Rhizodeposition der Pflanzen ist eine wichtige primäre Kohlenstoff- (C) und Energiequelle für Bodenorganismen. Die Ziele dieses Projektes sind die Abschätzung des C-Eintrages durch Mais in den Boden, die Verfolgung des wurzelbürtigen C in der ganzen Nahrungskette im Boden und die Aufstellung von C-Bilanzen. Mais wird in der 13CO2- und 14CO2-Atmosphäre markiert, um zwischen den wurzelbürtigen und bodenbürtigen C zu unterscheiden und den Haushalt des wurzelbürtigen C zu bestimmen. Der Einbau von wurzelbürtigem C in Mikroorganismen, Nematoden, Collembolen und Predatormakrofauna wird quantifiziert. 14C-Phosphor-Imaging der Wurzel ermöglicht es Hotspots der Rhizodeposition und der Exsudation zu lokalisieren. 13C-Pulsmarkierung wird die Empfindlichkeit der Koppelung des 13C mit Biomarker der Bakterien und Pilze (PLFA, Ergosterol) und Collembolen (neutrale Lipide) wesentlich erhöhen. Die Verzögerung zwischen der Photoassimillation der Pflanze, Wurzelexsudation in die Rhizosphäre und Einbau vom wurzelbürtigen C in die einzelnen Organismen wird bestimmt. Dies wird die Aufstellung und Modellierung des C-Flusses durch die Nahrungsketten im Boden ermöglichen. Durch mehrfache 13C-Pulsmarkierung von Mais wird eine hohe 13C-Anreicherung der Mikroorganismen erreicht, um anschließend die aktivsten Spezies in der Rhizosphäre mit Hilfe von Stable Isotope Probing (SIP) zu bestimmen.
Der Sedimentkern 5017-1 wurde im Tiefsten Bereich des Toten Meeres im Rahmen des ICDP Dead Sea Deep Drilling Programms erbohrt. Die lakustrinen, und zum Teil laminierten Sedimente aus diesem tiefen Bohrkern, sowie vom Uferbereich des Toten Meeres sind einzigartige Archive für Variationen des Sedimenteintrags und Paläo-Niederschlagsregimes in der Levante-Region (Naher Osten). Die langfristigen paläo-hydrologischen Änderungen im Einzugsgebiet des Toten Meeres während der letzten ca. 20 Tausend Jahre werden durch Änderungen des relativen Sedimenteintrags aus verschiedenen Zuflüssen widergespiegelt und konnten mittels Messung der radiogenen Isotope von Neodym (Nd) und Strontium (Sr) entziffert werden. Allerdings ist bisher unklar, inwiefern auch kurzfristige und rapide Klimaänderungen, z.B. während des 8.2 Events oder der Bronze-zeitlichen Trockenphase, zu paläo-hydrologischen Änderungen beigetragen haben. Im Zuge des PRO-HYDRO Projekts ist ein neues Profil am Westufer (Ein Feshkha) bis zum Frühholozän erfasst worden um einen detaillierten Vergleich mit dem Sedimentkern 5017-1 zu erzielen. Des Weiteren wurden erstmals auch Jordanische Zuflüsse am Ostufer des Toten Meeres beprobt. In diesem Fortsetzungsantrag (PRO-HYDRO II) sollen die bisher erzielten Ergebnisse aus dem ICDP 5017-1 Bohrkern und dem Westufer durch die Erfassung des Profils von der jordanischen Seite des Totes Meeres erweitert werden. Ein Ostufer-Profil ist eine wichtige Ergänzung um lokal geprägte Überflutungen während rapider Klimaänderungen des Frühholozäns in der Levante und darüber hinaus rekonstruieren zu können.
Der Faunenschnitt an der Kreide/Tertiär-Grenze wird allgemein auf den Einschlag eines Asteroiden zurückgeführt. Es gibt jedoch deutliche Anzeichen, dass das Massensterben graduell bereits im späten Maastricht begann und erst im Laufe des Tertiär abgeschlossen war. Es geht einher mit drastischen Klimaänderungen, Meeresspiegelschwankungen und Veränderung der Meeresströmungen. Ziel des beantragten Projektes ist es, eine geochemische Charakterisierung an homogenen und vergleichbaren Profilen des späten Maastrichts und der Kreide/Tertiärgrenze (K/T) durchzuführen im Hinblick darauf, dass geochemische Milieu-Indikatoren zur Identifizierung von Klimaänderungen, Änderungen in der Primärproduktion, Meeresspiegelschwankungen und Meerwasserzirkulationsänderungen genutzt werden können. Hierzu sollen die Sr/Ca, Zn/Ca, Ba/Ca und Cd/Ca-Verhältnisse sowie die Kohlenstoff- und Sauerstoff-Isotopendaten in Foraminiferen an Profilen des Maastrichts und der K/T-Grenze in Tunesien, Ägypten, Madagaskar und Patagonien bestimmt und anhand von Zeitreihenanalyse interpretiert werden. Gutes und von diagenetischer Überprägung verschontes Probenmaterial ist überwiegend schon vorhanden. Die Untersuchungen werden in einer internationalen Kooperation geochemisch, biostratigraphisch und sedimentologisch interpretiert.
Wir planen die Nutzung eines U-Tube-KASMA Systems, welches von Prof. Tullis Onstott (Princeton University) in einem 600 m tiefen Bohrloch installiert wird, das eine aktive Störungszone im Roodepoort Quarzit in 3400 m Tiefe in der 'Moab Khotsong gold mine' antrifft. Das Bohrloch ist Teil des ICDP-finanzierten Projektes DSeis und dient der Beobachtung von seismisch ausgelösten in situ geochemischen und isotopischen Änderungen tiefer Fluide sowie mikrobiellen Aktivitäten. Die Kombination unsers Gas-Monitoring-Systems mit der U-Tube-KASMA Installation ergibt die einmalige Möglichkeit, minimal veränderte Geofluide aus einer tiefen aktiven Störungszone zu beproben.Während seismischer Ereignisse entlang der Verwerfungszone erwarten wir die Freisetzung von Geogasen, insbesondere H2, der als Energiequelle für tiefes mikrobielles Leben dienen kann. Das Geogas (inkl. H2 und O3) sollen kontinuierlich mit spezifischen Sensoren eines portablen gasanalytischen Systems detektiert werden, welches direkt an den Gasseparator des automatischen U-Tube-KASMA angeschlossen ist. Durch die chemische und isotopische Charakterisierung der Fluide vor und nach seismischer Aktivität hoffen wir die Herkunft und Genese von H2 aufklären zu können; letztere beruht auf Spaltung der O-H Bindungen von Wasser. In Kombination mit Daten zur Permeabilität und Porosität der Störungszone werden diese Ergebnisse helfen, verschiedene Migrationsmechanismen des Fluids, vom Entstehungsort bis zum Zielhorizont, zu verstehen. Dabei stellt sich die Frage, ob schwache seismische Ereignisse die Konnektivität isoliert bestehender Fluide durch Bildung neuer Wegsamkeiten erhöhen, oder ob frische Mineraloberflächen für Wasser-Gesteinsreaktionen erzeugt werden, die mechano-chemisch neu synthetisierten H2 freisetzen. Die Echtzeit-Analyse der U-Tube Proben vor Ort kann zeigen, wie schnell Änderungen in der Untergrund Gaschemie aufgrund seismischer Aktivität stattfinden. Ein weiteres Ziel ist die Identifizierung der seismischen Momente und der Abstand und die Orientierung des Erdbebenherdes zur Störungszone und dem Bohrloch. Die Probenahme und Analyse in Isotopen-Laboratorien ermöglicht die Abschätzung, in welchem Ausmaß sich die H/D-Isotopie von H2 und CH4, sowie 13CCO2 und 13CCH4 ändert. Es soll geprüft werden, ob sie aus der gleichen Quelle stammen und ob der Isotopenaustausch zwischen diesen Spezies im thermodynamischen Gleichgewicht ist.Edelgasisotopenmessungen erlauben es, die Residenzzeiten der Kluftfluide zu berechnen und könnten die Frage lösen, ob gemessene H2/He-Verhältnisse mit der berechneten radiolytisch/radiogenen Produktionsrate übereinstimmen. Die Daten der gaschemischen Messungen sind wichtige Eingangsparameter für physikalisch-chemische Modelle zur Beschreibung des geochemischen Verhaltens der Fluide. In Kombination mit seismischen Karten tragen sie zur genaueren Bestimmung des globalen Vorkommens von gas-chemischen Produktionsprozessen in Störungszonen bei.
'Mit Hilfe der Kopplung von HPLC bzw. GC an eine ICP-MS können Fluide (Boden-, Grund-, Meer- Prozesswässer, Fluid Inclusions in Mineralen, Gase aus Schmelzen, vulkanische, atmosphärische und Biogase) auf ihre Inhaltsstoffe untersucht werden. Dabei können schwer-, mittel-, und leichtflüchtige organische und anorganische Komponenten analysiert werden. Der besondere Vorteil liegt in der chromatographischen Trennung in die jeweiligen Spezies und Komplexe umweltrelevanter Elemente gekoppelt mit einer hochsensitiven massenspektrometrischen Detektion. Die Verwendung des induktiv gekoppelten Plasmas vor der Massenspektrometrie ist dabei aussagefähiger für flüchtige organische Verbindungen als die Verwendung einer einfachen GC-MS, weil nicht 'zufällige Bruchstücke nach Massenzahlen identifiziert werden, sondern einzelne Elemente. Für die Identifizierung komplexer wässriger Spezies, z.B. As-S, As-U, U-P-Verbindungen etc., besticht die ICP-MS als Mulitelementmethode, da gleichzeitig eine Vielzahl von Elementen gemessen werden kann, deren Massenverhältnisse Aufschluss über ihren Anteil an der jeweiligen Spezies geben. Damit kann in begrenztem Umfang auch Strukturaufklärung unbekannter Spezies betrieben werden. Monitoring verschiedener Isotope eines Elements ermöglicht darüber hinaus die Interpretation von Fraktionierungsprozessen in den Proben.'
Der Verlauf der atmosphärischen CO2-Konzentrationen während der vergangenen Klimazyklen ist durch ein Sägezahnmuster mit Maxima in Warmzeiten und Minima in Kaltzeiten geprägt. Es besteht derzeit Konsens, dass insbesondere der Süd Ozean (SO) eine Schlüsselfunktion bei der Steuerung der CO2-Entwicklung einnimmt. Allerdings sind die dabei wirksamen Mechanismen, die in Zusammenhang mit Änderungen der Windmuster, Ozeanzirkulation, Stratifizierung der Wassersäule, Meereisausdehnung und biologischer Produktion stehen, noch nicht ausreichend bekannt. Daten zur Wirkung dieser Prozesse im Wechsel von Warm- und Kaltzeiten beziehen sich bislang fast ausschließlich auf den atlantischen SO. Um ein umfassendes Bild der Klimasteuerung durch den SO zu erhalten muss geklärt werden, wie weit sich die aus dem atlantischen SO bekannten Prozesswirkungen auf den pazifischen SO übertragen lassen. Dies ist deshalb von Bedeutung, da der pazifische SO den größten Teil des SO einnimmt. Darüber hinaus stellt er das hauptsächliche Abflussgebiet des Westantarktischen Eisschildes (WAIS) in den SO dar. Im Rahmen des Projektes sollen mit einer neu entwickelten Proxy-Methode Paläoumwelt-Zeitreihen an ausgewählten Sedimentkernen von latitudinalen Schnitten über den pazifischen SO hinweg gewonnen werden. Dabei handelt es sich um kombinierte Sauerstoff- und Siliziumisotopenmessungen an gereinigten Diatomeen und Radiolarien. Es sollen erstmalig die physikalischen Eigenschaften und Nährstoffbedingungen in verschiedenen Stockwerken des Oberflächenwassers aus verschiedenen Ablagerungsräumen und während unterschiedlicher Klimabedingungen beschrieben werden. Dies umfasst Bedingungen von kälter als heute (z.B. Letztes Glaziales Maximum) bis zu wärmer als heute (z.B. Marines Isotopen Stadium, MIS 5.5). Die Untersuchungen geben Hinweise zur (1) Sensitivität des antarktischen Ökosystems auf den Eintrag von Mikronährstoffen (Eisendüngung), (2) Oberflächenwasserstratifizierung und (3) 'Silicic-Acid leakage'-Hypothese, und tragen damit zur Überprüfung verschiedener Hypothesen zur Klimawirksamkeit von SO-Prozessen bei. Die neuen Proxies bilden überdies Oberflächen-Salzgehaltsanomalien ab, die Hinweise zur Stabilität des WAIS unter verschiedenen Klimabedingungen geben. Darüber hinaus kann die Hypothese getestet werden, nach der der WAIS während MIS 5.5 vollständig abgebaut war. Die Projektergebnisse sollen mit Simulationen mit einem kombinierten biogeochemischen (Si-Isotope beinhaltenden) Atmosphäre-Ozean-Zirkulations-Modell aus einem laufenden SPP1158-DFG Projekt an der CAU Kiel (PI B. Schneider) verglichen werden. Damit sollen die jeweiligen Beiträge der Ozeanzirkulation und der biologischen Produktion zum CO2-Austausch zwischen Ozean und Atmosphäre getrennt und statistisch analysiert werden. Informationen zu Staubeintrag, biogenen Flussraten, physikalischen Ozeanparametern und zur Erstellung von Altersmodellen stehen durch Zusammenarbeit mit anderen (inter)nationalen Projekten zur Verfügung.
Das Klima während der langen Glazialzeiten der jüngsten Erdgeschichte (des Quartärs) war geprägt von großer Instabilität. Interstadiale begannen mit einer abrupten Erwärmung, waren aber nur von kurzer Dauer (maximal ca. 3000 Jahre) und leiteten in eine graduelle Abkühlung hin zu sehr kalt-trockenen Stadialen über. Dieser ausgesprochen asymmetrische Verlauf des Eiszeitklimas - bekannt als Dansgaard-Oeschger Zyklen - beschäftigt die Paläoklimaforschung intensiv und es besteht kein Konsens über die zugrunde liegenden Ursachen. Eine große Schwierigkeit bei der Untersuchung dieses Phänomens ist die genaue zeitliche Fassung der einzelnen Dansgaard-Oeschger Zyklen, von denen es allein im letzten Glazialzyklus gut zwei Dutzend gab. Eine spannende neue Möglichkeit, diese kurzfristigen Klima-Ereignisse in Sedimenten zu erkennen und zu datieren stellen Tropfsteine dar. Im vorliegenden Projekt sollen Tropfsteine aus Höhlen in den Ost- und Westalpen analysiert werden, denn vorangegangene Untersuchungen unserer Arbeitsgruppe haben gezeigt, dass sich alpine Höhlen sehr gut als Klima-Archive für diese Fragestellung eignen. Zur Erkennung der Klimaspuren in diesen anorganischen Karbonatablagerungen werden die stabilen Isotope des Sauerstoffs im Kalzit herangezogen; die präzise Datierung beruht auf dem radioaktiven Zerfall der Spurenelemente Uran und Thorium. Die Ergebnisse dieser Forschungen werden es u.a. ermöglichen, die bestehenden Zeitskalen der wichtigen Eiskerne aus Grönland deutlich zu verbessern.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
Eisen ist ein essenzieller Mikronährstoff für marine Organismen. Die Eisenverteilung im Ozean beeinflusst die Primärproduktion von Phytoplankton und dadurch die Aufnahme von Kohlendioxid im Ozean stark. Während wir langsam ein genaueres Bild der gegenwärtigen globalen Verteilung von gelöstem Eisen im Ozean bekommen, besteht noch kein Konsens in den Mechanismen, die diese Verteilung steuern, und vor allem in der Rolle der verschiedenen externen Eisenquellen für den Ozean (z.B. Eintrag durch Staub, aus Meeressedimenten, hydrothermalen Quellen und Flüssen). Einige dieser Quellen (z.B. Staubdeposition) werden sich stark mit dem laufenden Klimawandel ändern, andere, etwa der Eintrag aus Hydrothermalquellen, nicht. Wegen der Unsicherheit darüber, wie relevant die spezifischen Quellen sind, sind daher Vorhersagen zum zukünftigen Eisenkreislauf und damit zur Veränderung der Primärproduktion als Folge des Klimawandels stark erschwert.Eine neue Methode, die Rolle der verschiedenen Eisenquellen zu untersuchen, ist die Analyse der stabilen Isotopenzusammensetzung von gelöstem Eisen im Ozean. Da die verschiedenen externen Quellen von Eisen je unterschiedliche Isotopenverhältnisse haben, kann die Isotopenzusammensetzung von Eisen im Ozean im Prinzip verwendet werden, um die relativen Beiträge der verschiedenen Quellen zu erschließen. Allerdings wirken sich auch Prozesse im Inneren des Ozeans, die Eisen zwischen seinen verschiedenen Formen (gelöstes Eisen, abiotische und biologische Partikel, Redoxzustände) umwandeln, auf die Isotopenzusammensetzung aus, d.h. sie fraktionieren. Dazu kommt die Vermischung der Isotopenzusammensetzung durch physikalische Prozesse (Transport mit der Strömung und Diffusion). Die Interpretation von Eisenisotopendaten im Ozean erfordert daher die Kombination von Beobachtungen mit einem Modell des Eisenkreislaufs im Ozean. In dem beantragten Projekt wird ein globales biogeochemisches Modell von Eisen um eine explizite Darstellung von Isotopeneffekten erweitert, mit dem Ziel, die Rolle der verschiedenen Prozesse zu entschlüsseln, die die Isotopenzusammensetzung von gelöstem Eisen im Ozean beeinflussen. Das globale biogeochemische Modell basiert auf meinen früheren Arbeiten. In Kombination mit der weiter stattfindenden Zunahme von Eisenisotopenmessungen im Rahmen des internationalen GEOTRACES Programmes ermöglicht das Modell eine bessere Quantifizierung der Größe und der relativen Rolle der externen Eisenquellen für die Gegenwart und somit auch robustere Prognosen der zukünftigen marinen Primärproduktion.
| Origin | Count |
|---|---|
| Bund | 881 |
| Land | 1 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 881 |
| unbekannt | 2 |
| License | Count |
|---|---|
| offen | 882 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 618 |
| Englisch | 401 |
| Resource type | Count |
|---|---|
| Keine | 533 |
| Webseite | 350 |
| Topic | Count |
|---|---|
| Boden | 775 |
| Lebewesen und Lebensräume | 811 |
| Luft | 622 |
| Mensch und Umwelt | 883 |
| Wasser | 716 |
| Weitere | 883 |