API src

Found 161 results.

Bildung und Abbau von Schadstoffen in der Naehe einer kalten Wand waehrend eines Verbrennungsprozesses

Das Projekt "Bildung und Abbau von Schadstoffen in der Naehe einer kalten Wand waehrend eines Verbrennungsprozesses" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Hochschule Darmstadt, Fachgebiet Thermische Turbomaschinen und Anlagen.Die Schadstoffentstehung von NO und CO im Bereich der kalten Zylinderwand waehrend der Expansion in einem Kolbenmotor soll durch Simulation des Verbrennungsprozesses in einem Stosswellenrohr untersucht werden. Die Wand des Hubraumes wird durch die Rueckwand des Stossrohres dargestellt. Der an der Rueckwand des Stossrohres reflektierte Stoss zuendet ein Gasgemisch, das O2, N2, CH4 im Argonbad enthaelt. Ein fuer optische Untersuchungen an der Rueckwand geeignetes Stosswellenrohr wurde aufgebaut und in Betrieb genommen. Interferometrische Messungen (raeumlich und zeitlich aufgeloest) des Brechungsindexes in wandparallelen Schichten im Bereich der kalten Wand mittels Laserstrahlen und Messungen des Waermestromes in die Rueckwand des Stossrohres bei zuendfaehigen Gasgemischen wurden abgeschlossen. Die experimentellen Daten dienen zur Ueberpruefung des theoretischen Modells im Bereich der Wand (s. Projekt 16/9/9). Geplant sind zeitlich und raeumlich aufgeloeste Absorptionsmessungen von NO, OH im UV-Bereich. Weiter soll im IR-Bereich die Emission von CO2, CO und H2O gemessen werden. Ausserdem soll die Intensitaet der Reaktionskontinua (CO + O = CO2, NO + O = NO2) bestimmt werden.

Bewertung der seismischen Gefährdung in der Niederrheinischen Bucht zur Nutzung von Tiefengeothermie

Das Projekt "Bewertung der seismischen Gefährdung in der Niederrheinischen Bucht zur Nutzung von Tiefengeothermie" wird/wurde ausgeführt durch: Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG.Sichere und grundlastfähige erneuerbare Energiequellen sind essentiell für das Erreichen globaler Klimaziele. Die Tiefengeothermie kann Wärme und Strom unabhängig von Wetterbedingungen liefern und spielt eine Schlüsselrolle bei dem Vorantreiben der grünen Energiewende. Mit unserem Vorhaben gehen wie die Hauptfaktoren, die ein schnelleres Wachstum des Geothermiesektors verzögern, an: lange Amortisationszeiten und hohe sozio-ökonomische Risiken im Zusammenhang mit induzierter Seismizität. Hauptrisiken der Tiefengeothermie sind hohe Unsicherheiten über die Existenz, Lage und Orientierung geologischer Strukturen im Untergrund und die daraus resultierende hohe Unsicherheit über das Potential seismische Ereignisse zu induzieren. In diesem Teilvorhaben wollen wir in beiden Aspekten Fortschritte machen, in dem wir dynamische seismologische Modelle des Untergrunds erarbeiten. Aus der Kombination der innovativen seismischer Verfahren der Migration und Interferometrie werden wir dynamische Modelle erarbeiten. Diese Modelle verdeutlichen die seismische Reaktion des Untergrundes auf temporäre Veränderungen von Spannungen. Dazu werden Herdflächenlösungen mit Änderungen von seismischen Geschwindigkeiten korreliert. Ziel ist das Abschätzen von Schwellenwerten für Spannungsänderungen, die lokale Seismizität auslösen können. Die Interpretation dieser lokalen Änderungen in Hinblick auf eine geothermische Nutzung des Untergrunds hilft der Standortauswahl und somit der Reduzierung der seismischen Gefährdung. Wir werden einen neuen Arbeitsablauf entwickeln, um die seismische Gefährdung durch Tiefengeothermie in der Niederrheinischen Bucht abzuschätzen. Dieser Arbeitsablauf wird einen räumlich aufgelösten Erdbebengefährdungsindex beinhalten, der auf intuitive Weise die seismische Gefährdung der Region kommuniziert.

Quantum Wastewater Sensing (QUATERNION)

Das Projekt "Quantum Wastewater Sensing (QUATERNION)" wird/wurde ausgeführt durch: Endress+Hauser Digital Solutions (Deutschland) GmbH.

Entwicklung und Erprobung eines Relaxed Eddy Accumulation (REA)-Systems zur Bestimmung vertikaler Flüsse von salpetriger Säure (HONO)

Das Projekt "Entwicklung und Erprobung eines Relaxed Eddy Accumulation (REA)-Systems zur Bestimmung vertikaler Flüsse von salpetriger Säure (HONO)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Physikalische und Theoretische Chemie.Während der letzten Jahre wurde Salpetrige Säure (HONO) als eine Hauptquelle von OH-Radikalen in der unteren Atmosphäre erkannt. Da das OH Radikal für den Abbau der meisten Schadstoffe und die Bildung von Photooxidantien, wie z.B. Ozone, verantwortlich ist, sind die Identifizierung und die Quantifizierung von atmosphärischen HONO-Quellen von großer Bedeutung. Basierend auf Laborstudien wurden hauptsächlich bodennahe HONO-Quellen vorgeschlagen, um die unerwartet hohen HONO-Tageskonzentrationen in der unteren Atmosphäre zu erklären. Daraus resultierende vertikale Flussmessungen von HONO über atmosphärischen Oberflächen werden jedoch nur selten durchgeführt. Zudem wird hierbei auf Grund fehlender schneller und empfindlicher HONO-Messgeräte meist nur die aerodynamische Gradientenmethode eingesetzt, die mit großen Unsicherheiten behaftet ist. Daher soll im Rahmen des hier beantragten Projektes ein REA (Relaxed Eddy Accumulation) System, zur Quantifizierung vertikaler Flüsse salpetriger Säure (HONO) entwickelt und erprobt werden. Es soll ein Zweikanal-Messgerät aufgebaut werden, das auf dem LOPAP (Long Path Absorption Photometer)-Messprinzip basiert und das mit einem mikrometeorologischen Einlasssystem gekoppelt wird. Hierbei werden zwei schnelle Magnetventile mit Hilfe eines Ultraschallanemometers gesteuert und somit die beiden Kanäle für jeweils auf- und absteigende Luftmassen beprobt. Zusätzlich werden in einem dritten Kanal chemische Interferenzen bestimmt und zur Korrektur der Messsignale verwendet. Parallel zum Aufbau der Hardware soll für die Steuerung der Ventile und die Datenerfassung der meteorologischen Daten eine passende Software entwickelt werden. Das Gerät wird zunächst an der BUW auf seine technische Funktionalität getestet und optimiert. Zum Ende des Projektes sollen dann mit Hilfe des Messgerätes und begleitenden anderen Spurengasmessungen Tagesquellen von HONO über einem landwirtschaftlich genutzten Feld in Grignon (Frankreich) identifiziert und quantifiziert werden. Die gewonnenen Daten sollen mit Ergebnissen aus HONO-Gradientenmessungen verglichen werden, die im Rahmen eines früheren DFG-Projekts des Antragstellers am selben Messort gewonnen wurden.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Untersuchung der Auswirkungen von Zirren in hohen Breiten auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre

Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Untersuchung der Auswirkungen von Zirren in hohen Breiten auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung - Atmosphärische Spurenstoffe und Fernerkundung.Die Auswirkungen von Zirrus-Wolken auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre sind ein nur mit großen Unsicherheiten bekannter Faktor im globalen Klimawandel. Die Nukleation und das Wachstum von Eispartikeln in Zirren können die vertikale Umverteilung des wichtigsten Treibhausgases Wasserdampf (H2O) bewirken. Weiterhin sind Eispartikel in Zirren in der Lage, Salpetersäure (HNO3) und weitere Verbindungen aufzunehmen und vertikal umzuverteilen. Genaue Simulationen von Zirren und deren Auswirkungen auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre stellen eine Herausforderung für numerische Wettervorhersagemodelle und Chemie-Klima-Modelle dar. In dem vorgestellten Projekt sollen mittels Messungen des GLORIA-Spektrometers während der HALO-Mission (High Altitude and LOng range research aircraft) POLSTRACC/GW-LCYCLE/SALSA und Modell-Simulationen die Auswirkungen von Zirren auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre in hohen Breiten untersucht werden.

Bewertung der seismischen Gefährdung in der Niederrheinischen Bucht zur Nutzung von Tiefengeothermie, Teilvorhaben: Seismologische Spannungsanalyse

Das Projekt "Bewertung der seismischen Gefährdung in der Niederrheinischen Bucht zur Nutzung von Tiefengeothermie, Teilvorhaben: Seismologische Spannungsanalyse" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG.Sichere und grundlastfähige erneuerbare Energiequellen sind essentiell für das Erreichen globaler Klimaziele. Die Tiefengeothermie kann Wärme und Strom unabhängig von Wetterbedingungen liefern und spielt eine Schlüsselrolle bei dem Vorantreiben der grünen Energiewende. Mit unserem Vorhaben gehen wie die Hauptfaktoren, die ein schnelleres Wachstum des Geothermiesektors verzögern, an: lange Amortisationszeiten und hohe sozio-ökonomische Risiken im Zusammenhang mit induzierter Seismizität. Hauptrisiken der Tiefengeothermie sind hohe Unsicherheiten über die Existenz, Lage und Orientierung geologischer Strukturen im Untergrund und die daraus resultierende hohe Unsicherheit über das Potential seismische Ereignisse zu induzieren. In diesem Teilvorhaben wollen wir in beiden Aspekten Fortschritte machen, in dem wir dynamische seismologische Modelle des Untergrunds erarbeiten. Aus der Kombination der innovativen seismischer Verfahren der Migration und Interferometrie werden wir dynamische Modelle erarbeiten. Diese Modelle verdeutlichen die seismische Reaktion des Untergrundes auf temporäre Veränderungen von Spannungen. Dazu werden Herdflächenlösungen mit Änderungen von seismischen Geschwindigkeiten korreliert. Ziel ist das Abschätzen von Schwellenwerten für Spannungsänderungen, die lokale Seismizität auslösen können. Die Interpretation dieser lokalen Änderungen in Hinblick auf eine geothermische Nutzung des Untergrunds hilft der Standortauswahl und somit der Reduzierung der seismischen Gefährdung. Wir werden einen neuen Arbeitsablauf entwickeln, um die seismische Gefährdung durch Tiefengeothermie in der Niederrheinischen Bucht abzuschätzen. Dieser Arbeitsablauf wird einen räumlich aufgelösten Erdbebengefährdungsindex beinhalten, der auf intuitive Weise die seismische Gefährdung der Region kommuniziert.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Zirrus Wolken in der extratropsichen Tropopausen- und unteren Stratosphären-Region

Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Zirrus Wolken in der extratropsichen Tropopausen- und unteren Stratosphären-Region" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), Stratosphäre (IEK-7).Große Unsicherheiten in der Klimavorhersage gehen auf den derzeitig eingeschränkten Wissensstand bezüglich Zirruswolken zurück. Dies unterstreicht die Bedeutung von mehr quantitativen Information durch Beobachtungen von Zirruswolken und gilt insbesondere für Zirren in der Tropopausen-Region, wo diese eine große Wärmewirkung im Vergleich zu darunter liegenden und optisch dickeren Zirren haben und nur sehr eingeschränkte Informationen vorliegen. Bodengestützte LIDAR-Beobachtungen und satellitengestützten IR Limb Messungen zeigen zudem eine neue Klasse von Zirruswolken in der sogenannten Lowermost Stratosphere (LMS). Dieser Wolkentyp ist bisher nicht gut durch Messungen charakterisiert und ist insbesondere in globalen Klimamodell-Studien noch nicht berücksichtigt. Die vorgeschlagenen Studie CiTroS steht für Cirrus cloud in the extratropical tropopause and LMS region und beschäftigt sich mit exakt diesen Wolken anhand von Messungen, die während der vorgeschlagenen WISE Kampagne des Forschungsflugzeugs HALO im September/Oktober 2017 stattfinden sollen. Besonderer Schwerpunkt der vorliegenden Studie soll auf der Analyse und Auswertung der Wolkenmessungen der neuartigen GLORIA Instruments liegen. Durch die Imaging Technik und der Schwenkvorrichtung von GLORIA ist es möglich tomographische Messungen von Luftvoluminna im Wellenlängenbereich 780 bis 1400 cm-1 durchzuführen, die eine dreidimensionale Rekonstruktion der beobachteten Wolkenstrukturen ermöglichen. IR Limb Sounder zeichnen sich durch eine extrem hohe Empfindlichkeit zur Messung optisch dünnen Zirruswolken aus, die in der langen optischen Pfadintegration begründet ist. Die Kombination von GLORIA mit dem LIDAR Instrument WALES erlaubt eine der empfindlichsten Fernerkundungsmessungen zur Charakterisierung von mikro- und makrophysikalischen Eigenschaften von Zirruswolken. Zusammen mit den in-situ-Messung für Wasserdampf und Eiswassergehalt eignet sich Nutzlast der HALO-WISE Kampagne hervorragend für Vermessung von Wolken in der LMS. Ein größerer Teil der Studie ist für die Entwicklung neuer Analysetechniken für die Auswertung der neuartigen IR-Imager GLORIA Messungen von Zirren vorgesehen. Die tomographischen Messungen werden es erstmalig ermöglichen mikrophysikalische Eigenschaften wie Eis Wassergehalt oder Partikelradius aus IR Limb-Messungen abzuleiten. Simulationen und Vorhersagen des Chemical Lagrangian Model for the Stratosphere (CLaMS) stehen nach der Kampagne für detaillierte Studien zur Verfügung. Diese sollen gezielt genutzt werden um die meso- und synoptisch-skaligen dynamischen Prozesse, die die Bildung von Zirren bei mittleren und hohen Breiten möglicherweise verantworten, zu untersuchen. Das neu entwickelte CLaMS-Ice-Modul mit einen mikrophysikalische zwei-Momenten-Schema mit den wichtigsten Bildungsprozessen von Zirren, wird im Anschluss für detaillierte Fallstudien zur Entstehung und Entwicklung der beobachteten Zirruswolken genutzt.

Quantum Wastewater Sensing (QUATERNION), Teilvorhaben: Demonstrationssystem zur Inline-Abwasseranalyse

Das Projekt "Quantum Wastewater Sensing (QUATERNION), Teilvorhaben: Demonstrationssystem zur Inline-Abwasseranalyse" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Endress+Hauser Digital Solutions (Deutschland) GmbH.

Quantum Wastewater Sensing (QUATERNION), Teilvorhaben: Quantensensorik für integriertes Abwassermonitoring

Das Projekt "Quantum Wastewater Sensing (QUATERNION), Teilvorhaben: Quantensensorik für integriertes Abwassermonitoring" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Professur für Optische Systeme.

Verbesserte geodätische Gletschermassenbilanzen durch Integration von Fernerkundung, Oberflächenmassenbilanz und Firnverdichtungsmodellierung - eine Beispielstudie von James Ross Island, Antarktis

Das Projekt "Verbesserte geodätische Gletschermassenbilanzen durch Integration von Fernerkundung, Oberflächenmassenbilanz und Firnverdichtungsmodellierung - eine Beispielstudie von James Ross Island, Antarktis" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Erlangen-Nürnberg, Institut für Geographie.Das Vorhaben zielt auf die Verbesserung von geodätischen Gletschermassenbilanzen ab. Neben einer Verbesserung der absoluten Genauigkeit wird vor allem auch eine verbesserte Fehlerquantifizierung/-abschätzung angestrebt. Zunächst werden Höhen- und Volumenänderungen aus der Differenzierung von digitalen Geländemodellen unterschiedlicher Zeitpunkte und Quellen bestimmt. Diese werden durch verschieden Verfahren wie Photogrammetrie und SAR Interferometrie (insbesondere der deutschen TanDEM-X Mission) gewonnen. Die derzeitigen Schwierigkeiten der geodätischen Methode resultieren vor allem aus Unsicherheiten der Eindringtiefe des Radarsignals bei trockenem Schnee bzw. gefrorener Schneedecke sowie bei der anschließenden Konvertierung von Volumen- in Massenänderungen, durch die Annahme eines Dichtewertes oder Dichteprofils. Hier soll durch den Einsatz eines gekoppelten Gletschermassenhaushalt- und Firnkompaktionsmodell zusammen mit den Fernerkundungsergebnisse eine entscheidende Verbesserung erzielt werden. Um das Modell und die Untersuchungen zu initialisieren und zu validieren, sollen Felderhebungen durchgeführt werden sowie auf einen sehr umfangreichen Datenbestand des Antragstellers und der tschechischen und argentinischen Kooperationspartner zurückgegriffen werden. Um Effekte und mögliche Fehler durch das Eindringen des x-Band Radarsignals besser quantifizieren zu können, werden Aufnahmen mit Sommer und Wintersituationen untersucht und mit GNSS Referenzdaten aus Geländeerhebungen verifiziert. Ferner werden die Ergebnisse der geodätischen Methode mit dem sogenannten Input-Output Verfahren ('flux gate approach') verglichen, um eine zusätzliche Absicherung der Ergebnisse zu erzielen. Das Projekt wird in enger Kooperation mit tschechischen Wissenschaftlern der Universitäten in Brno und Prag sowie mit Kollegen des Argentinischen Antarktisinstituts durchgeführt. Als Testgebiet wurde James Ross Island, an der nordöstlichen Spitze der Antarktischen Halbinsel, ausgewählt. Auch wenn die Untersuchungsregion in der Antarktis liegt, so sollen primär methodische Entwicklungen durchgeführt werden, die auf andere Standorte übertragbar sind. Der vorgeschlagene Standort bietet aufgrund der vorhanden Datenlage und Vorarbeiten sowie der internationalen Kooperation und logistischen Möglichkeiten ideale Voraussetzungen, die zu keinen nennenswerten Mehrkosten gegenüber anderen Standorten mit vergleichbaren Gletschergrößen führen. Zudem zeigen Vorarbeiten, dass die beobachteten Höhenänderungen der Gletscher auf einem kleinen Gebiet sehr unterschiedlich sind und daher in einem Gebiet unterschiedliche Magnituden, Richtungen und Mechanismen der Änderungen sowie unterschiedliche meteorologische Bedingungen untersucht werden können. Eine Situation und Konstellation, die an kaum einem anderen Standort derart gut vorliegt.

1 2 3 4 515 16 17