In marinen Lebensräumen können Seevögel als wertvolle Indikatoren für Nahrungsressourcen und die Produktivität des marinen Ökosystems dienen. Studien zeigen deutliche Veränderungen in marinen Ökosystemen, und eine Art, die auf solche Veränderungen empfindlich reagiert, ist der Südliche Felsenpinguin Eudyptes chrysocome (IUCN-Kategorie gefährdet). Analysen neuerer und historischer Daten deuten darauf hin, dass Felsenschreibepinguine in einem sich erwärmenden Ozean schlechter überleben und sich vermehren und dass der Klimawandel sie in mehreren Phasen der Brut- und Nicht-Brutsaison beeinflussen kann. Mehr als ein Drittel der Gesamtpopulation dieser Art brütet auf den Falklandinseln, wo die Populationen besonders stark zurückgehen, und unsere früheren Studien (2006-2011) hier haben auf reduzierte Überlebenswahrscheinlichkeiten unter zunehmend warmen Meerestemperaturen und leichtere Eier unter wärmeren Umweltbedingungen hingewiesen. Die zugrunde liegenden Ursachen für diese Veränderungen sind jedoch noch wenig bekannt. Das vorliegende Projekt knüpft an frühere Studien an, aber wir werden neu verfügbare Technologien anwenden, nämlich viel kleinere GPS-Beschleunigungs-Datenlogger, um die noch unbekannten Phasen der Brutzeit und die für die Futtersuche verwendete Energie zu untersuchen, und Analysemethoden aus dem Machine Learning („künstliche Intelligenz“) und der Energielandschaften-Modellierung. Komponentenspezifische stabile Isotopenanalysen und Metabarcodierung von Kotproben werden zudem eingesetzt, um die Ernährung während der verschiedenen Phasen des Brutzyklus zu untersuchen. Wir werden auch Zeitrafferkameras einsetzen und über "Penguin watch" - ein Toolkit zur Extraktion großflächiger Daten aus Kamerabildern und zur Einbeziehung der Öffentlichkeit - bürgernahe Wissenschaft betreiben. Insgesamt wollen wir verstehen, warum Südliche Felsenpinguine eine besonders empfindliche Art bei sich erwärmenden Meeresbedingungen sind.
Einrichtung einer Gaschromatographie-Massenspektrometrie-Datenbibliothek fuer Wasserverunreinigungen. Koordinierung des Austausches von Gaschromoatographie-Massenspektridaten zwischen den einzelnen mitarbeitenden Laboratorien in 12 Europaeischen Laendern (Bundesrepublik Deutschland, Daenemark, Frankreich, Grossbritannien, Irland, Italien, Jugoslawien, Niederlande, Norwegen, Portugal, Schweiz, Spanien).
3 Tage Vorhersage. Wind, Temperatur, Bodendruck, Bedeckung, Konvektionswolken und Niederschlag. - 3 days forecast. Wind, temperature, pressure mean sea level, cloud cover, convective clouds and precipitation.
The present dataset from Germany is encompassed in the European Biodiversa BioRodDis project (Managing BIOdiversity in forests and urban green spaces: Dilution and amplification effects on RODent microbiomes and rodent-borne DISeases. Project coordinator: Nathalie Charbonnel, Senior researcher (DR2, INRAE), nathalie.charbonnel@inrae.fr - https://www6.inrae.fr/biodiversa-bioroddis). The project comes with the purpose to explore on a large scale the relationship between biodiversity of rodents, rodent-borne diseases dynamics and differences over time in a changing climate and it includes data of small terrestrial mammals from temperate forests and urban parks from the following countries: Belgium, France, Germany, Ireland and Poland. The present dataset includes records of small mammals (Rodentia) occurrences trapped in urbanised and forested areas in northeast Germany in the district of Potsdam (Brandenburg). Samplings and data collection took place throughout three years and during a total of four seasons: winter 2020, spring 2021, autumn 2021 and spring 2022. The number of sampling sites varied between 2 and 4 per seasons, with two main sites (Germany EastA and Germany EastB) being permanent in each sampling season. These variations are mainly due to the impact of SARS-CoV-2 pandemic regulations (2020, 2021) on the organisation and the execution of fieldwork and to the exclusion subsequently of forested sites with very low density of animals (≤10 individuals: Germany EastC, Germany EastB). The two main sampling sites represent different levels of anthropisation. The site Germany EastA is around the Botanical Garden belonging to the University of Potsdam with a mixture of sealed and wooded areas and a constant human presence while the site Germany EastB is a forested sub-urbanised area outside of the city composed by mixed coniferous forests, meadows, crossed by a main road and with occasional human presence (hunters, foresters). All animals were live captured (as in Schirmer et al., 2019) using a combination of Ugglan and Longworth traps for a total of 100-150 traps, depending on site and year. Traps were placed in 4 to 6 lines with 25m distance, and each line was composed by a total of 25 traps placed with 10m distance from each other. Fieldwork actions generally started with 1-4 days of pre-baiting followed by 1-10 days of trapping, according to efficiency of trapping and subprojects included. The sites Germany EastC and Germany EastD were excluded from the last two seasons because of very low trapping success during the previous seasons. All the traps were controlled daily during early morning hours and were activated again in the evening, with animals spending not more than eight hours in the trap. Baiting mixture consisted of oat flakes and apples and all traps were equipped with insulating material, like hay or wood wool. Taxonomical identification was determined in the field at species level according to morphology and previously recorded species occurrences in the sampling area (Dolch, 1995). Molecular identification of Apodemus flavicollis and Microtus individuals that were subsequently dissected was performed by the CBGP (France) using CO1 sequencing for Microtus species following Pagès et al., 2010, and DNA fingerprinting (AP-PCR) for Apodemus species (Bugarski-Stanojević et al., 2013). Dissections and body measurements were performed following the protocols described in Herbreteau et al., 2011. At the end of all seasons, a total of 620 occurrences of rodents was recorded, belonging to two main families (Muridae, Cricetidae) and four different species (Apodemus flavicollis, Apodemus agrarius, Myodes glareolus and Microtus arvalis). Additionally, for a subset of individuals (n=264), body measurements like weight, body length, head width, tail length and hind foot length as well as sexual maturity data were recorded. Animals were captured in accordance with the applicable international and institutional guidelines for the use of animals in research. The trapping and collection of rodents was performed under the permission of “Landesamt für Arbeitsschutz, Verbraucherschutz und Gesundheit Brandenburg (LAVG)“ (no. 2347-A-16-1-2020 for procedure, LUGV_RW7-4744/41+5#243052/2015 and N1 0424 for trapping) and “Landesamt für Umwelt Brandenburg (LfU)” (no. LFU-N1-4744/97+17#194297/2020, for sites and species exemptions). This project was funded through the 2018-2019 BiodivERsA joint call for research proposals, under the BiodivERsA3 ERA-Net COFUND programme, and coordinated by the German Science Foundation DFG (Germany). Citations: 1) Bugarski-Stanojević, V., Blagojević, J., Adnađević, T., Jovanović, V., & Vujošević, M. (2013). Identification of the sibling species Apodemus sylvaticus and Apodemus flavicollis (Rodentia, Muridae)—Comparison of molecular methods. Zoologischer Anzeiger - A Journal of Comparative Zoology, 252(4), 579–587. https://doi.org/10.1016/j.jcz.2012.11.004 2) Dolch, D. (1995). Naturschutz und Landschaftspflege in Brandenburg. 97. 3) Herbreteau, V., Jittapalapong, S., Rerkamnuaychoke, W., Chaval, Y., Cosson, J.-F., & Morand, S. (2011). Protocols for field and laboratory rodent studies. 56. 4) Pagès, M., Chaval, Y., Herbreteau, V., Waengsothorn, S., Cosson, J.-F., Hugot, J.-P., Morand, S., & Michaux, J. (2010). Revisiting the taxonomy of the Rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology, 10(1), 184. https://doi.org/10.1186/1471-2148-10-184 5) Schirmer, A., Herde, A., Eccard, J. A., & Dammhahn, M. (2019). Individuals in space: Personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization. Oecologia, 189(3), 647–660. https://doi.org/10.1007/s00442-019-04365-5
The Floods Directive (FD) was adopted in 2007 (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32007L0060). The purpose of the FD is to establish a framework for the assessment and management of flood risks, aiming at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the European Union. ‘Flood’ means the temporary covering by water of land not normally covered by water. This shall include floods from rivers, mountain torrents, Mediterranean ephemeral water courses, and floods from the sea in coastal areas, and may exclude floods from sewerage systems. This reference spatial dataset, reported under the Floods Directive, includes the areas of potential significant flood risk (APSFR), as they were lastly reported by the Member States to the European Commission, and the Units of Management (UoM).
Der Indikator zeigt die innerstädtische Überwärmung oder Wärmeinseleffekt (UHI = urban heat island) in Augsburg. Der Stadtmarkt-Logger, der in die „Temperatur Stadtmitte“ eingeht, hatte 2024 sehr viele Messausfälle. Dementsprechend ist die „Temperatur Stadtmitte“ für 2024 vermutlich eher etwas unterschätzt (und dementsprechend auch die UHI-Intensität): Quelle: Stadtklimamessnetz Augsburg, betrieben von Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt und Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung - Universität Augsburg) und die Bearbeiter (Auswertung durch Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung - Universität Augsburg
This Discomap web map service provides an EU-27 (2020) basemap for internal EEA use as a background layer in viewers or any other web application. It is provided as REST and as OGC WMS services, dynamic and cached. The cached service has a custom cache at the following scales: 1/50.000.000 1/42.000.000 1/36.000.000 (Europe's size) 1/30.000.000 1/20.000.000 1/10.000.000 1/5.000.000 1/2.500.000 1/1.000.000.
The dataset contains information on the European river basin districts, the river basin district sub-units, the surface water bodies and the groundwater bodies delineated for the 2nd River Basin Management Plans (RBMP) under the Water Framework Directive (WFD) as well as the European monitoring sites used for the assessment of the status of the above mentioned surface water bodies and groundwater bodies. The information was reported to the European Commission under the Water Framework Directive (WFD) reporting obligations. The dataset compiles the available spatial data related to the 2nd RBMPs due in 2016 (hereafter WFD2016). See http://rod.eionet.europa.eu/obligations/715 for further information on the WFD2016 reporting. See also https://rod.eionet.europa.eu/obligations/766 for information on the Environmental Quality Standards Directive - Preliminary programmes of measures and supplementary monitoring. Where available, spatial data related to the 3rd RBMPs due in 2022 (hereafter WFD2022) was used to update the WFD2016 data. See https://rod.eionet.europa.eu/obligations/780 for further information on the WFD2022 reporting. Note: * This dataset has been reported by the member states. The subsequent QC revealed some problems caused by self-intersections elements. Data in GPKG-format should be processed using QGIS.
<p>Dieser Datensatz enthält die Informationen der städtischen Wärmeinsel für die Stadt Münster in Nordrhein-Westfalen. Die Daten werden im Rahmen der Open-Data-Initiative der Stadt Münster zur Verfügung gestellt.</p> <p>Die städtische Wärmeinsel (englisch "Urban Heat Island", kurz UHI) ist ein typisches Merkmal des Stadtklimas. Sie wird durch die Lufttemperaturdifferenz zwischen der meist wärmeren Stadt und ihrem kühleren Umland charakterisiert.</p> <p>Weitere Informationen erhalten Sie auf der <a href="https://www.stadt-muenster.de/klima/klimaanpassung/tipps/hitze">Homepage "Klimaanpassung in Münster"</a> der Stabsstelle Klima.</p>
This database contains policies and measures (PaMs) reported by EU Member States following European Commission Implementing Decision (EU) 2018/1522 of 11 October 2018 laying down a common format for national air pollution control programmes under Directive (EU) 2016/2284 of the European Parliament and of the Council on the reduction of national emissions of certain atmospheric pollutants. This database will be updated on a quarterly basis. It is important to note that the database only contains latest data that has been reported by Member States using the PAM-tool: https://webforms.eionet.europa.eu/. The completeness and accuracy of the data depends on the quality of reporting by each country. Release years: 2019 v1: Belgium, Croatia, Cyprus, Denmark, Germany, Italy, Portugal,Slovenia, Spain, Sweden 2020 v1: Czechia, Hungary, Latvia, Luxembourg, Malta, Slovakia 2021 v1: Greece, Ireland 2022 v1: Lithuania 2023 v1: Estonia, Romania, France, Ireland, Cyprus, Luxembourg, Poland 2024 v1: Austria, Spain, Sweden 2024 v2: Cyprus, Germany, Ireland, Lithuania, Slovenia 2024 v3: Austria, Cyrus, Germany, Ireland, Lithuania, Slovenia, Sweden 2025 v1: Bulgaria, Cyprus, Luxembourg, Sweden
| Origin | Count |
|---|---|
| Bund | 575 |
| Europa | 258 |
| Global | 2 |
| Kommune | 5 |
| Land | 190 |
| Schutzgebiete | 60 |
| Wissenschaft | 32 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 9 |
| Ereignis | 29 |
| Förderprogramm | 295 |
| Taxon | 15 |
| Text | 118 |
| Umweltprüfung | 1 |
| unbekannt | 444 |
| License | Count |
|---|---|
| geschlossen | 180 |
| offen | 463 |
| unbekannt | 268 |
| Language | Count |
|---|---|
| Deutsch | 520 |
| Englisch | 466 |
| Resource type | Count |
|---|---|
| Archiv | 78 |
| Bild | 57 |
| Datei | 87 |
| Dokument | 132 |
| Keine | 391 |
| Unbekannt | 3 |
| Webdienst | 76 |
| Webseite | 435 |
| Topic | Count |
|---|---|
| Boden | 545 |
| Lebewesen und Lebensräume | 597 |
| Luft | 387 |
| Mensch und Umwelt | 905 |
| Wasser | 641 |
| Weitere | 911 |