API src

Found 883 results.

Spurenelementkreisläufe und Flüsse im südlichen Indischen Ozean - ein Beitrag zu GEOTRACES

Der südliche Indische Ozean gehört zu den am wenigsten untersuchten Meeresgebieten. Entlang eines zonalen Transekts bei 23°S im südlichen Indischen Ozean wollen wir mit Hilfe der Verteilung von isotopischen Tracern (Radiumisotope, Thorium, Helium) die Quellen, die Senken und die Flüsse von Spurenelementen (TEs: Cd, Co, Cu, Fe, Mn, Mo, Ni, V, Zn) in der Wassersäule untersuchen. Die Anwendung von Radiumisotopen (224Ra, 223Ra, 228Ra,226Ra,), Thoriumisotopen (234Th, 232Th) und Heliumisotopen (3He, 4He) erlaubt ein besseres Verständnis der biogeochemischen Zyklen von TEs. Da einige dieser Spurenelemente als Mikronährstoffe fungieren, wollen wir ihre biogeochemischen Kreisläufe und ihre Wechselwirkungen mit der Bioproduktivität im Oberflächenwasser sowie ihre Wechselwirkungen mit den Kohlenstoff- und Nährstoffkreisläufen erforschen. Durch die Kombination von Messungen von TEs mit Radium- und 234Th-Isotopen als Tracer für vertikale und horizontale Flüsse, 232Th als Tracer für den Staubeintrag und Heliumisotope als Tracer für einen hydrothermalen Eintrag, werden wir die Zufuhrpfade von TEs aus der Atmosphäre, den Kontinenten (hauptsächlich dem Sambesi-Fluss), den Sedimenten der afrikanischen und australischen Kontinentalschelfe und aus den hydrothermalen Quellen (Hydrothermalismus am Mittelindischen Ozeanrücken) bestimmen und quantifizieren. Diese Untersuchungen sollen auf Probenmaterial basieren, das während der Sonne Ausfahrt SO-276 (Juli – August 2020) von Durban (Südafrika) nach Fremantle (Australien) gewonnen wird. Unsere Untersuchungen sind Teil des international koordinierten Programms GEOTRACES und werden zum „Second Indian Ocean Expedition Program (IIOE-2)“ beitragen. Wir erwarten, dass die Ergebnisse der vorgesehenen Untersuchungen einen signifikanten Beitrag zum Verständnis von Ökosystemen und ihrem chemischen Milieu liefern werden.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Pleistozäne Antarktische Zwischenwasservariabilität im offenen Ozean

Als Teil der globalen thermohalinen Zirkulation transportiert das Antarktische Zwischenwasser (AAIW) Wärme und Salz, es belüftet die intermediären Tiefen des Ozeans, und verteilt Nährstoffe aus dem Südozean (SO) in die nährstoffarmen Tropen. AAIW ist daher von globaler Bedeutung für die marine Biogeochemie und den Kohlenstoffkreislauf. Die Bildung des AAIW ist direkt an die Intensität des Auftriebs von Zirkumpolarem Tiefenwasser im SO gekoppelt und wird moduliert von den Westwinden und saisonaler Aussüßung durch Meereisexport und -abschmelzen. Obwohl es unbestritten ist, dass Transport und Zusammensetzung von AAIW eine wichtige Rolle für die ozeanischen und klimatischen Änderungen der letzten Deglaziation spielten, gibt es bisher nur wenige längere Aufzeichnungen der AAIW-Variabilität. Obwohl noch immer kontrovers, gibt es basierend auf Proxy-Daten zunehmende Einigkeit über einen anhaltenden oder nur leicht abgeschwächten AAIW-Export im Atlantik während des letzten glazialen Maximums. Neodym(Nd)-Isotopendaten, die eine größere und schnelle Variabilität nahelegten, wurden inzwischen sedimentären Überprägungen identifiziert, ein Problem, das auf den kontinentalen Schelfen, von denen diese Daten überwiegend stammen, kaum vermeidbar ist. Um diese Effekte zu umgehen und ein Verständnis der AAIW-Variabilität auf langen Zeitskalen zu erlangen, schlagen wir eine neue Studie vor, die nur Bohrkerne von Lokationen im offenen Ozean im Südatlantik (DSDP Site 516), dem Südostpazifik (ODP Site 1236) und der Tasmansee (DSDP Site 592 und IODP Site U1510) nutzt. Diese Sedimente weisen zwar niedrige Sedimentationsraten auf, vorläufige Daten zeigen aber die erwartete Amplitude benthischer O- und C-Isotopen im Zwischenwasser. Die Sedimente waren durchweg oxisch, was die verlässliche Anwendung von Nd-Isotopen und Seltenerdelement-Proxies für die Wassermassenrekonstruktion erlaubt. Diese Daten werden O- und C- Isotopendate benthischer Foraminiferen und von Spurenmetallproxies für Temperatur (Mg/Ca, Li/Mg) und Nährstoffgehalt (Cd/Ca) vervollständigen. Nach Etablierung einer benthischen Isotopenstratigraphie für jeden Bohrkern sollen glazial-interglaziale Schlüsselintervalle vor, während und nach dem Mittelpleistozänen Übergang (MPT) auf alle Proxies analysiert werden. Diese Aufzeichnungen der Variabilität der Quellen des AAIW, des Nährstoffgehalts und der Temperatur werden die letzten 1,5 Millionen Jahre in verschiedenen Becken abdecken. Dies wird neue Einsichten in die Rolle liefern, die die AAIW-Variabilität für die globale Umwälzzirkulation gespielt hat, die den SO mit den niedrigen Breiten verbindet, wie die Ozeanzirkulation auf Änderungen orbitaler Parameter der Eisschilde reagierte, und welchen Einfluss dies auf den Kohlenstoffkreislauf an glazialen Terminationen des Pleistozäns hatte.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Auflösung von widersprüchlichen Hypothesen über verlängerte spätmiozäne El Niño Bedingungen unter Verwendung der ersten hochauflösenden Klimadaten aus dem äquatorialen Pazifik

Eine der wichtigsten bisher ungeklärten Kontroversen aus dem Neogen dreht sich um die Frage, ob permanenten El Niño Bedingungen im Bereich des äquatorialen Pazifik im späten Miozän vorherrschten. Im Hinblick auf die prognostizierte globale Erwärmung von mehr als 4 Grad C bis zum Jahr 2100 ist es von besonderem Interesse das Klimageschehen des späten Miozäns, das im Mittel circa 4,5 Grad C wärmer war als heute, im Detail zu untersuchen. Dabei steht insbesondere Ausmaß eines El Niño Zustandes im Fokus. El Niño Ereignisse haben ihren Ursprung im äquatorialen Pazifik und treten immer dann auf, wenn sehr warmes Oberflächenwasser aufgrund veränderter Strömungen im ozeanographisch-meteorologischen System von West nach Ost fließt. Da der Wärmehaushalt des äquatorialen Pazifik eine globale Schlüsselfunktion für die atmosphärische Zirkulation, die Niederschlagsverteilung, den Wärmetransport und den Kohlenstoffzyklus auf der Erde hat, haben El Niño Ereignisse globale Auswirkungen. Langanhaltende El Niño Ereignisse könnten somit z.B. im späten Miozän für weltweite langanhaltende Trockenheit verantwortlich sein.Ziel des beantragten Projekts ist es herauszufinden, ob im spätmiozänen äquatorialen Pazifik zwischen 6.5 bis 9.4 Ma ein, so wie bisher angenommen, permanente El Nino Bedingungen vorherrschten. Um diese Hypothese zu testen, sollen Veränderungen in der Wassersäulenstruktur und in der Tiefe der Thermokline auf Glazial-Interglazial-Zeitskalen im Bereich des Westpazifischen Warmwasserkörpers (WPWP) untersucht werden. Hierzu sollen hochauflösende stabile benthische und planktische (Oberflächen/Thermoklinenarten) Isotopendaten aus Proben der neuen Bohrung U1488 (IODP Expedition 363, zentraler WPWP, A.J. Drury war Fahrtteilnehmerin) für das 6.0 bis 9.4 Ma Zeitintervall generiert werden. Die Auswirkung von Ökologie und Ontologie auf die Isotopendaten von planktischen Foraminiferen soll durch ausgewählte Analysen an mehreren Spezies und Größenfraktionen abgeschätzt werden. Daten der Bohrung U1488 werden dann mit Isotopen-Daten aus dem östlichen äquatorialen Pazifik verglichen, ein astronomisches Altersmodel erstellt und mit den bereits vorhandenen Daten und Altersmodell der Bohrungen U1337 und U1338 korreliert. Erst dadurch wird es erstmalig möglich sein den Umfang der El Niño Zustände zwischen 6,5 und 9,4 Ma im Bereich von kurz- und langfristigen Veränderungen detailliert abzuschätzen, und um die Art des ca. 6,5 Ma Übergangs zu La Niña Bedingungen zu charakterisieren. Darüberhinaus soll die Zusammenschau von Proxydaten benthischer und planktischer Foraminiferen aus Bohrungen U1488 und U1482 (Indischen Ozean) dazu beitragen die Rolle der Indonesien-Passage im Wiederauftreten von La Niña Ereignissen, die ab ca. 6,5 Ma auftreten, zu untersuchen. Die beantragte Studie wird sehr wertvolle Erkenntinisse zur Rolle und Auswirkung ausgedehnter El Niño Ereignisse liefern die wiederum wichtige Erkenntnisse über die für die Zukunft prognostizierte globale Erwärmung liefer

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Genauere Bestimmung des Klimasignals aus Wasserisotopen in antarktischen Eisbohrkernen

Die Antarktis ist ein wesentlicher Bestandteil des Klimasystems: Die enorme Menge an Eis interagiert mit der Atmosphäre und dem Ozean und hat einen entscheidenden Einfluss auf das Strahlungsbudget der Erde und auf die ozeanische und atmosphärische Zirkulation. Aufgrund der verhältnismäßig kurzen Verfügbarkeit instrumenteller Aufzeichnungen, wird die Signatur des Klimawandels in der Zentralantarktis durch starke natürliche Klimavariabilität maskiert. Deutlich aussagekräftigere Werte kann die Auswertung von Eisbohrkernen liefern, in denen die gemessene Isotopenzusammensetzung belastbare Informationen über vergangene Klimaentwicklungen sowohl auf kurzen Zeitskalen (anthropogene Periode) wie langen Zeitskalen (Eis- / Warmzeitzyklen) zulässt. Dies ermöglicht es, die gegenwärtigen Temperaturschwankungen der Antarktis im Kontext der letzten Jahrtausende einzuordnen und vergleichbaren Szenarien gegenüberzustellen. Dabei wird die Interpretation des Wasserisotopensignals, insbesondere bei hoher zeitlicher Auflösung, durch bisher noch nicht vollständig verstandene Prozesse während der Deposition an der Oberfläche und Archivierung des Signals im Eis eingeschränkt. Diese Einflüsse spielen speziell bei Untersuchungen auf dem ostantarktischen Plateau eine erhebliche Rolle.Das hier vorgestellte Projekt untersucht die Archivierung des Klimasignals in der Isotopenzusammensetzung in der Region von Dome C, in der die längsten verfügbaren Eisbohrkerne der Welt vorliegen. Ziel ist es, die Fähigkeit zur Rekonstruktion früherer Klimaschwankungen zu verbessern, indem genauer untersucht wird, wie Klimaschwankungen die Isotopenzusammensetzung im Eis prägen. Dies wird erreicht, indem Rauschquellen identifiziert werden, welche das Klimasignal in der Eisisotopen-zusammensetzung maskieren und verzerren, hier insbesondere das stratigraphische Rauschen, das durch eine kleine (<5m) Dekorrelationslänge gekennzeichnet ist, und das Rauschen durch unregelmäßigen Niederschlag, welches durch eine große (>100km) örtliche Dekorrelationslänge gekennzeichnet ist. Die Untersuchung basiert dabei auf zwei Methoden. Einem mechanistischen Ansatz bei dem die Ergebnisse einer einjährigen Messung des Wasserdampf-Schnee Isotopenaustauschs verwendet werden, wird die statistische Analyse der Schneeisotopenvariablilität gegenübergestellt, die auf eine große Anzahl statistisch auswertbarer Daten aus der Dome C Umgebung zurückgreifen kann. Durch diese vergleichende Auswertung kann ein besseres Prozessverständnis erreicht werden, welches es erlaubt Wasserisotope als genaueren Indikator für Klimaentwicklungen nutzen zu können. Die Arbeit nutzt modernste Analyseverfahren der Infrarotspektroskopie sowie fortgeschrittene statistische Verfahren. Sie basiert auf der Zusammenarbeit mit anderen Instituten durch Wissensaustausch und gemeinsame Feldarbeiten. Das Projekt wird wesentliche Verbesserungen beim Verständnis der Prozesse ermöglichen, welche die Isotopensignale in Eisbohrkernen prägen.

Klimawechsel im späten Eifelium: Auswirkungen auf tropische Korallenfaunen

Während des frühen bis mittleren Devon (ca. 418-383 Mio. Jahre) herrschten Treibhausverhältnisse auf der Erde. Die Klimaentwicklung zu jener Zeit führte schließlich zu einem Höhepunkt an Diversität, Größe und Verbreitung von Riffen im mittleren Devon (Eifelium und Givetium). Doch auch während des Klimax im Mittel-Devon kam es vermehrt zu Klimaschwankungen, die in mehr oder weniger schweren biotischen Krisen resultierten. Eine dieser Krisenzeiten entspricht dem Kacak-Event während des späten Eifelium, der als Schwarzschiefer und Hornstein-Horizont in marinen Sedimenten global nachgewiesen ist. Das mehrphasige dysoxische/anoxische Ereignisintervall beschränkt sich auf die kockelianus und ensensis Biozone (Conodontenzonierung) und entspricht in etwa einer Dauer von 200+-10 Tausend Jahren. Der Event ist geprägt von markanten Faunenwechsel, die mit signifikanten Exkursionen im geochemischen und geophysikalischen Signal gekoppelt sind. Bisher durchgeführte Untersuchungen haben gezeigt, dass vor allem benthische Organismen aus tiefer marinen Ablagerungen auf die veränderten Umweltbedingungen reagiert haben. Neuere Erkenntnisse über diesen Event basieren vor allem auf Conodonten-Stratigraphie, sowie der Studie von stabilen Isotopen und Untersuchungen zur Magneto-Suszeptibilität von Sedimenten. Im Rahmen des vorgeschlagenen Projektes sollen Veränderungen in tropischen Korallen-Vergesellschaftungen (im speziellen von rugosen Korallen) während der Kacak-Krise untersucht werden. Die Lokalitäten der ausgewählten Gebiete (Karnische Alpen, Grazer Paläozoikum, Barrandium und Mähren) befanden sich zur damaligen Zeit, als Teile des Kontinentalschelfs von Nord-Gondwana, an unterschiedlichen Positionen in den niederen Breiten. Vor allem aus dem Mittel-Devon der Karnischen Alpen und des Grazer Paläozoikums sind fossile Kollektionen bekannt, die eine reiche und vielfältige rugose Korallenfauna beinhalten. Neben einer Menge an nicht bearbeitetem Material, welches sich in den Sammlungen wieder findet, gibt es unter den beschriebenen Korallen auch Arten, die Unstimmigkeiten hinsichtlich ihrer taxonomischen Stellung sowie der stratigraphischen Reichweite aufzeigen. Dazu kommt noch umfangreiches Material an rugosen Korallen aus Mähren, welches bis heute noch keiner detaillierten Bearbeitung unterzogen werden konnte. Ziel dieses Projektes ist es, einen Überblick über die rugosen Korallen geben zu können, die vom Kacak-Event betroffen waren. Dadurch sollen Fragen zur Resonanz von Klima empfindlichen Organismen auf sich verändernden Umweltbedingungen geklärt werden. Zusätzlich soll die Berechnung von Meerwasser Temperaturen aus unterschiedlich niederen Breiten und die Anwendung von geochemischen und geophysikalischen Methoden dazu beitragen, Ursachen die für den Kacak-Event verantwortlich waren, heraus zu finden. usw.

Impakt Oligo-Miozäner Klimawechsel auf Mongolische Säuger

Oligozäne und Miozäne Sedimentfolgen aus der Taatsiin Gol und Taatsiin Tsagaan Nuur Region in der Zentral-Mongolei sind von außergewöhnlicher Bedeutung: hier liegen Basalte in Sedimenten der Hsanda Gol- und Loh Formation eingebettet, und die höchsten Fossilkonzentrationen finden sich zusammen mit Caliche und Paläoböden. Im Rahmen von Vorläuferprojekten wurde ein Stratigraphie-Konzept erarbeitet, das auf der Evolution von Säugetieren und auf radiometrischen Basalt-Altern beruht. 40Ar / 39Ar-Datierungen ergaben drei Altersgruppen von Basalten, eine Basalt I-Gruppe aus dem Früh-Oligozän (vor etwa 31.5 Millionen Jahren), eine Basalt II-Gruppe aus dem Spät-Oligozän (vor etwa 28 Millionen Jahren) und eine Basalt III-Gruppe aus dem Mittel-Miozän (vor etwa 13 Millionen Jahren). Das Taatsiin Gol-und Taatsiin Tsagaan Nuur Gebiet ist heute Schlüsselregion für die Oligozän-Miozän Stratigraphie der Mongolei und ist Bezugspunkt für internationale Korrelationen. Im neuen Projekt werden Klimaveränderungen im Oligozän und Miozän der Mongolei und ihre Auswirkungen auf Säugetiergemeinschaften und Lebensräume untersucht. Um diese Ziele zu erreichen müssen zahlreiche stratifizierte Caliche Lagen und Paläoböden beprobt und analysiert werden. Wir erwarten uns von Bodenanalysen und von der Interpretation der Signaturen stabiler Isotopen (?18O, ?13C) Hinweise auf Veränderungen von Paläoklima und Lebensräumen im Untersuchungsgebiet. Die stratifizierten und datierten Säugetierfaunen bestehen aus Amphibien, Reptilien und Säugetieren, wobei Hasenartige, Insektenfresser, Nagetiere und Wiederkäuer vorherrschen. Dieser reiche Fossil-Fundus bietet die Möglichkeit zur Analyse von einstigen Wirbeltier-Gemeinschaften, zu entwicklungsgeschichtlichen Studien und palökologischen Interpretationen. Besonderes Interesse gilt der Entwicklung und Funktion von Gebissstrukturen bei kleinen und großen Pflanzen fressenden Säugetieren. Hier kommen Methoden zur Anwendung (Microwear- und Mesowear-Analysen, Zahnschmelzuntersuchungen, Mikro-CT und 3D-Modellierung), die Rückschlüsse auf das Nahrungsspektrum und auf markante Veränderungen von Lebensräumen in dem untersuchten Zeitabschnitt von mehr als 20 Millionen Jahren erlauben. Die Feldarbeit in der Mongolei und die anschließenden wissenschaftlichen Studien werden in nationaler und internationaler Zusammenarbeit durchgeführt. Von diesen Synergien werden die Mongolischen und Österreichischen Forschungseinrichtungen und alle mitwirkenden Personen stark profitieren.

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Sind permeable Sedimente in Küstengebieten Hotspots für die Bildung von nicht-flüchtigem gelöstem organischem Schwefel (DOS) im Meer?

Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.

Untersuchungen zur Rolle verschiedener Eisenquellen für die biologische Produktivität im Ozean mittels eines globalen Modells der Eisenisotopie

Eisen ist ein essenzieller Mikronährstoff für marine Organismen. Die Eisenverteilung im Ozean beeinflusst die Primärproduktion von Phytoplankton und dadurch die Aufnahme von Kohlendioxid im Ozean stark. Während wir langsam ein genaueres Bild der gegenwärtigen globalen Verteilung von gelöstem Eisen im Ozean bekommen, besteht noch kein Konsens in den Mechanismen, die diese Verteilung steuern, und vor allem in der Rolle der verschiedenen externen Eisenquellen für den Ozean (z.B. Eintrag durch Staub, aus Meeressedimenten, hydrothermalen Quellen und Flüssen). Einige dieser Quellen (z.B. Staubdeposition) werden sich stark mit dem laufenden Klimawandel ändern, andere, etwa der Eintrag aus Hydrothermalquellen, nicht. Wegen der Unsicherheit darüber, wie relevant die spezifischen Quellen sind, sind daher Vorhersagen zum zukünftigen Eisenkreislauf und damit zur Veränderung der Primärproduktion als Folge des Klimawandels stark erschwert.Eine neue Methode, die Rolle der verschiedenen Eisenquellen zu untersuchen, ist die Analyse der stabilen Isotopenzusammensetzung von gelöstem Eisen im Ozean. Da die verschiedenen externen Quellen von Eisen je unterschiedliche Isotopenverhältnisse haben, kann die Isotopenzusammensetzung von Eisen im Ozean im Prinzip verwendet werden, um die relativen Beiträge der verschiedenen Quellen zu erschließen. Allerdings wirken sich auch Prozesse im Inneren des Ozeans, die Eisen zwischen seinen verschiedenen Formen (gelöstes Eisen, abiotische und biologische Partikel, Redoxzustände) umwandeln, auf die Isotopenzusammensetzung aus, d.h. sie fraktionieren. Dazu kommt die Vermischung der Isotopenzusammensetzung durch physikalische Prozesse (Transport mit der Strömung und Diffusion). Die Interpretation von Eisenisotopendaten im Ozean erfordert daher die Kombination von Beobachtungen mit einem Modell des Eisenkreislaufs im Ozean. In dem beantragten Projekt wird ein globales biogeochemisches Modell von Eisen um eine explizite Darstellung von Isotopeneffekten erweitert, mit dem Ziel, die Rolle der verschiedenen Prozesse zu entschlüsseln, die die Isotopenzusammensetzung von gelöstem Eisen im Ozean beeinflussen. Das globale biogeochemische Modell basiert auf meinen früheren Arbeiten. In Kombination mit der weiter stattfindenden Zunahme von Eisenisotopenmessungen im Rahmen des internationalen GEOTRACES Programmes ermöglicht das Modell eine bessere Quantifizierung der Größe und der relativen Rolle der externen Eisenquellen für die Gegenwart und somit auch robustere Prognosen der zukünftigen marinen Primärproduktion.

Stickstofffixierung in der monsunbeeinflussten Flussfahne des Mekong

Das Südchinesische Meer ist das größte Randmeer der Erde und ausschließlich von stark besiedelten Ländern wie China, Indonesien, Philippinen oder Vietnam umgeben. Klimaänderung und menschliche Einflüsse im Einzugsgebiet des Mekong (18 geplante Stauseen zu Stromgewinnung und Intensivierung der Aquakultur) werden die Flusseinträge drastisch verändern und in der Folge die Biogeochemie der Küstengewässer. Die Geschwindigkeit und Größenordnung dieser Veränderungen lassen es wahrscheinlich erscheinen, dass das hier geplante Feldprogramm eine der wenigen Gelegenheiten sein wird, dieses Meeresgebiet zu erfassen, bevor es sich grundlegend verändert hat. Die gegenwärtige Rolle der Nährstoffeinträge des Mekong für die Produktivität des Südchinesischen Meeres soll im Vergleich zu den Nährstoffeinträgen durch den Auftrieb während des SW Monsuns untersucht werden. Ergebnisse früherer Arbeiten von uns lassen vermuten, dass die Stickstofffixierung von Cyanobakterien, die in Symbiose mit Diatomeen vorkommen, eine zentrale Rolle spielt. Zudem gibt es einzellige und koloniebildende N-Fixierer wie Trichodesmium in der Flussfahne. Die Interaktion von stickstofffixierenden Organismen, die von den Einträgen des Mekong abzuhängen scheinen, ist bislang nicht verstanden und steht im Fokus dieses Projektes. Die Nährstoffzusammensetzung in Wasser und die Aufnahme von markierten Kohlenstoff und Stickstoffverbindungen wird in der Flussfahne und im Auftriebsgebiet quantifiziert. Zudem wird auf Zellebene der Austausch von Stickstoff und Kohlenstoff zwischen Diatomeen und ihren stickstofffixierenden Symbionten mittels NanoSIMS analysiert. Zeitgleich wird die Gemeinschaft der Stickstofffixierer entlang der Flussfahne und im offenen südchinesischen Meer von amerikanischen und vietnamesischen Kollegen durch genomische, molekularbiologische und taxonomische Methoden erfasst. In der Synthesephase des Projektes soll durch die Zusammenführung aller Ergebnisse ein tiefgreifendes Verständnis des menschlichen Einflusses auf die Biogeochemie des Küstenmeeres vor Vietnam erreicht werden. Zwei Expeditionen in das Gebiet des Mekongausstroms sind bereits durch einen genehmigten Antrag des Schmidts Oceanographic Institute aus den USA abgesichert, so dass Probennahmen und Experimente an Board geplant werden können. Aufgrund des früheren, sehr erfolgreichen DFG finanzierten Vorhabens bestehen enge Kontakte zum Institute of Oceanography in Nha Trang, Vietnam, auf die hier aufgebaut wird.

1 2 3 4 587 88 89