Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Es ist dringend erforderlich, die relevanten hydrologischen Prozesse in montanen mediterranen Einzugsgebieten zu verstehen, um deren potentielle Änderungen in ihren Funktionen für die Wasserversorgung durch den Klimawandel und Landnutzungsänderungen zu kennen. Daher möchte ich zusammen mit meiner Gastinstitution, dem IDAEA-CSIC in Barcelona, untersuchen, wie die Vegetation, die Böden und das Grundwasser das Speichern, die Mischung, die Abflussbildung, sowie die Evapotranspiration in dem Einzugsgebiet Vallcebre im Nordosten Spaniens beeinflussen. Die Forscher des IDAEA -CSIC haben hydrometrische Daten und stabile Isotope (d2H, d18O) der verschiedenen hydrologischen Kompartimente des Einzugsgebiets gesammelt. Somit liegen Informationen über den Freiland- und Bestandniederschlag, Stammabfluss, Bach- und Grundwasser, sowie Wasser im Boden und der Vegetation vor. Ich plane, diesen umfangreichen Datensatz zur Bestimmung der Verweilzeiten mit neue Methoden anzuwenden, damit sich unser Verständnis von Wasserfluss und Stofftransport in Einzugsgebieten verbessert. Ich werde zunächst testen, wie mittels 'StorAge Selection functions' (Rinaldo et al. 2015) die Dynamik der Verweilzeiten des Abflusses und der Evapotranspiration beschrieben werden können. Des Weiteren habe ich als Ziel die neuen Konzepte der 'young water fraction' (Kirchner 2016) and 'new water fraction' (Kirchner 2017) anzuwenden, um besser die kurzfristige Komponente der Verweilzeiten beschreiben zu können. Diese Methoden sind noch nicht für Mediterrane Einzugsgebiete getestet worden, aber der umfangreiche Datensatz für die Vallcebre Einzugsgebiete ermöglicht die Untersuchung aktueller Fragen der Einzugshydrologie: Können Studien zur Verweilzeit verbessert werden mit höherer Rate der Probennahme von Niederschlag und Abfluss? Wie wirken sich neu erschlossene Daten über Bestandsniederschlag, Stammabfluss, Wurzelwasseraufnahme oder Bodenwasserfluss auf die Analysen aus? Zuletzt werde ich die Information von Tiefenprofilen der Isotopenzusammensetzung von Porenwasser einbeziehen, um hydrologische Modelle zu testen und die Verweilzeiten im Boden mit der Verweilzeit des Einzugsgebietsabflusses in Bezug zu setzen. Letzteres baut auf meine Dissertation und derzeitiger Postdoc-Studien auf.
Einige persistente und mobile organische Mikroschadstoffe (OMP) wurden kürzlich in aquatischen Umgebungen im Bereich von ng/L bis µg/L gefunden. Dies ist wahrscheinlich auf ihre bemerkenswert hohe Mobilität zurückzuführen, die zu einer starken Neigung zur Dispersion in Wasserressourcen führt und somit Herausforderungen bei der Sanierung darstellt. Die gesteigerten Nachweisraten dieser OMP resultieren aus den neuesten Fortschritten in quantitativen analytischen Methoden. Bewirtschaftete Grundwasseranreicherungssysteme (MAR), einschließlich Uferfiltration (BF) und künstliche Grundwasseranreicherung, werden seit über 150 Jahren erfolgreich in Europa sowie in anderen Teilen der Welt zur Trinkwasserversorgung eingesetzt. Zahlreiche aktuelle Studien haben die Schicksale (Persistenz und Biotransformation) verschiedener OMP in Laborversuchen zur Simulation von BF untersucht. Jedoch bleibt das Schicksal vieler nachgewiesener OMP in Oberflächengewässern und MAR-Systemen unbekannt, insbesondere unter realistischen und variablen klimatischen Bedingungen wie Temperaturschwankungen, UV-Strahlung und Niederschlag. Weitere Forschung ist erforderlich, um die Wirksamkeit von MAR bei der Entfernung persistenter und mobiler OMP sowie die Anpassungsfähigkeit von MAR-Systemen an den Klimawandel zu untersuchen. Dieses Projekt zielt darauf ab, die Auswirkungen des Klimawandels (einschließlich Temperaturschwankungen, Fluktuationen im Wasserfluss und Niederschlag/Abfluss) auf das Schicksal neu auftretender Schadstoffe sowohl in Oberflächengewässern als auch in BF-Systemen zu untersuchen. Die Studie wird den Einfluss von partikulärer organischer Materie, verschiedenen Wasserqualitätsparametern (wie Trübung, gelöste organische Substanz, Eisen, Mangan und Nitrat), hydraulischer Verweilzeit und Redox-Bedingungen auf die Entfernung von OMP untersuchen. Darüber hinaus wird auch die Entfernung von OMP durch Pflanzen untersucht werden. Chargen, Laborversuche, Versuche unter realistischen Bedingungen und Mesokosmenexperimente werden eingesetzt, um die Schicksale von OMP in BF zu bewerten. Darüber hinaus wird die Mobilität von OMP in Oberflächengewässern durch Mesokosmen-Teichexperimente bewertet. Die aus diesen Experimenten gesammelten Daten werden systematisch genutzt, um ein Vorhersagemodell mithilfe eines maschinellen Lernansatzes zu entwickeln und Einblicke in die Schicksale von OMP zu bieten.
Binnengewässer sind ein wichtiger Bestandteil des globalen Kohlenstoffkreislaufs und vor allem Emissionen des Treibhausgases Methan (CH4) aus Gewässern sind von zunehmendem globalen Interesse. Jüngste wissenschaftliche Untersuchungen zielen darauf ab, das prozessbasierte Verständnis der räumlichen und zeitlichen Dynamik der CH4-Emissionen aus Gewässern und ihrer treibenden Faktoren zu verbessern. Prognosen dazu, wie sich Methanemissionen aus Gewässern durch anthropogenen Einflüsse oder durch den Klimawandel bedingt verändern, sind auf Basis bisheriger Modelle nicht zuverlässig möglich. Viele der Faktoren, welche die Raten der Methanproduktion, -Oxidation und Emission in aquatischen Sedimenten beeinflussen, stehen in direkter oder indirekter Beziehung zur Strömungsgeschwindigkeit. Die Strömungsabhängigkeit der Methanproduktion und Methanemissionen von aquatischen Ökosystemen wurde jedoch bisher nicht explizit untersucht. In diesem Projekt werden wir neuartige experimentelle Mesokosmensysteme einsetzen, um die Strömungsabhängigkeit dieser Prozesse in einer Reihe von gezielten Laborexperimenten zu untersuchen. Der experimentelle Aufbau simuliert die Bedingungen, denen aquatische Sedimente in einem hydraulischen Gradienten von schnell fließenden (lotischen) hin zu schwach strömenden (lentischen) Systemen ausgesetzt sind. Solche Übergänge treten beispielsweise entlang von Längsgradienten in Flussstauhaltungen auf. Unsere Experimente zielen darauf ab, den Einfluss der Strömungsgeschwindigkeit auf diejenigen Prozesse zu untersuchen, die zur Bilanz von Methan im Sediment und an der Sediment-Wasser-Grenzfläche beitragen. Die Ergebnisse werden wir in ein prozessbasiertes Modell implementieren, welches neben relevanten biogeochemischen Parametern auch die Strömungsgeschwindigkeit als explizite Randbedingung berücksichtigt. Mit dem validierten Modell werden wir die Relevanz der Strömungsgeschwindigkeit für die Emissionen von Methan aus unterschiedlichen Gewässern mit Hilfe eines systemanalytischen Ansatzes untersuchen.
Kohlenstofftransport und dessen Umwandlungen in Flüssen sind wichtige Indikatoren für Landnutzung, Verwitterung und Klimaeffekte. Solche Kohlenstoffsystematiken zeigen auch die ökologische Gesundheit von Flüssen und ihren Einzugsgebieten in integraler Art an. In diesem Zusammenhang sind starke CO2 Ausgasungen von Flüssen eine globale Unsicherheit, die bislang hauptsächlich für große Flusssysteme abgeschätzt wurden. Kleinere Flüsse wurden jedoch mit dieser Fragestellung bislang kaum untersucht. Insbesondere treffen solche Untersuchungslücken für kleinere Flusseinzugsgebiete zu, die direkt in den Ozean entwässern. Wir schlagen eine neue Studie zu Kohlenstoffumwandlungen im tropischen Deduro Oya Einzugsgebiet in Sri Lanka vor. Diese Studie würde auch neue Erkenntnisse in die Funktionsweise eines tropischen und Silikat-dominierten Einzugsgebietes in Bezug auf Kohlenstoffumwandlungen liefern. Darüber hinaus, soll die Arbeit Einflüsse typischer regionaler Landwirtschaftspraktiken, wie Reisanbau, untersuchen. Dieser hat wahrscheinlich starke Einflüsse auf Umwandlungen von Kohlenstoff in Flüssen. Untersuchungen anderer Faktoren, wie Einflüsse von Stauseen und vielzähliger kleiner Wasserspeicher entlang des Flusses sowie Einträge von Abwässern dieses vom Monsun beeinflussten Systems sind auch vorgesehen. Geplante geochemische Methoden umfassen Konzentrationsanalysen von gelösten und partikulären Kohlenstoffphasen (DOC, DIC und POC) zusammen mit ihren stabilen Kohlenstoffverhältnissen an Fluss- und Grundwasserproben. Diese sollen mit Geländeparametern, stabilen Isotopen des Wassers und Haupt- sowie Spurenelementuntersuchungen kombiniert werden. Zu erwartende Daten ermöglichen auch die Modellierung von CO2 Ausgasungen aus der Wasserphase. Ähnliche Ansätze haben an anderen Gewässeruntersuchungen dazu beigetragen, Einflüsse von natürlichen und anthropogenen Kohlenstoffbilanzen mit wichtigen Faktoren wie Photosynthese und Respiration zu differenzieren. Übertragen auf das Deduru Oya Einzugsgebiet können diese Techniken dazu beitragen, ein bislang kaum bekanntes Endglied von Flussfunktionsweisen im Zusammenhang mit terrestrischen Kohlenstoffzyklen zu definieren.
Hochwasserereignisse als Folge von Starkregen stellen generell ein Georisiko in Fließgewässersystemen dar. Die durch verschiedene Emissionsquellen (kommunale Abwässer, Industrieinleitungen, moderne Landwirtschaft) in die Flüsse eingetragene Schadstoffe mitsamt ihren (okö)toxikologsichen Effekten werden durch Hochwässer maßgeblich verteilt. Teilweise werden diese Belastungen, besonders als partikel-assoziierte Kontaminationen, in den Überflutungsflächen (z.B. Flussauen) abgelagert. Dadurch können sich hier unter geeigneten Bedingungen Sedimentarchive bilden, die die Belastungshistorie des Fließgewässersystem widerspiegeln. In Südost- und Südasien sind Oberflächengewässer bekanntermaßen häufig relativ stark belastet, dies gilt für die Wasserphase aber auch für das partikuläre Material. In diesen tropischen/sommerfeucht subtropischen Gebieten sind Flüsse stark durch Hochwässer betroffen, besonders auch durch den Monsun verursacht. Untersuchungen zur Rekonstruktion der Belastungshistorie in den korrespondierenden Sedimentarchiven der Überflutungsflächen sind hier aber bislang nicht erfolgt. Solche Untersuchungen müssen aber für eine erfolgreiche Durchführung einige Voraussetzungen erfüllen. Neben der Zugänglichkeit zu geeigneten Sedimentdepots müssen sedimentologische Charakterisierungen eine Eignung der Archive bestätigen. Weiterhin ist es wichtig, geeignete Indikatorsubstanzen (z.B. quellenspezifische lipophile, und umweltstabile Schadstoffe,) zu identifizieren. Daher ist diese Machbarkeitsstudie konzipiert worden, um die Voraussetzungen für eine erfolgreiche Erfassung der Belastungshistorie eines indischen Flusssystems (die Flüsse Cooum und Adyar) durch Analyse von geeignete Sedimentdepots auf Überflutungsflächen zu untersuchen.Im Wesentlichen sollen:(i) geeignete Sedimentdepots für eine Belastungsrekonstruktion identifiziert und beprobt werden.(ii) spezifische Kontaminanten erfasst werden, die geeignet sind als Indikatoren verschiedene Emissionsquellen zu reflektieren.
Die Rolle dichtegetriebener CO2-Einlösung in Karstsystemen ist bislang nicht gut verstanden. Es ist bekannt, dass in Wasser gelöstes CO2 die Verkarstung antreibt, und dass dieses CO2 zu einem wesentlichen Teil biogenen Ursprungs ist; produziert von Mikroorganismen im Boden oder durch Wurzelatmung. Karbonatlösung findet vorwiegend oberflächennah statt. Niederschlagswasser, welches durch die ungesättigte Bodenzone sickert und mit CO2 angereichert wird, führt zu sogenannter Denudation (Absenkung der Landoberfläche). Aber warum wachsen Hohlräume auch tief im Innern des Gesteins? Der erste Erklärungsansatz ist die Mischungskorrosion, welche darauf beruht, dass beim Zusammentreffen zweier unterschiedlicher Wasserströme immer ein kalkaggressives Mischwasser entsteht. Der zweite Mechanismus beruht auf nichtlinearer Lösungskinetik, wobei angenommen wird, dass Wasser einen Teil seiner „Lösungskraft“ bis tief ins Gestein hinein behält. Unsere neue These behandelt einen zusätzlichen, dritten, und bislang unterschätzten Mechanismus, der Wasserkörper mit CO2 anreichern kann: dichtegetriebene Einlösung. In einem jüngst publizierten Artikel konnten wir zeigen, dass dichtegetriebene Einlösung am Karstwasserspiegel ruhende Wasserkörper mit CO2, und damit mit neuer „Lösungskraft“, anreichern kann, und zwar auf einer Zeitskala von Wochen bis Monaten. Was bislang aufgrund von enormer Komplexität nicht untersucht wurde, ist das reaktive Transportsystem infolge der Interaktion von dichtegetriebener CO2-Einlösung mit Kalkgestein. Dichtegetriebene CO2-Einlösung findet zum Beispiel in einer Kluft von gegebener Öffnungsweite statt. Diese Öffnungsweite beeinflusst die Strömung und wächst durch Karbonatlösung an, wodurch ein womöglich selbstverstärkender Prozess mit weiterer Einlösung in Gang kommt. Übergeordnet soll dieses Projekts dazu beitragen, die Rolle dichtegetriebener CO2-Einlösung im Vergleich zu bereits bekannten Mechanismen der Mischungskorrosion und der nichtlinearen Lösungskinetiken besser zu verstehen. Um deren Interaktion auf geologischen Zeitskalen zu verstehen, ist einzig die Modellierung zweckdienlich, validiert mit anspruchsvollen, gut kontrollierten Labor- und Feldexperimenten. Das numerische Modell löst die Navier-Stokes-Gleichungen, wobei die Dichte abhängig von den Konzentrationen der gelösten Komponenten ist. Die Validierung des Modells soll die Kopplung von reaktiver Strömung, angetrieben durch dichtegetriebene Lösung im Kalk-Kohlensäure-System, mit dadurch verursachter Morphologieänderung der Kalkgesteinsoberflächen berücksichtigen. Zusammengefasst sollen- numerische Modelle durch systematische Validierung der Simulationsplattform DuMux mit Daten aus kontrollierten Experimenten verbessert werden.- CO2-Eintragsraten in Karstwasser infolge von dichtegetriebener Einlösung und Reaktion an Kalkgesteinsoberflächen quantifiziert werden.- die entsprechenden Karbonatlösungsraten und die Veränderungen auf der Kalkgesteinsoberfläche quantifiziert werden.
Karst entsteht sich durch die Verwitterung von Karbonatgestein und erzeugt starke oberflächliche und unterirdische Heterogenität von hydrologischen Speicher und Fließprozessen. Ungefähr 7% bis 12% der Erdoberfläche besteht aus Karstgebieten und etwa ein Viertel der Weltbevölkerung ist ganz oder teilweise abhängig von Trinkwasser aus Karstgrundwasserleitern. Für die nächsten Jahrzehnte, Klimamodelle prognostizieren einen starken Temperaturanstieg und eine Abnahme von Niederschlagsmengen in vielen Karstregionen der Welt. Trotz dieser Vorhersagen gibt es nur wenige Studien, die die Auswirkungen des Klimawandels auf die Karstwasserressourcen abschätzen. Die ist hautsächlich auf das Fehlen von Messdaten und die inadäquate Abbildung von Karstprozessen in derzeit angewandten Ansätzen zur großskaligen Modellierung zurückzuführen. Das Ziel der beantragten Nachwuchsgruppe ist, die notwendigen Daten und Ansätze zur erstmaligen Abschätzung der gegenwärtigen und zukünftigem Verfügbarkeit von Wasserressourcen in Karstgebieten zur Verfügung zu stellen. Um dieser Herausforderung gerecht zu werden, sind signifikante Fortschritte (1) zum Verständnis der Heterogenität von Karstregionen und zu deren Einarbeitung in hydrologische Modelle, (2) zum Upscaling von Beobachtungen auf der Einzugsgebietsskale für Anwendungen von Simulationsmodellen im globalen Maßstab, und (3) zum Vergleich der gegenwärtigen und zukünftigen Verfügbarkeit von Wasserressourcen mit gegenwärtigen und zukünftigen Wasserbedarf von Nöten. Im vorgeschlagenen Projekt sollen neuartige Ansätze zur Messung und Analyse hydrologischer Daten an fünf experimentellen Messgebieten, die in 5 verschiedenen Klimaregionen über den Globus verteilt sind (AU, D, ES, MX, UK), eingesetzt werden, um die Einflüsse der Heterogenität von Karstgebieten auf oberflächennahe Fließprozesse zu erkunden. Mittels einer neu entwickelten Karstdatenbank, welche beobachtete Zeitreihen von Karstquellenabflüssen enthält, und Rezessionsanalyse sollen die Heterogenität von Grundwasser und Abflussprozesse in verschiedenen Regionen der Welt charakterisiert werden. Dieselbe Datenbank, erweitert durch zusätzlich Abflussdaten auf Flussgebietsskale des Global Runoff Data Center (GRDC), soll zur Entwicklung eines neuen Ansatzes zur Einbindung der neu gewonnenen Erkenntnisse in ein großskaliges Simulationsmodell speziell für Karstregionen angewandt werden. Dieses Modell soll letztendlich dazu benutzt werden, um (1) gegenwärtige und, gekoppelt mit Klimaszenarien, zukünftige Verfügbarkeit von Wasserressourcen in Karstgebieten zu erkunden, um diese (2) mit gegenwärtigen und zukünftigen Wasserbedarf zu vergleichen und von Wassermangel bedrohte Regionen zu identifizieren.
Natürliches organisches Material (NOM) ist die Triebfeder für viele biogeochemische Prozesse in Böden und Grundwässern. Diese herausragende Rolle resultiert nicht nur aus dessen Eigenschaft als Elektronendonor sondern insbesondere auch durch die Fähigkeit Elektronen aufzunehmen und zu speichern (Redoxpuffer) sowie Redoxprozesse zwischen anderen redoxsensitiven Spezies zu vermitteln und zu beschleunigen (Mediator). Obwohl NOM in Böden und Grundwässern zu einem erheblichen Teil in sorbierter Form vorliegt, wurde der Einfluss von Redoxzustand und Redoxeigenschaften auf die Sorption von NOM bisher nicht detailliert untersucht und umgekehrt auch nicht der Einfluss von Sorption auf dessen Redoxzustand. Wir postulieren, dass die Redoxeigenschaften von adsorbiertem NOM sich signifikannt unterscheiden von gelöstem NOM aufgrund von Fraktionierungsvorgängen und Konformationsänderungen. Die vorgeschlagenen Forschungsarbeiten zielen darauf ab, diese Prozesse im Detail zu untersuchen um somit eine Grundlage zu schaffen für ein mechanistisches Verständnis wie Sorptionsprozesse die biogeochemischen Funktionen in natürlichen wässrigen Systemen steuern. Da Sorption die mobilen und immobilen Fraktionen von NOM in diesen Systemen bestimmt, sind die Resultate auch relevant für die Beurteilung der Rolle von NOM für Transport und Transformation von Schadstoffen und mikrobiellen Atmungsprozessen. Im Rahmen dieses Forschungsprojekts möchten wir konkret folgende Kernfragen bearbeiten:- Wie verändert Sorption an natürliche Oberflächen per se (d.h. ohne Elektronentransfer mit dem Sorbens) die Redoxeigenschaften von NOM (Elektronenakzeptor/-donor Kapazität, EH-Werte und -Verteilung, Elektronenmediator-Eigenschaften) - Wie beeinflusst der Redoxzustand von NOM dessen Sorptionsverhalten? - Wie beeinflusst Elektronentransfer zwischen Sorbens und NOM dessen Redoxeigenschaften? - Welchen Einfluss haben Materialeigenschaften von NOM (Herkunft, Aromatizität, Säure/Base Eigenschaften etc.) auf Sorptions- und Redoxprozesse? Hierzu werden wir im Labor mit Hilfe von Batchversuchen unter umweltrelevanten Bedingungen systematisch den Einfluss von Sorptionsprozessen an unterschiedliche natürliche Oberflächen auf die Redoxeigenschaften verschiedenartiger NOM-Proben und Chinon-Modellverbindungen untersuchen und dabei neuartige und sensitive elektrochemische Methoden anwenden. Da NOM-Überzüge auf Mineralien praktisch in allen natürlichen Systemen vorhanden sind erwarten wir uns von den Forschungsergebnissen einen wesentlichen Erkenntnisgewinn im Hinblick auf ein quantitatives Verständnis von Redoxprozessen in natürlichen heterogenen Systemen. Die Resultate sollen somit die Grundlage bilden für eine Weiterentwicklung quantitativer Modelle zur Beschreibung biogeochemischer Prozesse an der Mineral-Wasser Grenzfläche unter natürlichen Bedingungen.
Im Allgemeinen sind die Molybdän (Mo) Werte im Trinkwasser deutlich unterhalb der als Gesundheitsrisiko eingestuften Konzentrationen. Daher hat die Weltgesundheitsorganisation (WHO) noch keine Grenzwerte festgelegt, veröffentlichte jedoch eine Empfehlung, wonach 70 Mikro g/L nicht überschritten werden sollten. In diesem Zusammenhang sind kürzlich im Grundwasser Zentral Floridas gemessene Molybdän-Konzentrationen von über 5.000 Mikro g/L besorgniserregend. Molybdän tritt in dieser Region natürlich auf (geogen) und wird aufgrund von anthropogen bedingter Störung der physikalisch-chemischen Bedingungen im Grundwasserleiter freigesetzt. Diese Art der anthropogen-induzierten Kontamination durch geogene Elemente stellt weltweit ein Problem für die öffentliche Gesundheit dar. Die andauernden Probleme mit Arsen (As) in Bangladesch und Westbengalen sind Thema unzähliger Beiträge in Presse und wissenschaftlichen Zeitschriften. Wenngleich Molybdän weniger toxisch ist als Arsen, könnte es sich als ein ähnliches Problem erweisen. Besonders dann, wenn Trinkwasser aus Grundwasserleitern marinen Ursprungs gewonnen wird in denen Mo von Natur aus erhöht vorhanden ist. Um die Möglichkeit der anthropogen-induzierten Kontamination durch geogenes Mo in Grundwasserleitern marinen Ursprungs besser zu verstehen, wird ein multidisziplinärer Ansatz vorgeschlagen. Ziel ist ein besseres Verständnis der Mo-Mobilisierung durch eine Kombination aus (geo)chemischen und hydrogeologischen Arbeiten, sowie deren Quantifizierung im Rahmen eines reaktiven Transportmodels.
| Origin | Count |
|---|---|
| Bund | 838 |
| Type | Count |
|---|---|
| Förderprogramm | 838 |
| License | Count |
|---|---|
| offen | 838 |
| Language | Count |
|---|---|
| Deutsch | 634 |
| Englisch | 614 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 819 |
| Topic | Count |
|---|---|
| Boden | 820 |
| Lebewesen und Lebensräume | 734 |
| Luft | 528 |
| Mensch und Umwelt | 838 |
| Wasser | 823 |
| Weitere | 838 |