API src

Found 838 results.

Ecosystem Engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)

Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.

Vergangenheit, Gegenwart und Zukunft von Urbanen Wärmeinseln im Untergrund von China und Deutschland - Konsequenzen für die geothermische Nutzung

Städte haben ihre Wurzeln im Untergrund. Hier befinden sich die Fundamente von Gebäuden und ein wesentlicher Anteil der urbanen Infrastruktur. Zugleich dient der Untergrund als Wasserreservoir und als Quelle für erneuerbare Energie. Ein bisher wenig beachtetes Phänomen sind die sogenannten Urbanen Wärmeinseln im Untergrund (UWIU), die sich oft unbemerkt über Jahrzehnte ausbreiten. Sie reichen häufig über das gesamte Stadtgebiet, in dem erheblich höhere Boden- und Grundwassertemperaturen zu finden sind als in der ungestörten, ländlichen Umgebung. Die Ursachen hierfür sind vielfältig und gerade die langfristige Entwicklung von UWIUs ist noch heute ungeklärt. Um Empfehlungen für eine möglichst proaktive Nutzung des städtischen Untergrunds in der Zukunft zu erstellen, gilt es, die treibenden Prozesse und Faktoren zu ergründen, die UWIUs in verschiedenen Städten verursachen. Das Kernthema dieses Projekts ist, erstmalig die thermischen Bedingungen unter zwei chinesischen und deutschen Städten, Nanjing und Köln, zu vergleichen. Die teilnehmenden Wissenschaftler haben weitreichende Erfahrung in der Erforschung von UWIUs in ihren Ländern und in Vorarbeiten bereits eine umfassende Datenbasis von Boden- und Grundwassertemperaturen gesammelt. Kernziel ist es, diese mit einem neuen gemeinsamen Messprogramm zu aktualisieren und aus der vergangenen und aktuellen Entwicklung der beobachteten UWIUs auf die zukünftige Temperaturentwicklung im Untergrund zu schließen. Dies wird erreicht durch ergänzende Laborversuche und umfassende numerische Simulationen, die insbesondere die zeitliche Entwicklung der Landnutzung berücksichtigen. Die Ergebnisse für die Städte in Deutschland und China werden verglichen und so individuell von gemeinsamen Charakteristiken unterschieden. Auf diese Weise werden allgemeingültige Zusammenhänge erschlossen, die sich auch auf weitere weniger erforschte Städte übertragen lassen und dort Prognosen zur zukünftigen UWIU-Entwicklung ermöglichen.

Prozessbasierte Modellierung der Bodenhydrologie und deren Verifizierung am Biosphere 2 Landscape Evolution Observatory

Bodenwasserbewegung ist ein Schlüsselprozess in mehreren bereitstellenden und regulierenden Ökosystemdienstleistungen. Die genaue Vorhersage mit mathematischen Modellen bleibt jedoch aufgrund großer Unsicherheiten in allen Modellkomponenten eine Herausforderung, selbst wenn prozessbasierte Beschreibungen wie die Richards-Gleichung verwendet werden. Datenassimilationsmethoden bieten die Möglichkeit, Informationen aus unsicheren Modellen und unsicheren Messungen zu einer verbesserten konsistenten Zustandsbeschreibung zu verbinden, sofern die Unsicherheiten korrekt quantifiziert werden können. Die größten Unsicherheiten liegen dabei typischerweise in den hydraulischen Eigenschaften des Bodens. Werden die relevanten hydraulischen Parameter in einem erweiterten Zustand berücksichtigt, können diese mit den Datenassimilationsmethoden geschätzt werden. Dies ist selbst in Gegenwart von Modellfehlern wie z.B. präferentiellem Fluss möglich, falls diese Fehler entsprechend berücksichtigt werden. Bisher konnten solche konsistenten Beschreibungen nur auf kleinen Skalen bis hin zu eindimensionalen Bodenprofilen demonstriert werden. Auf größeren Skalen wurden noch keine detaillierten prozessbasierten Beschreibungen erreicht. Dies ist auf fehlende Informationen über die heterogenen bodenhydraulischen Eigenschaften in Kombination mit den hochgradig nichtlinearen und interagierenden Prozessen zurückzuführen. Eine einzigartige Forschungsinfrastruktur für die experimentelle Untersuchung der Bodenhydrologie von Hängen ist das Landscape Evolution Observatory (LEO) in der Biosphere 2. Es besteht aus drei künstlichen Hängen mit einem ausgedehnten Sensor- und Probennehmernetzwerk. Um das Verständnis auf dieser größeren Hangskala zu verbessern, ist das Ziel dieses Projektes die konsistente und prozessbasierte Beschreibung der Bodenwasserbewegung am LEO, einschließlich der Darstellung von Heterogenität und Evolution der bodenhydraulischen Parameter. Der Focus liegt dabei auf den folgenden Aspekten: (i) die Ableitung der zeitlichen Entwicklung der bodenhydraulischen Parameter durch Datenassimilation an ausgewählten Profilen in den Hängen, (ii) die Bestimmung der Heterogenität der bodenhydraulischen Eigenschaften und deren Auswirkungen durch hydraulische Experimente und Vorwärtssimulationen und (iii) die Entwicklung und Verifizierung einer konsistenten Beschreibung von Teilen der Hänge durch Datenassimilationsmethoden. Dieses Projekt wird die Frage beantworten, ob die derzeitigen Beobachtungstechniken ausreichen, um eine konsistente und ausreichend akkurate Beschreibung der Hanghydrologie zu erhalten, und wenn ja, wie und mit welcher Unsicherheit diese Darstellung erreicht wird. Darüber hinaus erwarte ich einen quantitativen Einblick in die Ausbildung der Heterogenität am LEO.

Quecksilber (Hg) in marinen Flachwasser-Hydrothermal Systemen - eine übersehene Quelle für Hg im globalen Zyklus

Mit der Unterzeichnung des UNEP Minamata Vertrages in 2013 haben Regierungen weltweit die Gefahr und Toxizität von Quecksilber (Hg) anerkannt und Maßnahmen zur Kontrolle und Reduzierung von Hg festgelegt. Obwohl Quecksilber in der Umweltforschung schon seit Jahrzehnten ein wichtiges Thema ist, gibt es noch offene Fragen zu den grundlegendsten Prozessen im globalen Hg Kreislauf und auch bezüglich der Transformation von Hg Spezies. Der Anteil von Hg aus hydrothermalen Quellen könnte einer der bedeutsamsten, natürlichen Beiträge zum globalen Hg Kreislauf sein, jedoch unterscheiden sich die Schätzungen um mehrere Größenordnungen von 20 bis 2000 t pro Jahr. Es gibt, wenngleich widersprüchliche, Daten über Hg Konzentrationen in hydrothermalen Quellen in der Tiefsee, wogegen hydrothermale Quellen in flacher, küstennaher Umgebung bisher jedoch ignoriert wurden. Gerade diese haben jedoch einen großen Einfluss auf die chemische Zusammensetzung der biologisch wichtigen Küstengewässer. Hydrothermale Quellen setzen nicht nur giftige Verbindungen frei, wie z.B. Schwefelwasserstoff und Arsenverbindungen, sondern liefern auch Nährstoffe wie Eisen und Kohlenstoffverbindungen und sind dadurch eine ökologische Nische für Organismen. Obwohl einige Studien diese hydrothermalen Systeme im Flachwasser als eine mögliche Quelle für Hg thematisierten waren die Ergebnisse nicht zufriedenstellend. Ein Grund könnte die herausfordernde Matrix der hydrothermalen Lösungen sein, sowie eine unzureichende Datenlage um Aussagen über den Gesamteintrag von Hg zu treffen. Noch wichtiger als die Gesamtmenge des Hg Eintrages ist die Verteilung der individuellen Hg-Spezies. Eine fundamentale Transformation ist die Methylierung von Quecksilber (MeHg) und die daraus resultierende Verstärkung der Toxizität. MeHg bioakkumuliert und biomagnifiziert sich innerhalb der marinen Nahrungskette und damit auch letztlich im Menschen. Die Methylierung von Quecksilber ist ein ozeanweites Phänomen. Die niedrigen Konzentrationen von Hg im offenen Gewässer machen das genaue Erforschen dieser biologisch-chemischen Reaktion jedoch schwierig. Hier können hydrothermale Quellen im Flachwasser als natürliche Laboratorien genutzt werden um die Umwandlungsraten von Hg-Spezies und deren Abhängigkeit von Umwelt Faktoren zu bestimmen. Dementsprechend schlagen wir vor, die Speziierung und den Eintrag von Hg für Flachwasser-Hydrothermalsysteme zu bestimmen, um damit bessere Schätzungen für den globalen Quecksilber Kreislauf zu bekommen. Die geplante Arbeit besteht aus 4 Teilen: (1) Probenahme an ausgewählten Standorten, (2) Vollständige Charakterisierung der freigesetzten Hg-Spezies (anorganisches Hg, MeHg und elementares Hg), (3) Bestimmung der Methylierungsrate und (4) eine Schätzung der mengenmäßigen Freisetzung von totalem und methyliertem Hg.

Modellierung des Verbleibs von organischem Kohlenstoff und Mikroverunreinigungen in biologisch-aktiven Aktivkohlefiltern

Das Vorkommen von organischen Mikroverunreinigungen (OMP) in Gewässern ist aufgrund ihrer potenziellen Bedrohung für die Umwelt und die menschliche Gesundheit sehr kritisch. Kläranlagenabläufe sind eine der Hauptquellen für OMPs; deshalb werden derzeit neue rechtliche Rahmenbedingungen diskutiert und verschiedene Technologien zur Reduktion von OMPs untersucht. Granulierte Aktivkohlefilter (GAK) haben sich als geeignete Technologie zur Entfernung von OMP aus Kläranlagenabläufen etabliert. Neben der adsorptiven Entfernung sind GAK-Filter auch in der Lage, organische Stoffe und OMPs biologisch zu entfernen. Die Phänomene, die diesen adsorptiven und biologischen Abbau steuern, sowie die Synergien zwischen diesen beiden Mechanismen sind von großer Bedeutung, jedoch sind die Prozesse sehr komplex. Zum einen handelt es sich bei Abwässern um Multikomponentengemische, die schwer zu charakterisieren sind, und zum anderen sind die verschiedenen Wechselwirkungen zwischen GAK, Biofilm, OMP und organischen Stoffen nur schwer experimentell zu erfassen. Mathematische Modelle sind ein leistungsfähiges Instrument zur Überwindung solcher experimentellen Hindernisse, zur Analyse verschiedener Szenarien und zur Unterstützung der Planung weiterer Experimente. Anhand von Versuchsdaten wurde ein erstes mathematisches Modell entwickelt, das die Entfernung von gelöstem organischem Kohlenstoff in einem biologisch aktiven GAK-Filter zufriedenstellend beschreiben kann. Dieses Projekt zielt darauf ab, dieses Modell zu verbessern und um neue Schlüsselmerkmale zu erweitern, die für eine weitere Anwendung erforderlich sind. Insbesondere sollen drei Hypothesen getestet werden: (i) Ist es möglich, die Porengrößenverteilung in das Modell aufzunehmen? Die Porengrößenverteilung ist ein Schlüsselparameter für die Charakterisierung der verschiedenen GAK-Typen, daher ist ihre Implementierung in das Modell unerlässlich. Die herkömmlichen Ansätze erfordern jedoch Parameter, die schwer zu bestimmen sind. (ii) Könnte eine mikrobielle Gemeinschaft, die den Stickstoffzyklus einschließt, die Qualität des Modells verbessern? Auf der Grundlage experimenteller Belege, die den biologischen Abbau von OMPs mit der Aktivität von Nitrifikanten in Verbindung bringen, zielt das Projekt darauf ab, co-metabolische Prozesse zu implementieren und ihre Auswirkungen auf die globalen Modellierungsergebnisse zu bewerten. (iii) Wie können einzelne OMPs in das Modell einbezogen und ihr Verhalten zufriedenstellend wiedergegeben werden? Die Vorhersage des Abbaus einzelner OMPs ist von großer Bedeutung. Daher werden exemplarisch vier OMPs in das Modell aufgenommen und als Stellvertreter für den Abbau weiterer OMPs verwendet. Da die mechanistische Beschreibung der OMPs sehr kompliziert werden kann, wird der Ansatz des mechanistischen Modells mit Methoden des maschinellen Lernens kombinieren.

Untersuchung der Auswirkungen unterirdischer hydrologischer Prozesse und interindividueller Interaktionen auf den Wasserstress von Bäumen durch gekoppelte ökohydrologische-pflanzenhydraulische Modellierung

Wie das jüngste dürrebedingte Waldsterben und der Waldwachstumsrückgang in Europa und auf der ganzen Welt zeigen, hat der Klimawandel verheerende Auswirkungen auf die Waldökosysteme. Daher werden dringend neue Strategien zur Stabilisierung bestehender Wälder benötigt. Eine zentrale Herausforderung für die Waldbewirtschaftung besteht darin, dass die meisten Vorhersagen zur Abschätzung des Trockenstresses in Wäldern auf vereinfachten Ansätzen auf der Bestandsebene beruhen, wodurch verschiedene potenziell wichtige unterirdische Prozesse vernachlässigt werden. In diesem Projekt werden die Auswirkungen zweier solcher unterirdischer Prozesse—(i) die Dynamik des tiefen Wassers und (ii) die Artenmischung—auf die Widerstandsfähigkeit von Waldökosystemen gegenüber Wasserstress mit Hilfe eines gekoppelten ökohydrologisch-pflanzenhydraulischen Modells untersucht, das durch Felddaten zu stabilen Wasserisotopen, Wasserstress der Bäume und Saftfluss, die in diesem Projekt gesammelt wurden, sowie durch Synergien mit laufenden Projekten aus Deutschland und Frankreich ergänzt wird. Die Innovation dieses gekoppelten Modells besteht darin, dass der Schwerpunkt auf trockenheitsbedingten Prozessen in den Pflanzen und im Boden liegt. Das Projekt besteht aus vier Arbeitspaketen (APs), die von vier Arbeitsgruppen (zwei in Deutschland und zwei in Frankreich) geleitet werden. Das erste AP wird stabile Wasserisotopenmessungen nutzen, um unterirdische Prozesse im Feld zu untersuchen. Diese Messungen werden zur Information und Validierung der Berechnungsmodelle verwendet, die im zweiten und dritten Arbeitspaket entwickelt werden. Darüber hinaus werden Daten, die im Rahmen laufender Forschungsprojekte gesammelt wurden, für die Modellierung herangezogen. Das zweite AP wird ein ökohydrologisches und ein pflanzenhydraulisches Modell miteinander koppeln, um die topographischen Einflüsse auf das tiefe Wasser in einer räumlich verteilten Weise zu untersuchen. Das dritte AP wird ein pflanzenhydraulisches Multispeziesmodell entwickeln, um die Auswirkungen der Artenmischung auf die Widerstandsfähigkeit der Wälder gegen Trockenheit zu untersuchen. Schließlich wird das vierte AP eine detaillierte modellgestützte Fallstudie in den Vogesen, Frankreich, durchführen, wo sowohl topografische Einflüsse als auch interindividueller Wettbewerb eine wichtige Rolle für die Muster der Baumsterblichkeit spielen dürften. Das Projekt wird wertvolle Einblicke in zwei bisher wenig erforschte Komponenten der Widerstandsfähigkeit von Wäldern gegen Trockenheit liefern und mit dem gekoppelten ökohydrologisch-pflanzenhydraulischen Modell ein neuartiges Instrument für zukünftige Trockenheitsstudien bereitstellen. Außerdem erwarten wir, dass dieses Projekt die Zusammenarbeit zwischen den französischen und deutschen Gruppen stärkt, was zu künftigen gemeinsamen Forschungsanstrengungen führen soll.

Der Einfluss von Licht auf die mikrobielle Eisen(II)-Oxidation in Süßwassersedimenten

Der biogeochemische Eisenkreislauf stellt ein wichtiges Reaktionsnetzwerk dar, welches einen direkten Einfluss auf umweltrelevante Prozesse in Sedimenten hat. Eisen(II)-oxidierende und Eisen(III)-reduzierende Bakterien kontrollieren zu großen Teilen die (Im)Mobilisierung von Eisen in Sedimenten. Unser klassisches Verständnis vom sedimentären Eisenkreislauf beschreibt, dass die Hauptsubstratquelle (Eisen(II) für Eisen(II)-oxidierende Bakterien die mikrobiellen Eisen(III)-reduktion ist, welcher typischerweise in tieferen Zonen von Redox-stratifizierten Sedimenten ansässig ist. Bislang wurde der Prozess der Eisen(III)-Photoreduktion nicht als signifikante Eisen(II) Quelle in limnische Sedimente betrachtet. In dem beantragten Forschungsprojekt, stellen wir die Hypothese auf, dass die Photoreduktion von Eisen(III) in limnischen Sedimenten eine zusätzliche Eisen(II)-Quelle für Eisen(II)-oxidierende Bakterien in den obersten (teilweise) oxischen und Lichtdurchfluteten Sedimentschichten darstellt. Zu diesem Zweck werden wir hochaufgelöste Licht und geochemische Messungen (O2, gelöstes Fe(II), pH, H2O2) mit Mikrosensoren durchführen und die Eisenmineralogie als Funktion der Lichtqualität (Wellenlänge) und Lichtquantität (Intensität) in Süßwassersedimenten bestimmen. Darüber hinaus werden wir den Einfluss von natürlichen organischen Material auf die Eisen(III)-Photoreduction untersuchen. Zusätzlich werden wir die Rolle von reaktiven Sauerstoffspezies auf die Bioverfügbarkeit von produzierten Eisen(II) in oxischen Sedimenten bestimmen. Dieses Forschungsprojekt untersucht einen Prozess der bislang in Sedimenten vernachlässigt wurde und öffnet die Türen zu einem neuen Verständnis des biogeochemischen Eisenkreislaufs und den assoziierten Eisen(II) Stoffflüssen entlang sedimentärer Redoxgradienten.

Transformation of organic carbon in the terrestrial-aquatic interface

The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.

Nachhaltigkeitsbewertung der Bewässerungslandwirtschaft: Rebound-Effekte im halbtrockenen Usbekistan

Hauptziel des Projektantrages ist die Untersuchung der Nachhaltigkeit der Bewässerungslandwirtschaft in den semiariden Regionen Usbekistans durch die Bewertung neuer wassersparender Technologien und ihrer Rebound-Effekte mit Fokus auf Belastungen durch den Klimawandel. Das spezifische Ziel besteht darin, die Auswirkungen der Einführung wasser- und energiesparender Bewässerungstechnologien zu untersuchen und mögliche Rebound-Effekte zu quantifizieren. Die spezifischen Projektaktivitäten sind in vier Arbeitsprogramme gegliedert: (1) Bestandsaufnahme und vorbereitende Arbeiten - eine allgemeine Analyse der aktuellen Situation bei der Einführung von Bewässerungstechnologien und Auswahl von Fallstudien; (2) Dokumentation und Bewertung von wasser- und energiesparenden Technologien; (3) Untersuchung einer Ex-ante-Folgenabschätzung für ein nachhaltiges Wasser- und Energiemanagement, einschließlich möglicher Rebound-Effekte sowie Projektionen für die Zukunft mit Stakeholdern; (4) Synthese und Validierung der Ergebnisse der Folgenabschätzung und Identifizierung von Schlüsselfaktoren für ein nachhaltiges Management von wasser- und energiesparenden Technologien. Innovative Ansätze, wie die Fuzzy-set qualitative comparative analysis (fsQCA) und das Water Evaluation and Planning System (WEAP)-Modell, werden für die Kontextanalyse eingesetzt und mit einer gut etablierten partizipativen Folgenabschätzungsmethode kombiniert.Das vorgeschlagene Forschungsprojekt wird einen Beitrag zu den Zielen der Initiative "Grünes Zentralasien" leisten, insbesondere im Hinblick auf eine effizientere Wassernutzung und bessere technische Lösungen. Eine kürzlich von der usbekischen Regierung ergriffene Initiative - die Verabschiedung der Strategie zur Entwicklung der Wasserressourcen 2020-2030, die vorsieht, dass bis 2030 wassersparende Bewässerungstechnologien auf 2 Mio. ha (ca. 50 % der gesamten bewässerten Fläche) installiert werden sollen - wird die Landwirte wahrscheinlich dazu ermutigen, diese Technologien einzusetzen. Allerdings können diese Reformen auch zu einem Anstieg des Wasser- und Energieverbrauchs bei der Nahrungsmittelproduktion führen. Es gibt immer mehr Belege dafür, dass Effizienzverbesserungen bei der Bewässerungswassernutzung mit Rebound-Effekten einhergehen können, d.h. mit Verhaltensänderungen bei Landwirten und Verbrauchern, die die erwarteten Ressourceneinsparungen ganz oder teilweise ausgleichen. Daher sollten die Forschungsergebnisse zum Ex-ante-Wasserverbrauch und zur Rehabilitierung und Erhaltung der Bodengesundheit in den Trockengebieten Usbekistans evidenzbasiertes Wissen über die beabsichtigte und tatsächliche Nachhaltigkeit von neu installierten wasser- und energiesparenden Technologien liefern.

Selenatreduktion durch sulfidiertes nullwertiges Eisen

Selen ist einerseits ein essentieller Nährstoff, andererseits aber in erhöhten Konzentrationen hochtoxisch. Die in Wasser löslichsten Se-Spezies sind Selenit (Se(IV)) und Selenat (Se(VI)). Sobald diese in die aquatische Umwelt gelangen, können sie rasch Konzentrationen erreichen, die für die aquatischen Nahrungsketten toxisch sind. In diesem Antrag wollen wir das Potenzial von sulfidisiertem nullwertigem Eisen (S-ZVI) untersuchen, um Se(VI) zu Se(0) und/oder Se(-II) zu reduzieren. Die Sulfidisierung von ZVI hat in den letzten 3 bis 4 Jahren zunehmende Aufmerksamkeit erfahren als eine Methode zur Verbesserung der Selektivität und Spezifität des Schadstoffabbaus bei der Verwendung von ZVI als abiotischem Reduktionsmittel. Bis heute wurde jedoch noch keine Studie zur Wirkung auf die Entfernung von Selenat durchgeführt. In der vorgeschlagenen Arbeit werden wir in drei Arbeitspaketen die folgende Hypothese untersuchen: i) Das S/Fe-Verhältnis in S-ZVI bestimmt seine Reaktivität gegenüber Se(VI), ii) die Anwesenheit von Sauerstoff und Fe(II) beeinflusst die Wirksamkeit von S-ZVI im Hinblick auf die Reduktion von Se(VI), iii) die Se(VI)-Reduktion durch S-ZVI wird durch den pH-Wert aufgrund elektrostatischer Effekte beeinflusst, und iv) die Anwendung von S-ZVI-Teilchen in Filterbett-Systemen ist eine wirksame Methode zur Entfernung von Selenat. Die Kinetik und Mechanismen der Wechselwirkung zwischen S-ZVI und Selenat werden in Batch-Experimenten in Kombination mit Synchrotron-basierten Methoden in Zusammenarbeit mit der Canadian Light Source untersucht. Zusätzlich werden wir Filterbett-Experimente mit S-ZVI durchführen.

1 2 3 4 582 83 84