CULS) über einen starken wissenschaftlichen Hintergrund in der statistischen Analyse der hydrologischen und klimatischen Variabilitäten verfügen.
| Origin | Count |
|---|---|
| Bund | 838 |
| Type | Count |
|---|---|
| Förderprogramm | 838 |
| License | Count |
|---|---|
| offen | 838 |
| Language | Count |
|---|---|
| Deutsch | 634 |
| Englisch | 614 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 819 |
| Topic | Count |
|---|---|
| Boden | 820 |
| Lebewesen und Lebensräume | 736 |
| Luft | 528 |
| Mensch und Umwelt | 838 |
| Wasser | 823 |
| Weitere | 838 |