Einige persistente und mobile organische Mikroschadstoffe (OMP) wurden kürzlich in aquatischen Umgebungen im Bereich von ng/L bis µg/L gefunden. Dies ist wahrscheinlich auf ihre bemerkenswert hohe Mobilität zurückzuführen, die zu einer starken Neigung zur Dispersion in Wasserressourcen führt und somit Herausforderungen bei der Sanierung darstellt. Die gesteigerten Nachweisraten dieser OMP resultieren aus den neuesten Fortschritten in quantitativen analytischen Methoden. Bewirtschaftete Grundwasseranreicherungssysteme (MAR), einschließlich Uferfiltration (BF) und künstliche Grundwasseranreicherung, werden seit über 150 Jahren erfolgreich in Europa sowie in anderen Teilen der Welt zur Trinkwasserversorgung eingesetzt. Zahlreiche aktuelle Studien haben die Schicksale (Persistenz und Biotransformation) verschiedener OMP in Laborversuchen zur Simulation von BF untersucht. Jedoch bleibt das Schicksal vieler nachgewiesener OMP in Oberflächengewässern und MAR-Systemen unbekannt, insbesondere unter realistischen und variablen klimatischen Bedingungen wie Temperaturschwankungen, UV-Strahlung und Niederschlag. Weitere Forschung ist erforderlich, um die Wirksamkeit von MAR bei der Entfernung persistenter und mobiler OMP sowie die Anpassungsfähigkeit von MAR-Systemen an den Klimawandel zu untersuchen. Dieses Projekt zielt darauf ab, die Auswirkungen des Klimawandels (einschließlich Temperaturschwankungen, Fluktuationen im Wasserfluss und Niederschlag/Abfluss) auf das Schicksal neu auftretender Schadstoffe sowohl in Oberflächengewässern als auch in BF-Systemen zu untersuchen. Die Studie wird den Einfluss von partikulärer organischer Materie, verschiedenen Wasserqualitätsparametern (wie Trübung, gelöste organische Substanz, Eisen, Mangan und Nitrat), hydraulischer Verweilzeit und Redox-Bedingungen auf die Entfernung von OMP untersuchen. Darüber hinaus wird auch die Entfernung von OMP durch Pflanzen untersucht werden. Chargen, Laborversuche, Versuche unter realistischen Bedingungen und Mesokosmenexperimente werden eingesetzt, um die Schicksale von OMP in BF zu bewerten. Darüber hinaus wird die Mobilität von OMP in Oberflächengewässern durch Mesokosmen-Teichexperimente bewertet. Die aus diesen Experimenten gesammelten Daten werden systematisch genutzt, um ein Vorhersagemodell mithilfe eines maschinellen Lernansatzes zu entwickeln und Einblicke in die Schicksale von OMP zu bieten.
Binnengewässer sind wichtiger Teil des globalen Kohlenstoffkreislaufs, da sie der terrestrischen Biosphäre entstammende Biomasse (organisches Material, OM) aufnehmen und umsetzen. Gelöstes OM beeinflusst Farbe und Zustand der Gewässer und subventioniert als Energieträger das aquatische Nahrungsnetz. Der Umsatz des OM wird von dessen oxidativer Mineralisation getrieben, daher wird die Sauerstoffverfügbarkeit als kritischer Einflussfaktor gesehen. Jedoch findet auch in sauerstofffreien, anoxischen Zonen rege Produktion, Mineralisation und Transformation von OM statt. Die chemische Zusammensetzung des OM wird in anoxischen Zonen auf spezifischen Reaktionspfaden transformiert. Zu diesen Pfaden gehört (1.) der bevorzugte Abbau von energiereichen OM-Fraktionen, (2.) die Anreicherung von mikrobiellem OM, sowie (3.) der Einbau von anaerob entstandenem Wasserstoff in OM. Anoxische Zonen sind in kontinentalen und marinen Gewässern bereits heute weit verbreitet. Ihre weitere Ausdehnung ist vorhergesagt. Trotzdem ist unklar, unter welchen Bedingungen die anoxischen Reaktionspfade aktiviert werden und wie sie gemeinsam den Kohlenstoffkreislauf und aquatische Ökosystemfunktionen beeinflussen. Ziel dieses Projekts ist es daher, das Zusammenspiel anoxisch ablaufender OM Transformationen aufzuklären. Zu diesem Zweck entwickeln wir eine OM Charakterisierung basierend auf der (Gibbs-) Energie seiner molekularen Bestandteile. Die Energieeigenschaften des OM dienen als Bezugssystem, mit dem sich aktive Reaktionspfade einschließlich ihre spezifischen Einflussfaktoren unterscheiden lassen. Auf Grundlage dieses Bezugssystems können wir die orts- und substratspezifischen Faktoren identifizieren, die mit der molekulare OM Zusammensetzung variieren. Entlang aquatischer Netzwerke werden wir dann analysieren, wie anoxische Zonen einen spezifischen Fingerabdruck im OM formen. Die Ergebnisse dieses Projekts werden eine neuartige, energiezentrierte Charakterisierung von organischem Material begründen. Damit können wir langfristig unser Verständnis des Umweltverhaltens von OM, insbesondere unter anoxischen Bedingungen, verbessern.
Der Klimawandel verschärft die Probleme der Verfügbarkeit von Trinkwasserressourcen, die bereits für 80% der Weltbevölkerung bedroht sind. Es ist von daher wichtig, Systeme sorgfältig zu konzipieren, die Wasser mit hoher Zuverlässigkeit, langfristiger Nachhaltigkeit und niedrigere Kosten bereitstellen können. Außerdem erzeugt die Energiewende in der nahen Zukunft stark schwankende Strompreise was sich auf die Gestaltung, den Betrieb und die Kosten von Wasserversorgungssystemen auswirken wird. In der Literatur sind erste koordinierte Planungsansätze für Wasser- und Energiesysteme aufgetaucht. Diese jedoch begrenzen sich hauptsächlich auf die Bewertung einzelner Wasseranlagen. Das Verständnis komplexerer (z.B. aus mehreren Quellen bestehender) Wassersysteme, die langfristige Investitionsplanung von gekoppelten Wasser-Energie-Systemen und die langfristige Nachhaltigkeit unter dem Einfluss des Klimawandels sind entscheidende Aspekte, die mehr Forschung erfordern. Unser übergreifendes Ziel ist die Verbesserung des Planungsprozesses der Infrastruktur und des Betriebs von Wasserversorgungssystemen, wobei der Schwerpunkt auf der Wasserentnahme und -produktion aus verschiedenen Quellen liegt. Diese Methoden zur Entscheidungsfindung werden auf die Ressourcenknappheit, die Klimaunsicherheit und die fortschreitende Energiewende zugeschnitten und gleichzeitig die Komplexität von Wassersystemen mit mehreren Quellen berücksichtigen. Unser Vorhaben ist in drei Arbeitspakete strukturiert. Im ersten werden wir Methoden zur Planung des kurzfristigen (Wochen) Betriebs komplexer Systeme der lokalen Wasserversorgung vorantreiben. Dafür werden wir neuartige multikriterielle Optimierungsmodelle (Wasserqualität, Kosten) für Wasserversorgungssysteme mit mehreren Quellen entwickeln, die in intelligente Energiemärkte eingebunden sind. Maschinelles Lernen zur Vorhersage des Wasserbedarfs und der Stromkosten für die Wasserproduktion wird in dieses Optimierungsproblem eingebettet. Im zweiten Arbeitspaket werden wir Optimierungsmodelle für eine koordinierte Investitionsplanung für die Infrastruktur von Wasser-Energie-Systemen entwickeln. Diese werden so konzipiert sein, dass sie gegen Dürren unterschiedlicher Intensität und Dauer abgesichert sind, wie die Megadürren, die vielen Ländern in jüngster Zeit widerfahren sind. Im dritten Arbeitspaket werden wir unsere Methoden erweitern, um mit tiefen (d.h. schwer quantifizierbaren) Unsicherheiten umzugehen, die das langfristige (Jahrzehnte) Wassermanagement prägen. Unsere dazu entwickelten Methoden werden sich auf adaptive Investitionsstrategien konzentrieren. Die Ergebnisse unserer Grundlagenforschung werden Konzepte und Methoden für ein nachhaltiges und kosteneffizientes Wassermanagement sein, einschließlich der Betriebs- und Infrastrukturplanung. Die Weiterentwicklung dieser Planungsmethoden wird dazu beitragen, die Wasserversorgungssysteme auf den Klimawandel und auf die Gefährdung der Versorgungssicherheit vorzubereiten.
Die Rolle dichtegetriebener CO2-Einlösung in Karstsystemen ist bislang nicht gut verstanden. Es ist bekannt, dass in Wasser gelöstes CO2 die Verkarstung antreibt, und dass dieses CO2 zu einem wesentlichen Teil biogenen Ursprungs ist; produziert von Mikroorganismen im Boden oder durch Wurzelatmung. Karbonatlösung findet vorwiegend oberflächennah statt. Niederschlagswasser, welches durch die ungesättigte Bodenzone sickert und mit CO2 angereichert wird, führt zu sogenannter Denudation (Absenkung der Landoberfläche). Aber warum wachsen Hohlräume auch tief im Innern des Gesteins? Der erste Erklärungsansatz ist die Mischungskorrosion, welche darauf beruht, dass beim Zusammentreffen zweier unterschiedlicher Wasserströme immer ein kalkaggressives Mischwasser entsteht. Der zweite Mechanismus beruht auf nichtlinearer Lösungskinetik, wobei angenommen wird, dass Wasser einen Teil seiner „Lösungskraft“ bis tief ins Gestein hinein behält. Unsere neue These behandelt einen zusätzlichen, dritten, und bislang unterschätzten Mechanismus, der Wasserkörper mit CO2 anreichern kann: dichtegetriebene Einlösung. In einem jüngst publizierten Artikel konnten wir zeigen, dass dichtegetriebene Einlösung am Karstwasserspiegel ruhende Wasserkörper mit CO2, und damit mit neuer „Lösungskraft“, anreichern kann, und zwar auf einer Zeitskala von Wochen bis Monaten. Was bislang aufgrund von enormer Komplexität nicht untersucht wurde, ist das reaktive Transportsystem infolge der Interaktion von dichtegetriebener CO2-Einlösung mit Kalkgestein. Dichtegetriebene CO2-Einlösung findet zum Beispiel in einer Kluft von gegebener Öffnungsweite statt. Diese Öffnungsweite beeinflusst die Strömung und wächst durch Karbonatlösung an, wodurch ein womöglich selbstverstärkender Prozess mit weiterer Einlösung in Gang kommt. Übergeordnet soll dieses Projekts dazu beitragen, die Rolle dichtegetriebener CO2-Einlösung im Vergleich zu bereits bekannten Mechanismen der Mischungskorrosion und der nichtlinearen Lösungskinetiken besser zu verstehen. Um deren Interaktion auf geologischen Zeitskalen zu verstehen, ist einzig die Modellierung zweckdienlich, validiert mit anspruchsvollen, gut kontrollierten Labor- und Feldexperimenten. Das numerische Modell löst die Navier-Stokes-Gleichungen, wobei die Dichte abhängig von den Konzentrationen der gelösten Komponenten ist. Die Validierung des Modells soll die Kopplung von reaktiver Strömung, angetrieben durch dichtegetriebene Lösung im Kalk-Kohlensäure-System, mit dadurch verursachter Morphologieänderung der Kalkgesteinsoberflächen berücksichtigen. Zusammengefasst sollen- numerische Modelle durch systematische Validierung der Simulationsplattform DuMux mit Daten aus kontrollierten Experimenten verbessert werden.- CO2-Eintragsraten in Karstwasser infolge von dichtegetriebener Einlösung und Reaktion an Kalkgesteinsoberflächen quantifiziert werden.- die entsprechenden Karbonatlösungsraten und die Veränderungen auf der Kalkgesteinsoberfläche quantifiziert werden.
Die Messung von Substanz-spezifischer Stabilisotopenfraktionierung in Grundwasserschadstoffen (Compound-Specific Isotope Analysis, CSIA) ist ein etablierter Indikator für Abbau stromabwärts von Kontaminationsquellen in Altlasten. Laufende Forschungsarbeiten konzentrieren sich darauf, diesen Ansatz nun auch für diffuse (d.h. nicht Punktquellen) Kontaminanten wie das Pestizid Atrazin im niedrigen µg/L bis sub-µg/L Konzentrationsbereich vorzuspuren. Hier bietet CSIA einen machtvollen Ansatz, Abbau sogar über Zeitskalen sichtbar zu machen, die sonst Untersuchungen gar nicht zugänglich wären, oder wenn fluktuierende Konzentrationen eine Abschätzung erschweren. Der Ansatz beruht auf der Beobachtung, dass sich Isotopenwerte von Atrazin während Biotransformation ändern und somit ein Konzentrations-unabhängiges Indiz für Abbau liefern. Für einen Durchbruch von Spurenschadstoff CSIA im Feld sind jedoch kritische methodologische Fortschritte nötig. (1) Niedrige Schadstoffkonzentrationen (sub-µg/L) in Grundwasser treten in Gegenwart viel höherer Konzentrationen (mg/L) von gelöstem organischen Kohlenstoff (DOC) auf, was selektive und sensitive Spurenschadstoff CSIA stark limitiert. Mit Bakkours Expertise in selektiven Anreicherungs- und Aufreinigungstechniken zielen wir auf entscheidende Verbesserungen für empfindliche CSIA von Spurenschadstoffen in Grundwasserproben. (2) Isotopenfraktionierung in Laborexperimenten wird typischerweise bei viel höheren Konzentrationen (mg/L) als im Grundwasser (sub-µg/L) bestimmt. Mit Elsners Expertise in Chemostat und Fed-Batch Experimenten werden wir Isotopenfraktionierung von Atrazin im niedrigen Konzentrationsregime hinterfragen, als belastbare Basis für Feldinterpretationen. (3) Um als Indikator für Spurenschadstoffabbau zu dienen, müssen die Abbau-induzierten Änderungen in Isotopenwerten größer sein als die Bandbreite in kommerziellen Produkten. In Israel, wo Atrazin noch routinemäßig eingesetzt wird, werden wir daher in einer gemeinsamen Anstrengung Atrazinisotopenwerte (d13C, d15N) im Küstenaquifer analysieren und mit kommerziellen Atrazinprodukten vergleichen. (4) Um solche Isotopen-basierten Feldergebnisse kritisch zu hinterfragen, nutzen wir Bernsteins Expertise in mikrobiologischen Methoden der Hydrologie. Die vereinten Fortschritte werden es uns ermöglichen, die Anwendbarkeit von Spurenschadstoff CSIA für niedrige Konzentrationen im Grundwasser grundlegend zu erforschen.
The decomposition of terrestrial organic material such as leaf litter represents a fundamental ecosystem function in streams that delivers energy for local and downstream food webs. Although agriculture dominates most regions in Europe and fungicides are applied widely, effects of currently used fungicides on the aquatic decomposer community and consequently the leaf decomposition rate are largely unknown. Also potential compensation of such hypothesised adverse effects due to nutrients or higher average water temperatures associated with climate change are not considered. Moreover, climate change is predicted to alter the community of aquatic decomposers and an open question is, whether this alteration impacts the leaf decomposition rate. The current projects follows a tripartite design to answer these research questions. Firstly, a field study in a vine growing region where fungicides are applied in large amounts will be conducted to whether there is a dose-response relationship between the exposure to fungicides and the leaf decomposition rate. Secondly, experiments in artificial streams with field communities will be carried out to assess potential compensatory mechanisms of nutrients and temperature for effects of fungicides. Thirdly, field experiments with communities exhibiting a gradient of taxa sensitive to climate change will be used to investigate potential climate-related effects on the leaf decomposition rate.
Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Da sich der Klimawandel und die menschlichen Aktivitäten verstärken, wird es erwartet, dass die terrestrischen Einträge von gelöstem organischem Material (Disssolved Organic Matter, DOM) in Seen zunehmen. Diese erhöhten Einträge führt zu einer braunen Verfärbung des Wassers und einer verringerten Lichtdurchlässigkeit in der Wassersäule, was Herausforderungen für die Seenökosysteme darstellt sowie ihren gesellschaftlichen Wert beeinträchtigt. Aquatische Mikroorganismen können besonders anfällig für die Verfärbung von Seen sein, mit Folgen für die Primärproduktion, Nahrungsnetze und das Auftreten von giftigen Algenblüten. Unsere Fähigkeit, die ökologischen Folgen der Verfärbung von Seen vorherzusagen, wird jedoch durch begrenztes Wissen über die Reaktionen der mikrobiellen Gemeinschaft, sowie die Widerstandsfähigkeit dieser Gemeinschaften gegenüber Umweltveränderungen beeinträchtigt. Wir schlagen vor, dass die Reaktion der aquatischen Mikroorganismen auf Umweltstress stark von Interaktionen mit anderen Mitgliedern der Gemeinschaft beeinflusst wird. Daher wird dieses Projekt ökologische Interaktionen zwischen einzelligen Algen (Phytoplankton) und Bakterien in Seen untersuchen, die erhöhte DOM Einträge und reduzierte Lichtverfügbarkeit erleben. Während mikrobielle Interaktionen hauptsächlich in vereinfachten Modelsystemen untersucht wurden, bleibt die Empfindlichkeit von algenassoziierten Bakteriengemeinschaften gegenüber Umweltstressoren und deren Auswirkungen auf die physiologischen Eigenschaften der Algen weitgehend unerforscht. Um diese Lücke zu schließen, unser Ziel ist es, zu untersuchen, wie sich die Verfärbung des Wassers auf Folgendes auswirkt: 1. die physiologischen Reaktionen des Phytoplanktons, 2. den Transfer von DOM zwischen Algen und assoziierten Bakterien und 3. die Zusammensetzung der algenassoziierten Bakteriengemeinschaften. Damit wollen wir die wechselseitigen Einflüsse zwischen Phytoplankton und zugehörigen Bakterien sowie die Kohlenstoffaufnahme von interessanten bakteriellen Taxa unter sich ändernder Licht- und DOM-Verfügbarkeit entschlüsseln. Messungen der natürlichen Isotopenhäufigkeit und Labeling Experimente mit stabilen Isotopen werden verwendet, um die Primärproduktion, die Atmung und die Aufnahme des durch die Algen produzierten Kohlenstoffs quantitativ zu erfassen. Darüber hinaus werden wir Mikroskopie und genomische Analysen verwenden, um die räumliche Strukturierung und die Zusammensetzung der algenassoziierten Gemeinschaft von Mikroorganismen zu erfassen. Unsere Experimente werden uns helfen zu verstehen, ob die grundlegende Funktionalität trotz der Veränderungen der Gemeinschaft erhalten bleibt, und welche bakteriellen Taxa und Funktionen voraussichtlich stärker auf die Veränderungen reagieren werden. Dieses Projekt wird das Wissen über Interaktionen auf zellulärer Ebene in eine ökosystemweite Perspektive von Süßwasserseen integrieren.
Kohäsive Feinpartikel sind potentielle Träger von anorganischen und organischen Schadstoffen und spielen eine entscheidende Rolle beim Stoffaustausch zwischen Wasserkörper, Schwebstoff und Sediment. Daher ist die Kenntnis der Depositionsdynamik dieser Feinpartikel ein wichtiger Baustein für ein effizientes Sedimentmanagement und eine physikalisch basierte Modellierung des Schadstofftransfers in Fließgewässern. Es überrascht jedoch, dass sich Untersuchungen zum Transport- und Sedimentationsverhalten kohäsiver Partikel bisher häufig auf definierte stationäre Randbedingungen im Labormaßstab und Trockenwetterbedingungen im Gelände konzentrieren. Weitgehend ungeklärt ist hingegen das Verhalten von Feinpartikeln und deren Speicherung im Gerinnebett während der dynamischen Phase von Hochwasserereignissen. Um die im Gerinne ablaufenden Prozesse weitgehend unabhängig von den Einzugsgebietsprozessen zu untersuchen hat sich in unserer Arbeitsgruppe seit nunmehr über 10 Jahren ein Ansatz mit künstlich generierten Hochwasserwellen bewährt. Es ist ein genereller Vorteil von solchen Geländeexperimenten, dass einzelne steuernde Größen ausgeschlossen oder gezielt kontrolliert werden können. Außerdem ist ein solcher Ansatz eine Voraussetzung, um die Aussagekraft experimentell gewonnener Laborergebnisse zur potentiell hohen Feinpartikel-Retention in Sand- und Kiessedimenten in einem natürlichen System zu validieren. Das übergeordnete Ziel des hier beantragten Projekts ist es, die Gerinnespeicherung kohäsiver Feinpartikel in einem natürlichen System bei variierenden hydrologisch-hydraulischen Randbedingungen zu quantifizieren. Zu diesem Zweck werden standardisierte Feinpartikeltracer (Kaolinit, d50 = 2ìm, ñ = 2,6 g/cm3) sowohl im Verlauf von künstlich generierten Hochwasserwellen als auch während stationärer Trockenwetterbedingungen in einen Mittelgebirgsbach induziert. Die Retention und Sedimentation der eingegebenen Feinpartikel wird gezielt in kleinräumig variierenden Flussbettstrukturen (Hyporheische Zone, Stillwasserzonen, Gerinnerandbereiche, Riffle-Pool-Sequenzen) und für einzelne Gerinneabschnitte erfasst. Die Quantifizierung der Speicherung erfolgt mit bereits erprobten Resuspensionstechniken und Sedimentfallen sowie einer in Pilotprojekten erfolgreich getesteten Tracerfrachtberechnung mittels FTIR-DRIFT Spektroskopie an mehreren Basismessstationen im Längsprofil. In einem interdisziplinären Forscherverbund mit Kollegen des 'Hydraulics Laboratory' und des 'Dept. of Civil Engineering' der Universität Gent, der 'Ecosystem Management Research Group, Dept. of Biology' der Universität Antwerpen und des 'Dept. of Hydrology and Hydraulic Engineering' der Freien Universität Brüssel in Belgien wird darüber hinaus die Transport- und Speicherdynamik der Feinpartikel mit der neuen, FORTRAN basierten Modellierungssoftware 'FEMME' ('Flexible Environment for Mathematically Modelling the Environment') abgebildet.
Es ist allgemein bekannt, dass andere Wasserstoffpools neben Bodenfeuchte die Neutronenzählrate von 'cosmic-ray neutron sensing' (CRNS) Detektoren beeinflussen. Bisher wurden diese zusätzlichen Pools meist als störende Einflüsse betrachtet, die korrigiert werden müssen. Dafür wurden verschiedene Ansätze zur Korrektur von Wasserstoff entwickelt, welcher zum Beispiel im Kristallwasser, in der organischen Substanz des Bodens, in der Atmosphäre oder in der Biomasse gespeichert ist. Es wurde gezeigt, dass solche Korrekturen wesentlich sind, um die Genauigkeit der mit CRNS erhaltenen SWC-Schätzungen zu verbessern. Aktuelle Publikationen zeigen, dass das Verhältnis von thermalen zu schnellen Neutronen (Nr) zur Schätzung von Biomasse genutzt werde kann und außerdem Informationen zu zeit-variablen Wasserstoffpools enthält. Beides soll im Rahmen des Forschungsmoduls VG untersucht werden. Das Projekt verfolgt zwei Hauptziele. Zunächst wollen wir universell gültige Methoden zur Korrektur von CRNS-basierten Bodenfeuchtemessungen für den Einfluss von zeit-variablen Wasserstoffpools wie Biomasse und Interzeption entwickeln. Dazu werden empirische Funktionen basierend auf zusätzlichen Messungen, wie Pflanzenparametern und Throughfall, getestet und kalibriert. Diese Messungen werden mit einem gekoppelten Boden-Vegetations-Modell integriert, das außerdem die Simulation des Interzeptionsspeichers ermöglicht. Zweitens, wollen wir Methoden entwickeln, um die Wasserstoffpools direkt aus dem CRNS-Signal - ohne zusätzliche Messungen und Kalibrierung - zu schätzen. Dazu werden wir die Verwendung des Nr untersuchen. Unter Verwendung geeigneter Neutronenenergie-Korrekturen werden wir verbesserte thermale und epithermale Neutronen-Signale erhalten, was eine bessere Untersuchung von Biomasse- und Interzeptionseffekten auf das Nr-Signal ermöglicht. Um diese Ziele zu erreichen, werden wir drei Arten von Feldexperimenten durchführen: a) dedizierte kontinuierliche Experimente an repräsentativen landwirtschaftlichen Standorten, b) Feldmesskampagnen einer Vielzahl von Feldern mit verschiedenen Nutzpflanzen mit dem Jülich Cosmic Rover und c) Analyse von Neutronen- und Biomassedaten aus dem bestehenden TERENO CRNS-Netzwerk. Die Messungen im Rahmen der Feldexperimente werden durch bodenhydrologische Modellierungen ergänzt, um Referenzinformationen mit verbesserter räumlicher und zeitlicher Auflösung zu erhalten (z.B. vertikale Verteilung von Bodenfeuchte im Profil; Auftreten von Stauwasser auf der Bodenoberfläche).Das Forschungsmodul VG wird gemessene Vegetationsparameter für die gemeinsamen Feldkampagnen (JFC) liefern, die insbesondere von RV, MC, HG und RS benötigt werden. In Zusammenarbeit mit NS wird der Einfluss von Biomasse und Interzeption auf das Nr modelliert. Durch DD verbesserte CRNS-Sensoren, werden für eine verbesserte Quantifizierung der Interzeption verwendet.
| Origin | Count |
|---|---|
| Bund | 838 |
| Type | Count |
|---|---|
| Förderprogramm | 838 |
| License | Count |
|---|---|
| offen | 838 |
| Language | Count |
|---|---|
| Deutsch | 634 |
| Englisch | 614 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 819 |
| Topic | Count |
|---|---|
| Boden | 820 |
| Lebewesen und Lebensräume | 732 |
| Luft | 528 |
| Mensch und Umwelt | 838 |
| Wasser | 823 |
| Weitere | 838 |