API src

Found 883 results.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Investigation of mechanism driving glacial/interglacial variability in stratification/mixing and biological productivity of the Pacific Southern Ocean and potential implications on air-sea CO2-exchange: synthesis of climate and ocean biogeochemical modeling with paleoceanographic reconstructions

Atmospheric CO2 concentrations present a repetitive pattern of gradual decline and rapid increase during the last climate cycles, closely related to temperature and sea level change. During the Last Glacial Maximum (LGM; 23-19 kyr BP), when sea level was ca. 120 m below present, the ocean must have stored additionally about 750 Gt carbon. There is consensus that the Southern Ocean represents a key area governing past and present CO2 change. The latter is not only of high scientific but also of socio-economic and political concern since the Southern Ocean provides the potential for an efficient sink of anthropogenic carbon. However, the sensitivity of this carbon sink to climate-change induced reorganizations in wind patterns, ocean circulation, stratification, sea ice extent and biological production remains under debate. Models were not yet able to reproduce the necessary mechanisms involved, potentially due to a lack of the dynamic representation/resolution of atmospheric and oceanic circulation as well as missing carbon cycling. Data on past Southern Ocean hydrography and productivity are mainly from the Atlantic sector, thus do not adequately document conditions in the Pacific sector. This sector is not only the largest part of the Southern Ocean, but it also represents the main drainage area of the marine-based West Antarctic Ice Sheet (WAIS). In the proposed study we aim to generate paleo-data sets with a newly established proxy method from sediment core transects across the Pacific Southern Ocean. This will enhance the baselines for the understanding and modeling of the Southern Ocean's role in carbon cyling, i.e. ocean/atmosphere CO2 exchange and carbon sequestration. It will also allow insight into the response of the WAIS to past warmer than present conditions. Paired isotope measurements (oxygen, silicon) will be made on purified diatoms and radiolarians to describe glacial/interglacial contrasts in physical and nutrient properties at surface and subsurface water depth. This will be used to test (i) the impact of yet unconsidered dust-borne micronutrient deposition on the glacial South Pacific on shifts of primary productivity, Si-uptake rates and carbon export, (ii) the 'silicic-acid leakage' hypothesis (SALH) and (iii) the formation and extent of surface water stratification. Diatom and radiolarian oxygen isotopes will provide information on the timing of surface ocean salinity anomalies resulting from WAIS melt water. Climate model simulations using a complex coupled atmosphere ocean general circulation model (AOGCM) in combination with a sophisticated ocean biogeochemical model including Si-isotopes will be used for comparison with the paleo records. The analysis will cover spatial as well as temporal variability patterns of Southern Ocean hydrography, nutrient cycling and air-sea CO2-exchange. With the help of the climate model we aim to better separate and statistically analyse the individual impacts of ocean circulation and bio

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Stickstofffixierung in der monsunbeeinflussten Flussfahne des Mekong

Das Südchinesische Meer ist das größte Randmeer der Erde und ausschließlich von stark besiedelten Ländern wie China, Indonesien, Philippinen oder Vietnam umgeben. Klimaänderung und menschliche Einflüsse im Einzugsgebiet des Mekong (18 geplante Stauseen zu Stromgewinnung und Intensivierung der Aquakultur) werden die Flusseinträge drastisch verändern und in der Folge die Biogeochemie der Küstengewässer. Die Geschwindigkeit und Größenordnung dieser Veränderungen lassen es wahrscheinlich erscheinen, dass das hier geplante Feldprogramm eine der wenigen Gelegenheiten sein wird, dieses Meeresgebiet zu erfassen, bevor es sich grundlegend verändert hat. Die gegenwärtige Rolle der Nährstoffeinträge des Mekong für die Produktivität des Südchinesischen Meeres soll im Vergleich zu den Nährstoffeinträgen durch den Auftrieb während des SW Monsuns untersucht werden. Ergebnisse früherer Arbeiten von uns lassen vermuten, dass die Stickstofffixierung von Cyanobakterien, die in Symbiose mit Diatomeen vorkommen, eine zentrale Rolle spielt. Zudem gibt es einzellige und koloniebildende N-Fixierer wie Trichodesmium in der Flussfahne. Die Interaktion von stickstofffixierenden Organismen, die von den Einträgen des Mekong abzuhängen scheinen, ist bislang nicht verstanden und steht im Fokus dieses Projektes. Die Nährstoffzusammensetzung in Wasser und die Aufnahme von markierten Kohlenstoff und Stickstoffverbindungen wird in der Flussfahne und im Auftriebsgebiet quantifiziert. Zudem wird auf Zellebene der Austausch von Stickstoff und Kohlenstoff zwischen Diatomeen und ihren stickstofffixierenden Symbionten mittels NanoSIMS analysiert. Zeitgleich wird die Gemeinschaft der Stickstofffixierer entlang der Flussfahne und im offenen südchinesischen Meer von amerikanischen und vietnamesischen Kollegen durch genomische, molekularbiologische und taxonomische Methoden erfasst. In der Synthesephase des Projektes soll durch die Zusammenführung aller Ergebnisse ein tiefgreifendes Verständnis des menschlichen Einflusses auf die Biogeochemie des Küstenmeeres vor Vietnam erreicht werden. Zwei Expeditionen in das Gebiet des Mekongausstroms sind bereits durch einen genehmigten Antrag des Schmidts Oceanographic Institute aus den USA abgesichert, so dass Probennahmen und Experimente an Board geplant werden können. Aufgrund des früheren, sehr erfolgreichen DFG finanzierten Vorhabens bestehen enge Kontakte zum Institute of Oceanography in Nha Trang, Vietnam, auf die hier aufgebaut wird.

Reaktionen des terrestrischen Systems auf nordatlantische Klimaschwankungen im letzten glazialen Zyklus: Hochauflösende Löss-Paläoboden-Sequenzen aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) (TerraClime)

Klimaschwankungen des Quartärs sind anhand von Tiefsee- und Eisbohrkernen sehr detailliert erforscht und bekannt. Reaktionen des terrestrischen Systems auf diese Klimaänderungen sind bis heute hingegen nur vage definiert. Diese besser zu verstehen ist jedoch von entscheidender Bedeutung, da der Mensch auf der Erdoberfläche lebt, und die Steuerungsfaktoren sowie Rückkopplungen zwischen Erdoberfläche und Atmosphäre sich anders als in Tiefseesedimenten oder Eisbohrkernen niederschlagen. Hauptziel des TERRACLIME-Projekts ist es, die Reaktionen des terrestrischen Systems auf Klimaänderungen der Nordhemisphäre während des letztglazialen Zyklus (LGZ) anhand neuer Löss-Paläoboden-Sequenzen (LPS) aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) zu rekonstruieren. Der im Zuge der Projektvorarbeiten gewonnene Pilotkern REM 3A beinhaltet die mächtigste und womöglich vollständigste für den LGZ in West- und Mitteleuropa bekannte Sequenz, die eine umfassende Rekonstruktion der Landschaftsgeschichte und Paläoumweltbedingungen ermöglicht. Der neue Kern ist länger und vollständiger als Aufschlüsse und Profile früherer Studien. Letzteren fehlen zudem hochauflösende Paläoklimarekonstruktionen mittels neuer Methoden sowie ein hochauflösender chronologischer Rahmen. Die systematische geophysikalische Prospektion des gesamten Schwalbenbergs bildet die Basis zur Detektion bestmöglicher Bohrpunkte an Stellen maximaler Lössmächtigkeit, um neben einem weiteren, hoch auflösenden Kern gezielte Testsondierungen durchzuführen. Durch diesen Catena-Ansatz wird es möglich sein, die Reaktionen von Löss auf Klimaänderungen zu erfassen sowie archiv-intrinsische Variabilitäten zur Differenzierung zwischen lokal, regional und überregional gesteuerten Prozessen zu nutzen. Neben etablierten Methoden (Sedimentologie, Mineralogie, Umweltmagnetismus) wird sich das Projekt auch neuartiger, innovativer Ansätze bedienen (anorganische und stabile Isotopen-Geochemie, Biomarker-Analysen). Dadurch werden neue Erkenntnisse zu paläoklimatischen Bedingungen, Sedimentationsprozessen, post-sedimentären Veränderungen sowie zur Vegetationsgeschichte generiert. Geochemische Daten werden außerdem herangezogen, um mögliche Änderungen der Sedimentherkunft zu erfassen. Hochauflösende Lumineszenz-Datierungen zur Erstellung eines unabhängigen und verlässlichen Altersmodells spielen im Rahmen des Projektes eine entscheidende Rolle. Ein Altersmodell, das auf der Kopplung von OSL an Quarzen mit pIR-IRSL an polymineralischen Präparaten basiert, fehlt bislang für den Schwalbenberg. Im Vergleich mit anderen lokalen, regionalen und überregionalen Paläoklimaarchiven wird es damit möglich sein, Reaktionen des terrestrischen Systems auf atmosphärische Klimaänderungen im Nordatlantik innerhalb des LGZ zu entschlüsseln. Die Erfassung synchron und asynchron verlaufender Veränderungen wird unser Verständnis von der Verknüpfung mariner, eisbasierter und terrestrischer Klimaarchive deutlich verbessern.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Untersuchung der Rolle biologischer Eisenreduktion als lebenserhaltenden Prozess am potentiellen Temperaturlimit der tiefen Biosphäre in marinen Sedimenten (IODP Expedition 370) (RESPIRE)

Dieses Projekt trägt zu Forschungsfragen der IODP Expedition 370: T-Limit of the Deep Biosphere off Muroto bei. Die Temperatur an Site C0023 (Nankai Trog, Japan) steigt bis 1.2 km Tiefe auf ca. 120 Grad C an - das Maximum dessen, was potentiell von Mikroorganismen toleriert werden kann. Nährstoffarme tiefe Sedimente werden wahrscheinlich bei 80-90 Grad C sterilisiert. Ziel der Expedition war es, herauszufinden, wie und gesteuert durch welche Faktoren sich die Mikroorganismen-Vergesellschaftung mit der Tiefe ändert und wo Leben erlischt. Teil des wissenschaftlichen Programms ist die Untersuchung mikrobiell nutzbarer Substrate und eindeutiger geochemischer und mikrobieller Signaturen, die eine Identifizierung von biotischem und abiotischem Bereich bzw. dessen Übergang ermöglichen. Es wurden hochauflösende und präzise Porenwasserdaten gewonnen, die Reaktionsfronten, potentielle mikrobielle Aktivität und hydrothermale Überprägung anzeigen. Ein Teil der Sedimente ist Methan- und Sulfat-frei. Mikrobielle Aktivität hängt also von anderen Elektonenakzeptoren als Sulfat ab. Aktuelle Studien zeigen, dass die klassische Redoxkaskade durch Fe- und Mn-Reduktion in methanführenden Sedimenten ergänzt werden muss und, dass biogeochemische Prozesse in natürlichen Systemen stärker durch Mineralogie als durch eine strikte Abfolge von Reaktionen, die sich aus theoretischen Berechnungen ergibt, bestimmt sind. Fe(III)-Reduktion ist eine der ältesten Formen der mikrobiellen Respiration. Eisenreduzierer können unter hohen T- und Druckbedingungen wachsen, was nahelegt, dass diese einen Großteil der tiefen Biosphäre ausmachen. Fe- und Mn wird in Sedimenten von Lokation C0023 freigesetzt. Durch sequentielle Extraktionen soll aufgezeigt werden, welche Fe- und Mn-Phasen als Elektronenakzeptoren verfügbar sind und wie stark primäre Minerale diagenetisch überprägt wurden. Von besonderem Interesse sind Aschelagen, die an anderer Stelle bereits als Hotspots für mikrobielles Leben identifiziert wurden. Diese sind zahlreich in C0023 Sedimenten und typischerweise reich an Fe und Mn. Mikrobielle Fe-Reduktion führt zu einer Anreicherung von 54Fe im Porenwasser und sich daraus bildenden authigenen Mineralen (z.B. Siderit, Magnetit). Dementgegen führen abiotische Reaktionen mit Sulfid zu einer Anreicherung von 56Fe in der gelösten Phase. Stabile Fe-Isotope von gelöstem Fe2+ und reaktivem Fe in der Festphase sollen genutzt werden, um biologische und abiotische Fe-Reduktion zu unterscheiden. Die d56Fe Signatur wird an Karbonat-gebundenem Fe, der Ferrihydrit+Lepidkrokit-Fraktion, Goethit+Hämatit sowie Magnetit gemessen. Weiterhin soll das Ausmaß der Sulfidisierung, die Auswirkungen auf die Interpretation von Daten zu magnetischen Eigenschaften hat, durch sequentielle Extraktion von Fe-Monosulfiden und Pyrit erfasst werden. Ziel des Projekts ist es, die Rolle von Eisenoxiden für mikrobielle Respiration und entsprechende diagenetische Alterationen in tiefen Sedimenten von Site C0023 zu erfa

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Interhemisphärische Konkurrenz AtlantischerTiefenwässer seit der Mittel Pleistozänen Klimakrise (ODP 1063 versus ODP 1094/1090)

Nach Pena und Goldstein (2014) und Dausmann et al. (2017) ist die grundlegende Änderung der glazial-interglazialen Periodizität nach der Mittelpleistozänen - Klimakrise (MPT) durch eine erhebliche Abnahme der thermohalinen Zirkulation gekennzeichnet. Diese wurde mittels Nd-Isotopen Analysen mariner Sedimente nachgewiesen. Darauffolgend tritt die Reduktion der Tiefenwasserbildung während der Eiszeiten stetig wieder auf. Die MPT markiert eindeutig einen Wechsel von geringen Unterschieden im Tiefenwasser EpsilonNd (143Nd/144Nd - Verhältnis) zwischen Kaltzeiten und Warmzeiten. In den untersuchten ODP Kernen 1088/90 tritt diese Änderung in Wassertiefen von 2082 m und 3702 m auf. Weitere Studien im Nordatlantik bestätigen eine systematische Warmzeit - Kaltzeit Zyklizität der Nd-Isotopie, die einen Wettbewerb zwischen stärker radiogenen südlichen Wassermassen und weniger radiogenen nördlichen Wassermassen widerspiegelt. Hier definieren wir delta Epsilon als die Sensitivität von Wassermassen gegenüber der Veränderung der Nd-Isotopie entlang der Fließstrecke, d. h. den interhemisphärischen Gradienten pro Breitengrad. Die Nord-Süd-EpsilonNd-Differenz pro 10 Grad Breitengrad (delta Epsilon) ändert sich im Laufe der Zeit mit einer höheren Sensitivität in den Warmzeiten im Vergleich zu den Kaltzeiten. Bei bekannten Störungen der Nordatlantik-Zirkulation während des Heinrich Event 1 halbiert sich gar die Nd-Sensitivität im Vergleich zu Phasen starker Tiefenwasserbildung. Folglich verschwindet die Fähigkeit von EpsilonNd, die Wassermassenmischung zu verfolgen. Die Sensitivität nimmt dagegen in warmen Klimaphasen mit starker Tiefenzirkulation zu. Um Änderungen in der Wassermassenherkunft und der Stärke des Tiefenzirkulation durch kombinierte Untersuchungen von EpsilonNd und zum Beispiel delta 13C vollständig erfassen zu können, sind sowohl der ortsspezifische EpsilonNd Wert als auch der interhemisphärische Gradient oder die Nd-Sensitivität (delta Epsilon) erforderlich. Erste hochauflösende und bis zu 800 ka lange Nd-Isotopendatensätze zeigen die Dynamik der interhemisphärischen Nd-Sensitivitätsänderungen, für die es derzeit keine vergleichbaren Analysen im Südatlantik gibt. Ziel ist es daher, einerseits die Analysetechnik zu verbessern, um dann eine 1 Ma überspannende Zeitreihe der Nd-Isotopie im Südatlantik, südlich der Polarfront, zu generieren. Dies ermöglicht die Einflüsse von Wassermassen südlicher Herkunft zu quantifizieren. Wir haben ODP 1094 für diese Studie ausgewählt, da es eine direkte Verbindung zu Zirkumpolaren Wassermassen gibt und hohe Sedimentationsraten bestehen, die eine zeitliche Auflösung von Jahrtausenden ermöglicht. Alternativ werden wir den ODP-Kern 1090 weiter nördlich ergänzen. Wir planen eine große Anzahl von Nd-Analysen über die Projektdauer von zwei Jahren. Im dritten Jahr (Folgeantrag) sollen die Beobachtungen verfeinert werden, um die Auswirkungen der sich ändernden Sensitivität für die Entkopplung von Ozeanzirkulation und globalem

Vertical partitioning and sources of CO2 production and effects of temperature, oxygen and root location within the soil profile on C turnover

For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.

Carbon and Chorine Isotope Effect Study to Investigate Chlorinated Ethylene Dehalogenation Mechanisms

Chlorinated ethylenes are prevalent groundwater contaminants. Numerous studies have addressed the mechanism of their reductive dehalogenation during biodegradation and reaction with zero-valent iron. However, despite insight with purified enzymes and well-characterized chemical model systems, conclusive evidence has been missing that the same mechanisms do indeed prevail in real-world transformations. While dual kinetic isotope effect measurements can provide such lines of evidence, until now this approach has not been possible for chlorinated ethylenes because an adequate method for continuous flow compound specific chlorine isotope analysis has been missing. This study attempts to close this prevalent research gap by a combination of two complementary approaches. (1) A novel analytical method to measure isotope effects for carbon and chlorine. (2) A carefully chosen set of well-defined model reactants representing distinct dehalogenation mechanisms believed to be important in real-world systems. Isotope trends observed in biotic and abiotic environmental dehalogenation will be compared to these model reactions, and the respective mechanistic hypotheses will be confirmed or discarded. With this hypothesis-driven approach it is our goal to elucidate for the first timdehalogenation reactions.

Drivers and mechanisms of 13C discrimination in Cleistogenes squarrosa (C4) - reducing uncertainties on bundle sheath leakiness

The energetic efficiency of C4 photosynthesis is strongly affected by bundle sheath leakiness, which is commonly assessed with the 'linear version' of the Farquhar model of 13C discrimination, and leaf gas exchange and 13C composition data. But, the linear Farquhar model is a simplification of the full mechanistic theory of ? in C4 plants, potentially generating errors in the estimation of leakiness. In particular, post-photosynthetic C isotope fractionation could cause large errors, but has not been studied in any detail. The present project aims to improve the understanding of the ecological and developmental/physiological factors controlling discrimination and leakiness of the perennial grass Cleistogenes squarrosa. C. squarrosa is the most important member of the C4 community which has spread significantly in the Mongolia grasslands in the last decades. It has an unusually high and variable discrimination, which suggests very high (and potentially highly variable) leakiness. Specifically, we will conduct the first systematic study of respiratory 13C fractionation in light and dark at leaf- and stand-scale in this C4 species, and assess its effect on discrimination and estimates of leakiness. These experiments are conducted in specialized 13CO2/12CO2 gas exchange mesocosms using ecologically relevant scenarios, testing specific hypotheses on effects of environmental drivers and plant and leaf developmental stage on discrimination and leakiness.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Funktionale Partitionierung der prokaryotischen Diversität unter verschiedenen Landnutzungsregimes

Die Kopplung zwischen drei dominanten Gruppen von Bodenbakterien (Acidobacteria, Actinobacteria, Alphaproteobacteria), Pflanzen, Bodenbedingungen und Landnutzung soll aufgeklärt werden. Die Untersuchungen konzentrieren sich auf (1) die Dynamik der funktionellen Kopplung zwischen aktiven Rhizosphärenbakterien und Pflanzen, (2) die spezifischen Funktionen von individuellen Bakterien beim Abbau von Wurzelexsudaten, Pflanzenstreu und Tierkadavern/Dung sowie (3) der zeitlichen Stabilität von mikrobiellen Gemeinschaften in der Rhizosphäre und nicht-durchwurzeltem Boden der Exploratorien. Die funktionelle Koppelung der Bakterien über den Kohlenstofffluss soll zeitlich hochaufgelöst mittels 13C-Pulsmarkierung von Wurzelexsudaten durch Captured RNA Isotope Probing (CARIP), sowie durch den Vergleich der Exsudatprofile mit der Zusammensetzung der Bakteriengemeinschaften mittels Hochdurchsatzsequenzierung aufgeklärt werden. Die individuelle funktionelle Rolle der Bakterien wird anhand der Aufnahme 13C-markierter Substrate mit nachfolgender Identifizierung der aktiven Phylotypen durch Stabile Isotopenbeprobung von RNA (SIP) sowie metagenomische und metatranskriptomische Ansätze untersucht. Die kurzfristigen Veränderung in der Zusammensetzung der Rhizosphärenbakterien und die jeweiligen Einflussgrößen werden analysiert. Langfristigere Effekte werden anhand von Hochdurchsatzsequenzierungen von 3 Probensätzen, die einen Zeitraum von 6 Jahren abdecken, ermittelt. Dies bietet die Gelegenheit, langfristigere Trends mit Änderungen in den Umweltparametern und in der Landnutzung zu analysieren.

1 2 3 4 587 88 89