Das Strahlungsbudget der Erde und die Sensitivität des Klimasystems gegenüber externen Antrieben werden stark durch den Wasserkreislauf und die Bildung von tiefliegenden Wolken in der marinen Grenzschicht der Passatwindzone beeinflusst. Die Darstellung dieser Prozesse in globalen Klimamodellen ist allerdings mit großen Unsicherheiten verbunden. Das Ziel dieses Projektes ist es, diese Unsicherheiten zu reduzieren und unser Verständnis von Wassertransport-Prozessen in der Passatwindzone zu verbessern. Dazu werden hoch entwickelte Transport-Diagnostiken in Klimasimulationen verwendet, die ein breites Spektrum an räumlichen Auflösungen abdecken (Gitterpunktsabstände von unter 1 km bis zu 100 km). Die Beiträge verschiedener Quellregionen und Transportwege zum Feuchtebudget in der marinen Grenzschicht werden mit Hilfe von numerischen Feuchte-Tracern quantifiziert. Diese passiven Tracer werden mit prognostischen Simulationen von Wasserisotopen kombiniert, um spezifische Fingerabdrücke der verschiedenen diagnostizierten Feuchte-Transportwege in der Isotopenzusammensetzung zu bestimmen. Schließlich wird die simulierte Isotopenzusammensetzung mit Messungen von der EUREC4A-Messkampagne im tropischen Nordatlantik verglichen. Auf diese Weise wird untersucht, inwiefern Beobachtungen von Wasserisotopen dazu dienen können, die simulierten Transportprozesse zu evaluieren. Durch diesen skalenübergreifenden Modellierungsansatz, in Kombination mit Beobachtungsdaten von der EUREC4A-Kampagne, werden wir in der Lage sein, die Darstellung des tropischen Wasserkreislaufs in Klimamodellen auf neuartige Art und Weise zu evaluieren und schlussendlich zu verbessern.
Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).
This project will provide quantitative estimates of the flow of low-salinity warm water through the Indonesian Gateway on suborbital timescales during MIS 2 and 3 (focusing on Dansgaard Oeschger (D-O) oscillations) and will assess the Indonesian Throughflow (ITF) s impact on the hydrography of the eastern Indian Ocean and global thermohaline circulation during this critical interval of high climate variability. ITF fluctuations, associated with sea level change, temperature and salinity variations in the West Pacific Warm Pool (WPWP) strongly influence precipitation over Australia, the strength of the southeast-Asian summer monsoon, and the intensity of warm meridional currents in the Indian Ocean. We will test the hypothesis that increased ITF is associated with warm interstadials of MIS 3, whereas a strong reduction in ITF occurred during stadials. We will use as main proxies planktonic and benthic foraminiferal isotopes in conjunction with Mg/Ca temperature estimates and radiogenic isotopes (mainly Nd) as tracers of Pacific water masses along depth transects in the Timor Passage and the eastern Indian Ocean. This project will provide the paleoceanographic framework that will be crucial to validate and refine circulation models of D-O events and high-frequency climate variability on a global scale.
The relevance of biogeochemical gradients for turnover of organic matter and contaminants is yet poorly understood. This study aims at the identification and quantification of the interaction of different redox processes along gradients. The interaction of iron-, and sulfate reduction and methanogenesis will be studied in controlled batch and column experiments. Factors constraining the accessibility and the energy yield from the use of these electron acceptors will be evaluated, such as passivation of iron oxides, re-oxidation of hydrogen sulfide on iron oxides. The impact of these constraints on the competitiveness of the particular process will then be described. Special focus will be put on the evolution of methanogenic conditions in systems formerly characterized by iron and sulfate reducing condition. As methanogenic conditions mostly evolve from micro-niches, methods to study the existence, evolution and stability of such micro-niches will be established. To this end, a combination of Gibbs free energy calculations, isotope fractionation and tracer measurements, and mass balances of metabolic intermediates (small pool sizes) and end products (large pool sizes) will be used. Measurements of these parameters on different scales using microelectrodes (mm scale), micro sampling devices for solutes and gases (cm scale) and mass flow balancing (column/reactor scale) will be compared to characterize unit volumes for organic matter degradation pathways and electron flow. Of particular interest will be the impact of redox active humic substances on the competitiveness of involved terminal electron accepting processes, either acting as electron shuttles or directly providing electron accepting capacity. This will be studied using fluorescence spectroscopy and parallel factor analysis (PARAFAC) of the gained spectra. We expect that the results will provide a basis for improving reactive transport models of anaerobic processes in aquifers and sediments.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Das Südchinesische Meer ist das größte Randmeer der Erde und ausschließlich von stark besiedelten Ländern wie China, Indonesien, Philippinen oder Vietnam umgeben. Klimaänderung und menschliche Einflüsse im Einzugsgebiet des Mekong (18 geplante Stauseen zu Stromgewinnung und Intensivierung der Aquakultur) werden die Flusseinträge drastisch verändern und in der Folge die Biogeochemie der Küstengewässer. Die Geschwindigkeit und Größenordnung dieser Veränderungen lassen es wahrscheinlich erscheinen, dass das hier geplante Feldprogramm eine der wenigen Gelegenheiten sein wird, dieses Meeresgebiet zu erfassen, bevor es sich grundlegend verändert hat. Die gegenwärtige Rolle der Nährstoffeinträge des Mekong für die Produktivität des Südchinesischen Meeres soll im Vergleich zu den Nährstoffeinträgen durch den Auftrieb während des SW Monsuns untersucht werden. Ergebnisse früherer Arbeiten von uns lassen vermuten, dass die Stickstofffixierung von Cyanobakterien, die in Symbiose mit Diatomeen vorkommen, eine zentrale Rolle spielt. Zudem gibt es einzellige und koloniebildende N-Fixierer wie Trichodesmium in der Flussfahne. Die Interaktion von stickstofffixierenden Organismen, die von den Einträgen des Mekong abzuhängen scheinen, ist bislang nicht verstanden und steht im Fokus dieses Projektes. Die Nährstoffzusammensetzung in Wasser und die Aufnahme von markierten Kohlenstoff und Stickstoffverbindungen wird in der Flussfahne und im Auftriebsgebiet quantifiziert. Zudem wird auf Zellebene der Austausch von Stickstoff und Kohlenstoff zwischen Diatomeen und ihren stickstofffixierenden Symbionten mittels NanoSIMS analysiert. Zeitgleich wird die Gemeinschaft der Stickstofffixierer entlang der Flussfahne und im offenen südchinesischen Meer von amerikanischen und vietnamesischen Kollegen durch genomische, molekularbiologische und taxonomische Methoden erfasst. In der Synthesephase des Projektes soll durch die Zusammenführung aller Ergebnisse ein tiefgreifendes Verständnis des menschlichen Einflusses auf die Biogeochemie des Küstenmeeres vor Vietnam erreicht werden. Zwei Expeditionen in das Gebiet des Mekongausstroms sind bereits durch einen genehmigten Antrag des Schmidts Oceanographic Institute aus den USA abgesichert, so dass Probennahmen und Experimente an Board geplant werden können. Aufgrund des früheren, sehr erfolgreichen DFG finanzierten Vorhabens bestehen enge Kontakte zum Institute of Oceanography in Nha Trang, Vietnam, auf die hier aufgebaut wird.
Ziel dieses Antrags ist die Rekonstruktion der terrestrischen Klimavariabilität Südostspaniens während der letzten 250 ka basierend auf Speläothemen. Diese Region ist eine der trockensten in Südeuropa. Gemäß dem aktuellen IPCC-Bericht werden derzeit trockene Regionen von einer zunehmenden Häufigkeit, Dauer und Intensität von Hitzewellen sowie Dürren betroffen sein. Dies geht einher mit erheblichen Risiken für Umwelt und Wirtschaft, woraus sich die Notwendigkeit der Erforschung terrestrischer Paläoklimaarchive in besonders trockenen Regionen ergibt. Klimaarchive in Südostspanien reagieren aufgrund der trockenen Bedingungen selbst auf geringe Änderungen im Niederschlag sehr sensitiv. Informationen terrestrischer Klimaarchive aus dieser Region sind bisher zumeist auf Pollen- und Sedimentabfolgen, die eine relativ geringe zeitliche Auflösung haben und jenseits der Grenzen der 14C-Methode schwierig zu datieren sind, begrenzt. Gut datierbare Klimazeitreihen von Speläothemen stammen überwiegend aus Nordspanien, dessen Klima sich durch relativ feuchte Bedingungen und milde Temperaturen auszeichnet. An einem präzise datierten Flowstone aus der Cueva Victoria, die bekannt ist für ihre spektakuläre Pleistozäne Fauna, soll die Klimavariabilität Südostspaniens mit hoher zeitlicher Auflösung rekonstruiert werden, wobei der Fokus auf den letzten 250 ka liegt, die in mehreren Bohrkernen enthalten sind. Für diesen Zeitabschnitt existiert bisher keine präzise datierte, hochaufgelöste, terrestrische Klimazeitreihe aus Südostspanien. Die Vorarbeiten zeigen, dass das Flowstone-Wachstum in der Cueva Victoria sehr empfindlich auf Niederschlagsänderungen in der Vergangenheit reagiert und die Wachstumsphasen mit globalen Warmphasen einhergehen. Die geplante präzise Datierung mittels der 230Th/U-Methode erlaubt, den Beginn und die Dauer der Marinen Isotopenstadien 1, 3, 5 und 7 sowie der entsprechenden Interstadiale in Südostspanien genauer zu bestimmen. Zudem werden für die jeweiligen Wachstumsphasen Multi-Proxy-Zeitreihen (stabile Isotope und Spurenelemente) generiert, die eine zuverlässige Interpretation der Proxy-Signale im Hinblick auf Klimavariabilität in der Vergangenheit zulassen. Die hohe Empfindlichkeit des Proxy-Signals, die sich in unserem vorläufigen Datensatz widerspiegelt, betont das große Potential dieses einmaligen Paläoklimaarchivs aus Südostspanien für die letzten 250 ka. Teile des Materials waren Gegenstand meines früheren DFG Antrags, der leider abgelehnt wurde. Der Hauptkritikpunkt der Gutachter war der zu geringe Umfang der Vorarbeiten. Allerdings hoben beide Gutachter auch das grundsätzliche Potenzial des Projektes hervor. Basierend auf den konstruktiven Kommentaren habe ich Kooperationen mit weiteren Kollegen aufgebaut und zusätzliche Alters- und Proxydaten generiert. Diese zeigen, dass das Probenmaterial ein äußerst vielversprechendes Klimaarchiv darstellt, das mit hoher Genauigkeit datiert werden kann.
Beim mikrobiellen Umsatz von organischen Verbindungen wird ein beträchtlicher Anteil des Kohlenstoffs zunächst zum Aufbau von Biomasse durch Bakterien genutzt. Diese Biomasse unterliegt nach ihrem Absterben wieder einem Abbau durch andere Mikroorganismen. In diesem Prozess werden Fragmente der abgestorbenen Zellen entweder selbst wieder zum Substrat für andere Organismen oder direkt in der Bodenmatrix festgelegt. Damit tragen sie substanziell zur Bildung der organischen Bodensubstanz (SOM) bei. Im Rahmen der geplanten Arbeiten sollen vorwiegend durch Markierungsexperimente mit stabilen und radioaktiven Isotopen die mikrobiellen Umsatzraten und die Bildung von Huminstoffen aus bakterieller Biomasse und fraktionierten Zellbestandteilen wie auch aus mikrobiellen Mineralisationsprodukten wie CO2 und NH4 in Modellböden des Schwerpunktprogrammes detailliert untersucht werden. Dazu wird die Transformation isotopisch markierter Biomassebestandteile (14C; 13C; 15N) in Bodenbioreaktoren untersucht. Die festgelegten und umgewandelten Produkte der markierten Biomasse sollen in den verschiedenen Partikel- und Huminstofffraktionen des Bodens bilanziert und mit isotopenchemischen und strukturchemischen Methoden charakterisiert werden. Damit können der stoffliche Beitrag der Biomasse an der Bildung von Huminstoffen im Boden bilanziert und Konversionsfaktoren sowie Raten für die Stoffverteilung abgeschätzt werden. Ergebnisse aus ersten Versuchen lassen zudem auf einen signifikanten Einbau von Kohlenstoff aus CO2 in die SOM schließen. Daraus könnte sich eine Neubewertung von Tracerexperimenten zur Bildung von gebundene Resten aus Xenobiotika ergeben. Im zweiten Schritt sollen Methoden zur Ermittlung der Struktur und Funktionalität der festgelegten Biopolymere entwickelt werden. Besonderes Augenmerk wird auf die Festlegung von Zellwandbestandteilen, Strukturproteinen und Nukleinsäuren gelegt.
Der Sedimentkern 5017-1 wurde im Tiefsten Bereich des Toten Meeres im Rahmen des ICDP Dead Sea Deep Drilling Programms erbohrt. Die lakustrinen, und zum Teil laminierten Sedimente aus diesem tiefen Bohrkern, sowie vom Uferbereich des Toten Meeres sind einzigartige Archive für Variationen des Sedimenteintrags und Paläo-Niederschlagsregimes in der Levante-Region (Naher Osten). Die langfristigen paläo-hydrologischen Änderungen im Einzugsgebiet des Toten Meeres während der letzten ca. 20 Tausend Jahre werden durch Änderungen des relativen Sedimenteintrags aus verschiedenen Zuflüssen widergespiegelt und konnten mittels Messung der radiogenen Isotope von Neodym (Nd) und Strontium (Sr) entziffert werden. Allerdings ist bisher unklar, inwiefern auch kurzfristige und rapide Klimaänderungen, z.B. während des 8.2 Events oder der Bronze-zeitlichen Trockenphase, zu paläo-hydrologischen Änderungen beigetragen haben. Im Zuge des PRO-HYDRO Projekts ist ein neues Profil am Westufer (Ein Feshkha) bis zum Frühholozän erfasst worden um einen detaillierten Vergleich mit dem Sedimentkern 5017-1 zu erzielen. Des Weiteren wurden erstmals auch Jordanische Zuflüsse am Ostufer des Toten Meeres beprobt. In diesem Fortsetzungsantrag (PRO-HYDRO II) sollen die bisher erzielten Ergebnisse aus dem ICDP 5017-1 Bohrkern und dem Westufer durch die Erfassung des Profils von der jordanischen Seite des Totes Meeres erweitert werden. Ein Ostufer-Profil ist eine wichtige Ergänzung um lokal geprägte Überflutungen während rapider Klimaänderungen des Frühholozäns in der Levante und darüber hinaus rekonstruieren zu können.
Origin | Count |
---|---|
Bund | 881 |
Land | 1 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 881 |
unbekannt | 2 |
License | Count |
---|---|
offen | 882 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 618 |
Englisch | 401 |
Resource type | Count |
---|---|
Keine | 533 |
Webseite | 350 |
Topic | Count |
---|---|
Boden | 781 |
Lebewesen und Lebensräume | 775 |
Luft | 626 |
Mensch und Umwelt | 883 |
Wasser | 738 |
Weitere | 883 |