Grönland beheimatet, abgesehen von seinem großen Eisschild, eine Vielzahl von weitaus kleineren peripheren Gletschern. Der Anteil dieser Gletscher am gesamten Eismassenverlust Grönlands geht weit über den Anteil hinaus, den diese Gletscher an der gesamten Eismasse und –fläche einnehmen. Da sie sich meist in gebirgigem Gelände entlang der Küsten befinden, erfordern numerische Modelle dieser Eismassen geeignete räumliche Auflösungen, die nicht von Eisschildmodellen erreicht werden können. Kalbende Gletscher tragen in besonderem Maße zum Gesamtmassenverlust bei. Über den Zeitraum 2003-2008 trugen die peripheren Gletscher 14% zum grönlandweiten Eismassenverlust bei. Ihr Beitrag zum Meeresspiegelanstieg wird Prognosen zufolge in Zukunft weiter ansteigen, wobei aktuell verfügbare Projektionen unter Annahme einer Klimaentwicklung entlang des RCP 8.5 einen Eismassenverlust von bis zu ~50% im 21. Jahrhundert vorhersagen. Es existiert eine deutliche regionale Variabilität, die eine komplexe Kombination von atmosphärischen und ozeanischen Antriebsmechanismen widerspiegelt. Nichtsdestotrotz ist keines der aktuell verfügbaren regionalskaligen Gletschermodelle in der Lage, ozeanische Einflüsse auf die Frontalablation an den kalbenden Gletscherzungen explizit aufzulösen. Abgesehen von zwei Modellen wird Frontalablation sogar vollständig ignoriert. Folglich existieren auch bisher keinerlei Abschätzungen bezüglich der Mengen von Frontalablation an Grönlands peripheren Gletschern, weder für Vergangenheit, Gegenwart, noch Zukunft.Das Ziel des Projektes ist die Erstellung von CMIP6-basierten Projektionen der zukünftigen Entwicklung von Grönlands peripheren Gletschern im 21. Jahrhundert unter besonderer Berücksichtigung von kalbenden Gletschern. Wir werden sowohl Schmelzwasserabflüsse als auch Beiträge zum Meeresspiegelanstieg quantifizieren. Wir werden das Open Global Glacier Model (OGGM) dahingehend weiterentwickeln, dass es in seinem Frontalablationsmodul ozeanische Antriebsmechanismen berücksichtigt. Dies wird durch spezielle Downscaling-Routinen für Klima- und Ozeandaten unterstützt werden. Wir werden die Modelperformance von OGGM in Abhängigkeit von verschiedenen räumlichen Auflösungen der Antriebsdaten im Detail evaluieren, um herauszufinden, ob und inwieweit die Anwendung optimierter Skalenübergänge von der großen synoptischen hinunter auf die kleinere, lokale Skala der peripheren Gletscher dazu beiträgt, die Modelperformance zu steigern. Die Ergebnisse des Projektes werden ein gesteigertes Maß an Verständnis bezüglich der atmosphärischen und ozeanischen Einflüsse auf die Entwicklung der peripheren Gletscher Grönlands liefern. Weiterhin werden wird Empfehlungen bezüglich der optimalen Komplexität zukünftiger, regionalskaliger Gletschermodellierungen abgeben und dabei besonders kalbende Gletscher berücksichtigen.
The Urban Waste Water Treatment Directive concerns the collection, treatment and discharge of urban waste water and the treatment and discharge of waste water from certain industrial sectors. The objective of the Directive is to protect the environment from the adverse effects of the above mentioned waste water discharges. This series contains time series of spatial and tabular data covering Agglomerations, Discharge Points, and Treatment Plants.
In marinen Lebensräumen können Seevögel als wertvolle Indikatoren für Nahrungsressourcen und die Produktivität des marinen Ökosystems dienen. Studien zeigen deutliche Veränderungen in marinen Ökosystemen, und eine Art, die auf solche Veränderungen empfindlich reagiert, ist der Südliche Felsenpinguin Eudyptes chrysocome (IUCN-Kategorie gefährdet). Analysen neuerer und historischer Daten deuten darauf hin, dass Felsenschreibepinguine in einem sich erwärmenden Ozean schlechter überleben und sich vermehren und dass der Klimawandel sie in mehreren Phasen der Brut- und Nicht-Brutsaison beeinflussen kann. Mehr als ein Drittel der Gesamtpopulation dieser Art brütet auf den Falklandinseln, wo die Populationen besonders stark zurückgehen, und unsere früheren Studien (2006-2011) hier haben auf reduzierte Überlebenswahrscheinlichkeiten unter zunehmend warmen Meerestemperaturen und leichtere Eier unter wärmeren Umweltbedingungen hingewiesen. Die zugrunde liegenden Ursachen für diese Veränderungen sind jedoch noch wenig bekannt. Das vorliegende Projekt knüpft an frühere Studien an, aber wir werden neu verfügbare Technologien anwenden, nämlich viel kleinere GPS-Beschleunigungs-Datenlogger, um die noch unbekannten Phasen der Brutzeit und die für die Futtersuche verwendete Energie zu untersuchen, und Analysemethoden aus dem Machine Learning („künstliche Intelligenz“) und der Energielandschaften-Modellierung. Komponentenspezifische stabile Isotopenanalysen und Metabarcodierung von Kotproben werden zudem eingesetzt, um die Ernährung während der verschiedenen Phasen des Brutzyklus zu untersuchen. Wir werden auch Zeitrafferkameras einsetzen und über "Penguin watch" - ein Toolkit zur Extraktion großflächiger Daten aus Kamerabildern und zur Einbeziehung der Öffentlichkeit - bürgernahe Wissenschaft betreiben. Insgesamt wollen wir verstehen, warum Südliche Felsenpinguine eine besonders empfindliche Art bei sich erwärmenden Meeresbedingungen sind.
The EU Bathing Waters Directive requires Member States to identify popular bathing places in fresh and coastal waters and monitor them for indicators of microbiological pollution (and other substances) throughout the bathing season which runs from May to September
3 Tage Vorhersage. Wind, Temperatur, Bodendruck, Bedeckung, Konvektionswolken und Niederschlag. - 3 days forecast. Wind, temperature, pressure mean sea level, cloud cover, convective clouds and precipitation.
This dataset contains the location and administrative data for the largest industrial complexes in Europe, releases and transfers of regulated substances to all media, waste transfers reported under the European Pollutant Release and Transfer Register (E-PRTR) and as well as more detailed data on energy input and emissions for large combustion plants (reported under IED Art.72).
The WEI+ provides a measure of total water consumption as a percentage of the renewable freshwater resources available for a given territory and period. The WEI+ is an advanced geo-referenced version of the WEI. It quantifies how much water is abstracted monthly or seasonally and how much water is returned before or after use to the environment via river basins (e.g. leakages, discharges by economic sectors). The difference between water abstractions and water returns is regarded as ‘water consumption’.
The present dataset from Germany is encompassed in the European Biodiversa BioRodDis project (Managing BIOdiversity in forests and urban green spaces: Dilution and amplification effects on RODent microbiomes and rodent-borne DISeases. Project coordinator: Nathalie Charbonnel, Senior researcher (DR2, INRAE), nathalie.charbonnel@inrae.fr - https://www6.inrae.fr/biodiversa-bioroddis). The project comes with the purpose to explore on a large scale the relationship between biodiversity of rodents, rodent-borne diseases dynamics and differences over time in a changing climate and it includes data of small terrestrial mammals from temperate forests and urban parks from the following countries: Belgium, France, Germany, Ireland and Poland. The present dataset includes records of small mammals (Rodentia) occurrences trapped in urbanised and forested areas in northeast Germany in the district of Potsdam (Brandenburg). Samplings and data collection took place throughout three years and during a total of four seasons: winter 2020, spring 2021, autumn 2021 and spring 2022. The number of sampling sites varied between 2 and 4 per seasons, with two main sites (Germany EastA and Germany EastB) being permanent in each sampling season. These variations are mainly due to the impact of SARS-CoV-2 pandemic regulations (2020, 2021) on the organisation and the execution of fieldwork and to the exclusion subsequently of forested sites with very low density of animals (≤10 individuals: Germany EastC, Germany EastB). The two main sampling sites represent different levels of anthropisation. The site Germany EastA is around the Botanical Garden belonging to the University of Potsdam with a mixture of sealed and wooded areas and a constant human presence while the site Germany EastB is a forested sub-urbanised area outside of the city composed by mixed coniferous forests, meadows, crossed by a main road and with occasional human presence (hunters, foresters). All animals were live captured (as in Schirmer et al., 2019) using a combination of Ugglan and Longworth traps for a total of 100-150 traps, depending on site and year. Traps were placed in 4 to 6 lines with 25m distance, and each line was composed by a total of 25 traps placed with 10m distance from each other. Fieldwork actions generally started with 1-4 days of pre-baiting followed by 1-10 days of trapping, according to efficiency of trapping and subprojects included. The sites Germany EastC and Germany EastD were excluded from the last two seasons because of very low trapping success during the previous seasons. All the traps were controlled daily during early morning hours and were activated again in the evening, with animals spending not more than eight hours in the trap. Baiting mixture consisted of oat flakes and apples and all traps were equipped with insulating material, like hay or wood wool. Taxonomical identification was determined in the field at species level according to morphology and previously recorded species occurrences in the sampling area (Dolch, 1995). Molecular identification of Apodemus flavicollis and Microtus individuals that were subsequently dissected was performed by the CBGP (France) using CO1 sequencing for Microtus species following Pagès et al., 2010, and DNA fingerprinting (AP-PCR) for Apodemus species (Bugarski-Stanojević et al., 2013). Dissections and body measurements were performed following the protocols described in Herbreteau et al., 2011. At the end of all seasons, a total of 620 occurrences of rodents was recorded, belonging to two main families (Muridae, Cricetidae) and four different species (Apodemus flavicollis, Apodemus agrarius, Myodes glareolus and Microtus arvalis). Additionally, for a subset of individuals (n=264), body measurements like weight, body length, head width, tail length and hind foot length as well as sexual maturity data were recorded. Animals were captured in accordance with the applicable international and institutional guidelines for the use of animals in research. The trapping and collection of rodents was performed under the permission of “Landesamt für Arbeitsschutz, Verbraucherschutz und Gesundheit Brandenburg (LAVG)“ (no. 2347-A-16-1-2020 for procedure, LUGV_RW7-4744/41+5#243052/2015 and N1 0424 for trapping) and “Landesamt für Umwelt Brandenburg (LfU)” (no. LFU-N1-4744/97+17#194297/2020, for sites and species exemptions). This project was funded through the 2018-2019 BiodivERsA joint call for research proposals, under the BiodivERsA3 ERA-Net COFUND programme, and coordinated by the German Science Foundation DFG (Germany). Citations: 1) Bugarski-Stanojević, V., Blagojević, J., Adnađević, T., Jovanović, V., & Vujošević, M. (2013). Identification of the sibling species Apodemus sylvaticus and Apodemus flavicollis (Rodentia, Muridae)—Comparison of molecular methods. Zoologischer Anzeiger - A Journal of Comparative Zoology, 252(4), 579–587. https://doi.org/10.1016/j.jcz.2012.11.004 2) Dolch, D. (1995). Naturschutz und Landschaftspflege in Brandenburg. 97. 3) Herbreteau, V., Jittapalapong, S., Rerkamnuaychoke, W., Chaval, Y., Cosson, J.-F., & Morand, S. (2011). Protocols for field and laboratory rodent studies. 56. 4) Pagès, M., Chaval, Y., Herbreteau, V., Waengsothorn, S., Cosson, J.-F., Hugot, J.-P., Morand, S., & Michaux, J. (2010). Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology, 10(1), 184. https://doi.org/10.1186/1471-2148-10-184 5) Schirmer, A., Herde, A., Eccard, J. A., & Dammhahn, M. (2019). Individuals in space: Personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia, 189(3), 647–660. https://doi.org/10.1007/s00442-019-04365-5
The Floods Directive (FD) was adopted in 2007 (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32007L0060). The purpose of the FD is to establish a framework for the assessment and management of flood risks, aiming at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the European Union. ‘Flood’ means the temporary covering by water of land not normally covered by water. This shall include floods from rivers, mountain torrents, Mediterranean ephemeral water courses, and floods from the sea in coastal areas, and may exclude floods from sewerage systems. This reference spatial dataset, reported under the Floods Directive, includes the areas of potential significant flood risk (APSFR), as they were lastly reported by the Member States to the European Commission, and the Units of Management (UoM).
| Origin | Count |
|---|---|
| Bund | 541 |
| Europa | 240 |
| Global | 2 |
| Kommune | 5 |
| Land | 190 |
| Schutzgebiete | 60 |
| Wissenschaft | 32 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 9 |
| Ereignis | 29 |
| Förderprogramm | 269 |
| Taxon | 15 |
| Text | 112 |
| Umweltprüfung | 1 |
| unbekannt | 425 |
| License | Count |
|---|---|
| geschlossen | 174 |
| offen | 436 |
| unbekannt | 250 |
| Language | Count |
|---|---|
| Deutsch | 490 |
| Englisch | 430 |
| Resource type | Count |
|---|---|
| Archiv | 78 |
| Bild | 57 |
| Datei | 86 |
| Dokument | 128 |
| Keine | 371 |
| Unbekannt | 3 |
| Webdienst | 72 |
| Webseite | 405 |
| Topic | Count |
|---|---|
| Boden | 518 |
| Lebewesen und Lebensräume | 860 |
| Luft | 361 |
| Mensch und Umwelt | 854 |
| Wasser | 604 |
| Weitere | 767 |