API src

Found 70 results.

Airglow-Forschung mit astronomischen Spektren

Das Projekt "Airglow-Forschung mit astronomischen Spektren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Augsburg, Institut für Physik.In der oberen Erdatmosphäre ab 70 km herrschen spezielle Bedingungen, die ein Leuchten im sichtbaren und infraroten Licht verursachen. Die Airglow genannten Emissionen werden durch solare extreme Ultraviolettstrahlung hervorgerufen, die Luftmoleküle zerstört und Atome ionisert. Daraufhin finden diverse chemische Reaktionen und physikalische Prozesse statt, die teilweise zur Lichtemission durch verschiedene Atome und Moleküle führen. Bedeutend sind z.B. die Beiträge durch Sauerstoff- und Natriumatome sowie Hydroxyl-, Sauerstoff- und Eisenoxidmoleküle. Airglow ist zeitlich und räumlich sehr variabel und die damit verbundenen komplexen Prozesse sind noch nicht vollständig verstanden.Die direkte Erforschung der oberen Atmosphäre ist schwierig, da nur Raketen diese Höhe erreichen können. Daher werden hauptsächlich erd- und satellitengebundene Fernerkundungsmethoden angewendet. Die verbreitetsten Messverfahren erfassen nur einen kleinen Teil des Lichtspektrums, womit viele der gleichzeitigen und teilweise verknüpften Emissionen nicht studiert werden können.Eine bisher wenig genutzte aber vielversprechende Methode zur Airglowmessung sind astronomische Spektren von bodengebundenen Teleskopen. Neben dem Licht vom astronomischen Objekt zeigen diese immer auch atmosphärische Emissionen. Für astronomische Anwendungen müssen diese Beiträge aufwändig entfernt werden, aber für die Atmosphärenforschung sind sie wertvoll, zumal die Spektrographen an großen Teleskopen besonders leistungsfähig sind. Speziell Instrumente, die einen großen Spektralbereich abdecken, erlauben simultane Messungen von vielen verschiedenen Airglowemissionen.Das geplante Projekt wird auf Aufnahmen verschiedener Spektrographen am Very Large Telescope in Nordchile und Apache Point Observatory in New Mexico basieren. Der volle Datensatz, beginnend im Jahr 2000, wird um die 100.000 Spektren umfassen. Er wird viel größer sein als alles was bisher unter Nutzung von astronomischen Daten zur Erdatmosphäre publiziert worden ist.Das Projektziel ist die Charakterisierung der zeitlichen Variationen aller beobachtbaren Airglowemissionen in der oberen Erdatmosphäre mit besonderen Fokus auf (1) Linienemissionen von Hydroxyl- und Sauerstoffmolekülen, besonders im Hinblick auf ihren Wert als Temperaturindikator für die Klimaforschung, (2) Kontinuumsemission von Metall- und Stickoxiden und (3) hochvariablen aber zumeist schwachen Linienemissionen in der Ionosphäre. Die Analyse wird auch Modell-, ergänzende Satelliten- und bodengestützte Daten berücksichtigen. Die dabei gewonnenen Erkenntnisse werden einen signifikanten Beitrag zum Verständnis der chemischen und physikalischen Prozesse in der oberen Atmosphäre, aber auch zur Atom- und Molekülphysik liefern. Mit besseren Modellen der Emissionen wird es auch möglich werden die natürliche Nachthimmelshelligkeit genauer abzuschätzen und astronomische Daten besser zu verarbeiten.

Atomarer Sauerstoff in der Mesosphäre und unteren Thermosphäre der Erde

Das Projekt "Atomarer Sauerstoff in der Mesosphäre und unteren Thermosphäre der Erde" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Atomarer Sauerstoff (O) ist ein wichtiger Bestandteil der Erdatmosphäre. Er erstreckt sich von der Mesosphäre bis zur unteren Thermosphäre (Engl.: Mesosphere and Lower Thermosphere: MLT), d. h. von etwa 80 km bis über 500 km Höhe. O wird durch Photolyse von molekularem Sauerstoff durch UV-Strahlung erzeugt. Er ist die am häufigsten vorkommende Spezies in der MLT und eine wichtige Komponente in Bezug auf dessen Photochemie. Außerdem ist O wichtig für den Energiehaushalt der MLT, da CO2-Moleküle durch Stöße mit O angeregt werden und die angeregten CO2-Moleküle im Infraroten strahlen und die MLT kühlen. Dies bedeutet, dass sich der globale Klimawandel auch auf die MLT auswirkt, denn die Erhöhung der CO2-Konzentration in der MLT führt zu einer effizienteren Kühlung und damit zu deren Schrumpfen. Die O Konzentration wird außerdem durch dynamische Bewegungen, vertikalen Transport, Gezeiten und Winde beeinflusst. Daher ist eine genaue Kenntnis der globalen Verteilung von O und seines Konzentrationsprofils sowie der täglichen und jährlichen Schwankungen unerlässlich, um die Photochemie, den Energiehaushalt und die Dynamik der MLT zu verstehen. Das Ziel dieses Projekts ist es, Säulendichten und Konzentrationsprofile von O in der MLT durch Analyse der Feinstrukturübergänge bei 4,74 THz und 2,06 THz zu bestimmen. Die zu analysierenden Daten wurden mit dem Heterodynspektrometer GREAT/upGREAT (German REceiver for Astronomy at Terahertz frequencies) an Bord von SOFIA, dem Stratospheric Observatory for Infrared Astronomy, gemessen. Dies ist eine direkte Beobachtungsmethode, die genauere Ergebnisse liefern kann als existierende indirekte satellitengestützte Methoden, die photochemische Modelle benötigen, um O Konzentrationsprofile abzuleiten. Mit GREAT/upGREAT wurden seit Mai 2014 ca. 500.000 Spektren gemessen, die vier verschiedene Weltregionen abdecken, nämlich Nordamerika, Neuseeland, Europa und Tahiti/Pazifik. Zeitliche Variationen sowie der Einfluss von Sonnenzyklen, Winden und Schwerewellen werden ebenfalls im Rahmen des Projekts untersucht. Die Ergebnisse werden mit Satellitendaten, die für Höhen von 80 bis 100 km verfügbar sind, und mit Vorhersagen eines semi-empirischen Modells verglichen. Es sei darauf hingewiesen, dass diese Daten die ersten spektral aufgelösten direkte Messungen von O in der MLT sind. Dies ist eine vielversprechende Alternative zur Bestimmung der Konzentration von O im Vergleich mit indirekten satellitengestützten Methoden, die auf photochemischen Modellen beruhen.

Verzögerte Antwort der Ionosphäre auf Variationen des solaren EUV II (DRIVAR II)

Das Projekt "Verzögerte Antwort der Ionosphäre auf Variationen des solaren EUV II (DRIVAR II)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Variabilität der oberen Atmosphäre der Erde wird durch die Schwankungen in der Absorption solarer UV- und EUV-Strahlung die Ionosphäre hervorgerufen. Dabei tritt jedoch eine Verzögerung auf, die durch das Zusammenspiel verschiedener physikalischer und chemischer Prozesse verursacht wird. So haben die bestimmenden Ionisations- und Rekombinationsprozesse in den verschiedenen Schichten der Ionosphäre, aber auch Transportprozesse einen entscheidenden Einfluss. Die Rolle dieser Prozesse wurde in verschiedenen Studien untersucht, jedoch haben sich diese Analysen bisher nur mit einzelnen Aspekten der Verzögerung beschäftigt.Im Projekt DRIVAR II werden jene Aspekte der Verzögerung untersucht werden, die bisher nicht in Studien aufgenommen wurden. Dies beinhaltet die Variation der Verzögerung in hohen und niedrigen Breiten und die Rolle von Kopplungsprozessen zwischen Thermosphäre und Ionosphäre. Aufbauend auf diesen Ergebnissen und vorangegangenen Studien wird im Rahmen des Projektes eine globale Beschreibung der Verzögerung bereitgestellt.Die Analyse wird dabei einerseits auf etablierten Datensätzen (z.B. SDO-EVE, GOES, GUVI, Ionosonde oder TEC-Karten) aufbauen, aber andererseits auch neue Daten berücksichtigen (z.B. GOLD und ICON). Diese Vielzahl an solaren, thermosphärischen und ionosphärischen Parametern wird eine detaillierte Beschreibung der ionosphärischen Verzögerung ermöglichen. Hinzu kommen Modelluntersuchungen mit dem Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) Modell und dem Thermosphere-Ionosphere- Electrodynamics General Circulation (TIE-GCM) Modell. Die Untersuchungen mithilfe dieser Modelle werden die verantwortlichen Prozesse ionosphärischer Variabilität zu bestimmen. Mit den Ergebnissen der Untersuchungen sollen dann ggf. auch Vorschläge für die Optimierung dieser Modelle formuliert werden und empirische Modelle ergänzt werden.Mit dem DRIVAR-II-Projekt werden die ionosphärischen und thermosphärischen Prozesse, welche die verzögerte Reaktion der Ionosphäre bestimmen umfassender und genauer analysiert. Diese Untersuchungen werden auch das generelle Verständnis von Prozessen in der oberen Atmosphäre verbessern und sind für das Vorhersagen von ionosphärischen Bedingungen interessant.Das Projekt ist eine Kooperation zwischen dem Institut für Solar-Terrestrische Physik in Neustrelitz und dem Institut für Meteorologie der Universität Leipzig.

SWACI - Electron Density Distribution (REG) - Global

SWACI is a research project of DLR supported by the State Government of Mecklenburg-Vorpommern. Radio signals, transmitted by modern communication and navigation systems may be heavily disturbed by space weather hazards. Thus, severe temporal and spatial changes of the electron density in the ionosphere may significantly degrade the signal quality of various radio systems which even may lead to a complete loss of the signal. By providing specific space weather information, in particular now- and forecast of the ionospheric state, the accuracy and reliability of impacted communication and navigation systems shall be improved. According to the pioneer work of Sir E. Appleton the vertical structure of the terrestrial ionosphere may be divided into different layers (D, E, F1, F2) with different physical characteristics. The layers are primarily characterized by its height and peak electron density. The spatial plasma distribution is generated from actual TEC maps by applying a first version of the empirical electron density model NEDM-v1. In correspondence with the update rate of TEC maps the time resolution of the 3 D images is 5 minutes. For details see http://swaciweb.dlr.de/index.php?id=303&L=1 and http://presentations.copernicus.org/EGU2011-7324_presentation.pdf.

Messung des Erdmagnetfeldes in der Bundesrepublik Deutschland

Das Projekt "Messung des Erdmagnetfeldes in der Bundesrepublik Deutschland" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität München, Institut für Allgemeine und Angewandte Geophysik, Geophysikalisches Observatorium.a) Permanente Registrierung der zeitlichen Aenderungen des Erdmagnetfeldes mit Perioden von einigen Sekunden bis einigen Tagen (Aktivitaet des Erdmagnetfeldes). Die Aktivitaet wird durch Bewegungen in der hohen Atmosphaere (Ionosphaere und Magnetosphaere) erzeugt. Diese Phaenomene stehen im engen Zusammenhang mit dem Teil des Sonnenwindes, der die Erde trifft. Die permanente Registrierung der Aktivitaet des Erdmagnetfeldes ist eine der Methoden, mit der der Zustand der hohen Atmosphaere und der Sonne kontrolliert wird. b) Vermessung der absoluten Werte des Erdmagnetfeldes am Ort des Observatoriums und in Sueddeutschland mit einer Genauigkeit von etwa 10 hoch -5. Um die saekularen Aenderungen des Erdmagnetfeldes zu kontrollieren, werden die Messungen am Observatorium etwa alle 10 Tage und im gesamten sueddeutschen Raum etwa alle 10 Jahre wiederholt. Diese Messungen sind Grundlage fuer die Angabe der Deklination und gegebenenfalls der Inklination und der totalen Intensitaet des Erdmagnetfeldes wie sie in Landkarten, Flugplaetzen, Haefen, Labors etc. benoetigt werden.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Effekte durch Schwerewellen in der Thermosphäre/Ionosphäre infolge von Aufwärtskopplung

Das Projekt "Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Effekte durch Schwerewellen in der Thermosphäre/Ionosphäre infolge von Aufwärtskopplung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), Stratosphäre (IEK-7).Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.

Untersuchungen zum Einfluß des Weltraumwetters auf die Chemie und Dynamik der Erdatmosphäre (SPEACH)

Das Projekt "Untersuchungen zum Einfluß des Weltraumwetters auf die Chemie und Dynamik der Erdatmosphäre (SPEACH)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Energetische Elektronen aus der Aurora und den Strahlungsgürteln sind bekannte Quellen von Stickoxiden in der Auroraregion der oberen Mesosphäre und unteren Thermosphäre (MLT, 60-140 km). Im polaren Winter können diese Stickoxide bis in die mittlere Stratosphäre (30—45 km) herunter transportiert werden; sie variieren dabei mit der geomagnetischen Aktivität und dem dynamischen Zustand der Atmosphäre. Hier tragen Stickoxide maßgeblich zum katalytischen Ozonabbau bei; da Ozon eine wesentliche Rolle in der Strahlungsheizung der Stratosphäre spielt, ändern sich durch den Abwärtstransport von auroralen Stickoxiden auch Temperaturen und Windfelder. Diese Änderungen der Atmosphärendynamik können die ganze Atmosphäre bis hinunter zu troposphärischen Wettersystemen betreffen. Aus diesem Grund wurde kürzlich zum ersten Mal empfohlen, geomagnetische Aktivität als Teil des solaren Forcings des Klimasystems in Klima-Chemiemodellstudien wie CMIP-6 zu berücksichtigen. Die atmosphärischen Ionisationsraten, welche verwendet werden, um solche Modellexperimente anzutreiben, basieren empirisch auf Flüssen von präzipitierenden Elektronen, welche jedoch mit großen Unsicherheiten behaftet sind; neue Studien legen nahe, daß es ernsthafte Probleme mit der Genauigkeit dieser Daten gibt. In diesem Projekt werden wir untersuchen, wie vom Sonnenwind getriebene Prozesse in der Magnetosphäre präzipitierende Elektronen verschiedener Energien beeinflussen, und welchen Einfluß diese präzipitierenden Elektronen auf die Zusammensetzung, Temperatur, und Windfelder in der mittleren Atmosphäre haben.Insbesondere werden wir untersuchen:• Wie beeinflussen vom Sonnenwind getriebene Prozesse in der Magnetosphäre das Präzipitieren von Strahlungsgürtelelektronen in die Atmosphäre?• Zu welchen Energien werden präzipitierende Elektronen in den unterschiedlichen geomagnetischen Stürmen in der Magnetosphäre beschleunigt? • Welcher Energiebereich der Präzipitierenden Elektronen hat den größten Einfluss auf die Zusammensetzung und Dynamik der mittleren Atmosphäre?Dazu werden Modellsimulationen mit dem neuentwickelten VERB-4D Modell durchgeführt, welches Elektronenbeschleunigung in die Atmosphäre durch Welle-Teilchen-Wechselwirkungen mit Chorus, Plasmaspheric hiss, hiss in plumes, und EMIC-Wellen berücksichtigt. Ergebnisse werden mit NOAA POES Daten validiert. Modellierte Elektronenflüsse am Oberrand des Modells werden als Input verwendet für das neuentwickelte Klima-Chemiemodells EMAC/EDITh (Boden bis 220km). Modellierte Temperaturen und der Stickoxid-Gehalt werden anhand von Beobachtungen validiert. Fallstudien werden durchgeführt werden für geomagnetische Stürme, die durch Korotating Interaction Regions (CIR) und solare koronale Massenauswürfe (CMEs) ausgelöst wurden, um zu untersuchen, wie die verschiedenen Prozesse unterschiedliche Bereiche der Atmosphäre beeinflussen.

6-stündige Gezeiten in den mittleren Atmosphäre (QuarTA)

Das Projekt "6-stündige Gezeiten in den mittleren Atmosphäre (QuarTA)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Leipzig, Institut für Meteorologie.Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Wechselwirkungen von Schwerewellen in der globalen Atmosphäre (GWING)

Das Projekt "Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Wechselwirkungen von Schwerewellen in der globalen Atmosphäre (GWING)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.Interne Schwerewellen (SW) verbinden verschiedene Schichten der Atmosphäre von der Troposphäre bis zur Thermosphäre und treiben die großskalige Zirkulation der mittleren Atmosphäre an. Viele der für SW relevanten Prozesse, von ihrer Entstehung über die Ausbreitung bis zur Dissipation sind jedoch unvollständig verstanden und, wegen der geringen typischen Wellenlänge, meist schlecht in numerischen Wettervorhersage- und Klimamodellen repräsentiert. GWING ist eines der Projekte der Forschergruppe MS-GWaves, die darauf abzielt, unser Verständnis der oben angesprochenen multi-skalaren dynamischen Schwerewellenprozesse zu verbessern, um letztendlich eine einheitliche Parametrisierung der in Atmosphärenmodellen nicht auflösbaren Schwerewellen (und ihrer Effekte) von der Entstehung bis zur Dissipation zu entwickeln. Um hierzu beizutragen, ist das zentrale Ziel von GWING die Entwicklung und Anwendung des atmosphärischen Zirkulationsmodells UA-ICON. Mit diesem Modell integriert GWING das in der Forschergruppe MS-GWaves entwickelte Wissen. In der zweiten Phase von GWING stehen zwei übergeordnete wissenschaftliche Fragen im Fokus: a) Welche Bedeutung haben Eigenschaften von Schwerewellen, die in klassischen Parametrisierungen nicht berücksichtigt werden, also insbesondere horizontale und nicht-inständige Propagation sowie die Wechselwirkung transienter Wellen mit dem Grundstrom? b) Welche Rolle spielen Schwerewellen für die globale Zirkulation und ihre Variabilität? Um diese Fragen zu beantworten, werden wir UA-ICON global sowohl mit einer Maschenweite von etwa 20 km (d.h. mit Auflösung von SW bis etwa 100 km Wellenlänge) als auch mit grober Auflösung, dafür aber mit der State-of-the-art Parametrisierung MS-GWaM nutzen. Weiterhin werden spezielle Beobachtungsepisoden mit sehr hoch (ca. 1,5 km) aufgelösten Nestern simuliert. Zur Evaluation und Analyse werden diese Modellsimulationen mit Beobachtungen der Partnerprojekte zusammengeführt. Die wesentlichen Entwicklungsziele für UA-ICON in Phase 2 des Projekts sind dementsprechend die Implementierung von MS-GWaM (entwickelt im Partnerprojekt 3DMSD), die Einführung physik-basierter Schwerewellenquellen (zusammen mit 3DMSD und SV) und eine verbesserte Behandlung von SW bei sehr hoher Modellauflösung. Die Nutzung der verschiedenen UA-ICON-Konfigurationen wird schließlich erlauben, die Bedeutung bisher vernachlässigter Eigenschaften von SW zu untersuchen, d.h. die erste der oben genannten Fragestellungen zu beantworten. Ein spezielles Ziel im Rahmen von GWING ist diese Untersuchung für Episoden plötzlicher Stratosphärenerwärmungen, die durch sich schnell ändernde und zonal nicht symmetrische Bedingungen des Grundstroms gekennzeichnet sind. Im Hinblick auf die zweite übergeordnete Fragestellung, wird sich GWING auf a) die Rolle der SW und einer hohen Modellausdehnung für die Simulation von Zirkulationsänderungen bei globaler Erwärmung und b) die Rolle für die Güte von Wettervorhersagen konzentrieren.

Verzögerte Antwort der Ionosphäre auf Variationen des solaren EUV (DRIVAR)

Das Projekt "Verzögerte Antwort der Ionosphäre auf Variationen des solaren EUV (DRIVAR)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Kommunikation und Navigation.Das ionosphärische Plasma reagiert auf Änderungen der ionosphärischen EUV und UV-Strahlung auf der Zeitskala der solaren Rotation mit einer Verzögerung von 1-2 Tagen. Es wird angenommen, dass diese Verzögerung auf Transportprozesse von der unteren Ionosphäre in die F-Region zurück zu führen ist, doch wurden bislang nur begrenzte Modelluntersuchungen durchgeführt, um diesen Zusammenhang zu belegen. Innerhalb von DRIVAR sollen die Prozesse, die für die ionosphärische Verzögerung verantwortlich sind, durch umfassende Datenanalyse und Modellierung untersucht werden. Verschiedene solare Proxies sowie spektral aufgelöste EUV- und UV-Flüsse aus Satellitenmessungen werden verwendet und zusammen mit ionosphärischen Parametern analysiert, welche aus GPS-Radiookkultationsmessungen, Ionosondenmessungen und GPS-Gesamtelektronenmessungen stammen. Letztere haben sowohl den Vorteil einer globalen Abdeckung als auch einer z.T. räumlich hoher Auflösung. Die ionosphärsche Verzögerung wird auf verschiedenen Zeitskalen ionosphärischer Variation (Tage, solare Rotation, saisonal) untersucht, und regionale Abhängigkeiten werden analysiert.Wegen des komplexen Charakters der involvierten Prozesse in der Thermosphäre und Ionosphäre werden Experimente mit numerischen Modellen benötigt, um die der Verzögerung zugrundeliegenden Prozesse physikalisch zu untersuchen. Wir verwenden das Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe), um die Verzögerung zu simulieren und führen Sensitivitätsstudien durch um die zur ionosphärischen Verzögerung führenden Prozesse im Detail zu analysieren. Zusätzliche Experimente werden mit dem Upper Atmosphere Model (UAM) durchgeführt.Die Ergebnisse von DRIVAR werden zu einem verbesserten Verständnis ionosphärischer Prozesse führen und werden insbesondere in der Vorhersage ionosphärischer Variabilität Anwendung finden, z.B. bei der Analyse und Vorhersage von GNSS- Positionsfehlern.

1 2 3 4 5 6 7