API src

Found 813 results.

Tripelelement-Stabilisotopensignaturen zur Untersuchung des atmosphärischen Chlormethanbudgets

Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.

Veränderung globaler Umweltfaktoren und Zyklizität in Tiefseesedimenten des Pazifik (Leg 185) und des Atlantik von der Kreide bis heute

Die paläoklimatische und paläozeanographische Entwicklung des nordwestlichen Pazifik (ODP Leg 185) soll auf unterschiedlichen Zeitskalen untersucht und mit Daten aus dem Atlantik versehen werden. Anhand von sedimentologischen, mikropaläontologischen, geochemischen und stabilen Isotopen-Daten sollen Veränderungen der Akkumulationsraten klimatisch und ozeanographisch sensitiver Komponenten dokumentiert werden. Diese sollen mit biostratigraphischen und chemostratigraphischen Methoden sowohl im Hinblick auf die langfristigen zeitlich-räumlichen Trends, als auch mit frequenzanalytischen Methoden hochauflösend analysiert werden. Von besonderem Interesse sind die Intensitäten der atmosphärischen Zirkulation und die marine Produktivität sowie deren räumliche und zeitliche Variabilität. Diese Umwelt-Parameter sind vor allem in der Zusammensetzung der Feinfraktion und in den Akkumulationsraten von äolischem Staub, biogenem Opal und organischem Material überliefert. Der Vergleich mit ausgewählten DSDP/ODP-Sites im Atlantik soll Hinweise auf Zirkulationsregime und Wasseraustausch beider Ozeane geben.

Sonderforschungsbereich (SFB) 1076: Forschungsverbund zum Verständnis der Verknüpfungen zwischen der oberirdischen und unterirdischen Biogeosphäre, Teilprojekt B 03: Quellen und Senken von Gasen in der Critical Zone: in situ-Sensoren und Isotopie

Wir erforschen, wie Gase im Boden und im Grundwasser die Umweltbedingungen und die funktionelle Biodiversität der Critical Zone widerspiegeln. Hierzu (1) erforschen wir neue Konzepte für die verstärkte Raman-Gasspektroskopie, zur simultanen online-Quantifizierung einer ganzen Reihe von Gasen im Boden, (2) setzen Messkampanien zur Bestimmung zeitlicher Änderungen der Gaszusammensetzungen und der Isotopie vor Ort im Hainich-Transekt und den Sandstein-Probestellen fort und (3) führen kontrollierte Laborexperimente durch, um Einflüsse von mikrobieller Aktivität, Substratverfügbarkeit, etc. auf die Muster in der Freisetzung und Aufnahme einer Vielfalt von Gasen und Isotopen zu analysieren.

Sind permeable Sedimente in Küstengebieten Hotspots für die Bildung von nicht-flüchtigem gelöstem organischem Schwefel (DOS) im Meer?

Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.

Untersuchungen zur Rolle verschiedener Eisenquellen für die biologische Produktivität im Ozean mittels eines globalen Modells der Eisenisotopie

Eisen ist ein essenzieller Mikronährstoff für marine Organismen. Die Eisenverteilung im Ozean beeinflusst die Primärproduktion von Phytoplankton und dadurch die Aufnahme von Kohlendioxid im Ozean stark. Während wir langsam ein genaueres Bild der gegenwärtigen globalen Verteilung von gelöstem Eisen im Ozean bekommen, besteht noch kein Konsens in den Mechanismen, die diese Verteilung steuern, und vor allem in der Rolle der verschiedenen externen Eisenquellen für den Ozean (z.B. Eintrag durch Staub, aus Meeressedimenten, hydrothermalen Quellen und Flüssen). Einige dieser Quellen (z.B. Staubdeposition) werden sich stark mit dem laufenden Klimawandel ändern, andere, etwa der Eintrag aus Hydrothermalquellen, nicht. Wegen der Unsicherheit darüber, wie relevant die spezifischen Quellen sind, sind daher Vorhersagen zum zukünftigen Eisenkreislauf und damit zur Veränderung der Primärproduktion als Folge des Klimawandels stark erschwert.Eine neue Methode, die Rolle der verschiedenen Eisenquellen zu untersuchen, ist die Analyse der stabilen Isotopenzusammensetzung von gelöstem Eisen im Ozean. Da die verschiedenen externen Quellen von Eisen je unterschiedliche Isotopenverhältnisse haben, kann die Isotopenzusammensetzung von Eisen im Ozean im Prinzip verwendet werden, um die relativen Beiträge der verschiedenen Quellen zu erschließen. Allerdings wirken sich auch Prozesse im Inneren des Ozeans, die Eisen zwischen seinen verschiedenen Formen (gelöstes Eisen, abiotische und biologische Partikel, Redoxzustände) umwandeln, auf die Isotopenzusammensetzung aus, d.h. sie fraktionieren. Dazu kommt die Vermischung der Isotopenzusammensetzung durch physikalische Prozesse (Transport mit der Strömung und Diffusion). Die Interpretation von Eisenisotopendaten im Ozean erfordert daher die Kombination von Beobachtungen mit einem Modell des Eisenkreislaufs im Ozean. In dem beantragten Projekt wird ein globales biogeochemisches Modell von Eisen um eine explizite Darstellung von Isotopeneffekten erweitert, mit dem Ziel, die Rolle der verschiedenen Prozesse zu entschlüsseln, die die Isotopenzusammensetzung von gelöstem Eisen im Ozean beeinflussen. Das globale biogeochemische Modell basiert auf meinen früheren Arbeiten. In Kombination mit der weiter stattfindenden Zunahme von Eisenisotopenmessungen im Rahmen des internationalen GEOTRACES Programmes ermöglicht das Modell eine bessere Quantifizierung der Größe und der relativen Rolle der externen Eisenquellen für die Gegenwart und somit auch robustere Prognosen der zukünftigen marinen Primärproduktion.

Stickstofffixierung in der monsunbeeinflussten Flussfahne des Mekong

Das Südchinesische Meer ist das größte Randmeer der Erde und ausschließlich von stark besiedelten Ländern wie China, Indonesien, Philippinen oder Vietnam umgeben. Klimaänderung und menschliche Einflüsse im Einzugsgebiet des Mekong (18 geplante Stauseen zu Stromgewinnung und Intensivierung der Aquakultur) werden die Flusseinträge drastisch verändern und in der Folge die Biogeochemie der Küstengewässer. Die Geschwindigkeit und Größenordnung dieser Veränderungen lassen es wahrscheinlich erscheinen, dass das hier geplante Feldprogramm eine der wenigen Gelegenheiten sein wird, dieses Meeresgebiet zu erfassen, bevor es sich grundlegend verändert hat. Die gegenwärtige Rolle der Nährstoffeinträge des Mekong für die Produktivität des Südchinesischen Meeres soll im Vergleich zu den Nährstoffeinträgen durch den Auftrieb während des SW Monsuns untersucht werden. Ergebnisse früherer Arbeiten von uns lassen vermuten, dass die Stickstofffixierung von Cyanobakterien, die in Symbiose mit Diatomeen vorkommen, eine zentrale Rolle spielt. Zudem gibt es einzellige und koloniebildende N-Fixierer wie Trichodesmium in der Flussfahne. Die Interaktion von stickstofffixierenden Organismen, die von den Einträgen des Mekong abzuhängen scheinen, ist bislang nicht verstanden und steht im Fokus dieses Projektes. Die Nährstoffzusammensetzung in Wasser und die Aufnahme von markierten Kohlenstoff und Stickstoffverbindungen wird in der Flussfahne und im Auftriebsgebiet quantifiziert. Zudem wird auf Zellebene der Austausch von Stickstoff und Kohlenstoff zwischen Diatomeen und ihren stickstofffixierenden Symbionten mittels NanoSIMS analysiert. Zeitgleich wird die Gemeinschaft der Stickstofffixierer entlang der Flussfahne und im offenen südchinesischen Meer von amerikanischen und vietnamesischen Kollegen durch genomische, molekularbiologische und taxonomische Methoden erfasst. In der Synthesephase des Projektes soll durch die Zusammenführung aller Ergebnisse ein tiefgreifendes Verständnis des menschlichen Einflusses auf die Biogeochemie des Küstenmeeres vor Vietnam erreicht werden. Zwei Expeditionen in das Gebiet des Mekongausstroms sind bereits durch einen genehmigten Antrag des Schmidts Oceanographic Institute aus den USA abgesichert, so dass Probennahmen und Experimente an Board geplant werden können. Aufgrund des früheren, sehr erfolgreichen DFG finanzierten Vorhabens bestehen enge Kontakte zum Institute of Oceanography in Nha Trang, Vietnam, auf die hier aufgebaut wird.

Spurenelementkreisläufe und Flüsse im südlichen Indischen Ozean - ein Beitrag zu GEOTRACES

Der südliche Indische Ozean gehört zu den am wenigsten untersuchten Meeresgebieten. Entlang eines zonalen Transekts bei 23°S im südlichen Indischen Ozean wollen wir mit Hilfe der Verteilung von isotopischen Tracern (Radiumisotope, Thorium, Helium) die Quellen, die Senken und die Flüsse von Spurenelementen (TEs: Cd, Co, Cu, Fe, Mn, Mo, Ni, V, Zn) in der Wassersäule untersuchen. Die Anwendung von Radiumisotopen (224Ra, 223Ra, 228Ra,226Ra,), Thoriumisotopen (234Th, 232Th) und Heliumisotopen (3He, 4He) erlaubt ein besseres Verständnis der biogeochemischen Zyklen von TEs. Da einige dieser Spurenelemente als Mikronährstoffe fungieren, wollen wir ihre biogeochemischen Kreisläufe und ihre Wechselwirkungen mit der Bioproduktivität im Oberflächenwasser sowie ihre Wechselwirkungen mit den Kohlenstoff- und Nährstoffkreisläufen erforschen. Durch die Kombination von Messungen von TEs mit Radium- und 234Th-Isotopen als Tracer für vertikale und horizontale Flüsse, 232Th als Tracer für den Staubeintrag und Heliumisotope als Tracer für einen hydrothermalen Eintrag, werden wir die Zufuhrpfade von TEs aus der Atmosphäre, den Kontinenten (hauptsächlich dem Sambesi-Fluss), den Sedimenten der afrikanischen und australischen Kontinentalschelfe und aus den hydrothermalen Quellen (Hydrothermalismus am Mittelindischen Ozeanrücken) bestimmen und quantifizieren. Diese Untersuchungen sollen auf Probenmaterial basieren, das während der Sonne Ausfahrt SO-276 (Juli – August 2020) von Durban (Südafrika) nach Fremantle (Australien) gewonnen wird. Unsere Untersuchungen sind Teil des international koordinierten Programms GEOTRACES und werden zum „Second Indian Ocean Expedition Program (IIOE-2)“ beitragen. Wir erwarten, dass die Ergebnisse der vorgesehenen Untersuchungen einen signifikanten Beitrag zum Verständnis von Ökosystemen und ihrem chemischen Milieu liefern werden.

Linking nutrient cycles, land use and biodiversity along an elevation gradient on Mt. Kilimanjaro

To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.

Der Einfluss hoher Gebirgsreliefs auf die Isotopenhydrologie und damit verbundener Klimaproxies

Wichtige Klimaproxies wie z.B. Baumringe nutzen stabile Isotopenverhältnisse zur Rekonstruktion paläoklimatischer Verhältnisse. Dies wiederum erlaubt Abschätzungen über die zukünftigen Auswirkungen des derzeit stattfinden Klimawandels. Die Insel Korsika im westlichen Mittelmeer liegt in einer besonders stark von Klimaveränderungen betroffen Region. Die Insel war daher in den letzten Jahren das Ziel von Klimarekonstruktionen mittels Dendrochronologie und stabilen Isotopenmessungen. Allerdings ließen sich vorhandene Untersuchungsergebnisse von Sauerstoffisotopenmessungen an korsischen Schwarzkiefern bislang nicht zufriedenstellend interpretieren. Sauerstoffisotopenuntersuchungen von Baumringen hängen entscheidend vom Sauerstoffisotopenwert (delta18O) des lokalen Niederschlages und des daraus resultierenden Bodenwassers ab. Der delta18O-Wert des Niederschlages variiert vor allem in Abhängigkeit von Temperatur, Geländehöhe und dem Ursprungsgebiet der Luftmassen. Diese Parameter lassen sich heute meist gut bestimmen lassen, müssen für die Vergangenheit aber oft abgeschätzt werden. Ein wichtiger Effekt ist der Höheneffekt, welcher die Abhängigkeit des delta18O-Werts von der Geländehöhe beschreibt. Für solche Isotopeneffekte gibt es über die globale Datenbasis der Internationalen Atomenergiebehörde (IAEA) gute regionale Abschätzungen. Sehr viel schwieriger gestalteten sich hingegen lokale Abschätzungen in Regionen mit einem sehr steilen, hohen Gebirgsrelief. Neueste Arbeiten lassen vermuten, dass für solche Regionen die Isotopenwerte in bestimmten Jahreszeiten keinen höhenabhängigen Gradienten mehr zeigen. Ursache hierfür können jahreszeitliche Schwankungen der Höhenlage der atmosphärischen Grenzschicht sein. Der vorliegende isotopenhydrologische Antrag ist Teil des Bündelantrages CorsicArchive, welcher weitere Anträge zum Klima, der Dendroisotopie und der Dendrologie umfasst. An insgesamt neun Stationen entlang eines Ost-West verlaufenden Höhenprofils sollen Regensammler installiert und beprobt werden. Im Teilprojekt Isotopenhydrologie sollen Fragen zur Wechselwirkung zwischen dem Höheneffekt und der atmosphärischen Grenzschicht untersucht werden. Weitere Fragestellungen sind die Herkunft der Luftmassen sowie der Anteil der lokalen Verdunstung am hydrologischen Kreislauf der Insel. Darüber hinaus sollen Oberflächengewässer- und Bodenwasseruntersuchungen durchgeführt werden, um Veränderungen des delta18O-Wertes auf seinem Weg zum Baumring zu entschlüsseln und zu quantifizieren. Die Untersuchungen sollen zu einem besseren Verständnis isotopenhydrologischer Prozesse in Gebieten mit steilen Höhengradienten beitragen. Dies soll schließlich dazu führen, dass auf stabilen Isotopen basierende Klimarekonstruktionen solcher Regionen zuverlässig interpretiert werden können. Im Hinblick auf den derzeitigen Klimawandel ist es entscheidend solche Prozesse in der Vergangenheit zu verstehen, um verlässliche Prognosen über zukünftige Veränderungen abzugeben.

Die Eisendüngung vor Inseln im Südozean: Fe-Isotopenaustausch zwischen reaktiven Partikeln und Meerwasser

Die marine Eisendüngung durch Inseln ist ein wichtiger Steuerungsprozess der marinen Planktonproduktion, einer der größten atmosphärischen CO2-Senken. Der Prozess lässt sich allgemein im Südozean beobachten, wo die glaziale Verwitterung auf Inseln eine gut dokumentierte Quelle an reaktivem, partikulärem Fe (pFe) darstellt. Diese Verwitterung dürfte sehr empfindlich auf den globalen Klimawandel reagieren. Der diagenetische Stoffkreislauf auf dem Schelf, mit Rückdiffusion und Rücksuspension von Fe in die Wassersäule ist eine weitere Quelle von globaler Bedeutung. In unseren vergangenen Studien auf King George Island, antarktischer Inselbogen, konnten wir zeigen, Fe-isotope eine Unterscheidung dieser Quellen erlauben. Jedoch zeigt die Fe-Isotopenzusammensetzung des gelösten Fe (dFe) insgesamt im Südozean eine überraschend große Variabilität von etwa 2‰ (d56Fe). Dies bedeutet entweder eine lokal sehr variable Mischung der beiden Fe-Quellen, einen regional sehr diversen Fe-Stoffkreislauf mit variabler Interaktion zwischen dFe und pFe, ein regional sehr dynamischer biologischer Fe-Kreislauf in der Wassersäule, oder Kombinationen aller drei Aspekte. Ich beantrage während einer FS Polarstern Expedition (PS-133), die verschiedenen Fe-Quellen von der Küste der Insel Süd-Georgiens und den Fe-Transport in den offene Ozean mithilfe von Fe-Isotopenanalysen zu verfolgen, und die Transformation dieser partikulären Fe-Quellen in bioverfügbares dFe, z.B. durch Lösung und Austausch mit der Partikeloberfläche, auf der Basis der Fe-Isotopenfraktionierung zu bestimmen. Die Fe-Isotopenfraktionierungsfaktoren, die generell im marinen Millieu nur unzureichend bestimmt sind, sollen experimentell im Labor und an Bord bestimmt werden. Diese Austauschexperimente beinhalten Mischungen aus reinen Fe-Oxyhyroxiden und Mn-Oxiden mit künstlichem Meerwasser, sowie Mischungen aus mittels Tangentialflussfiltration angereicherten marinen Partikeln von der Schelf- und Kontinentalhangregion Süd-Georgiens mit filtriertem, partikelfreiem Meerwasser von stromaufwärts der Insel. Ebenso werden Mischungen aus reinen Mineralphasen mit Meerwasser des Südozeans untersucht. In allen Experimenten wird das Wasser mit einem monoisotopisch angereicherten „Spike“ versetzt, werden die Experimente (lang)zeit-kontrolliert beprobt, und die „Drei-Isotopenmethode“ konsequent verwendet, mittels derer die Extrapolation der isotopischen Fraktionerungsfaktoren möglich ist, selbst wenn die Austauschreaktion nicht vollständig abläuft. Die experimentell bestimmten Fraktionierungsfaktoren dienen als Basis, die natürlichen, molekularen Austauschprozesse bei der marinen Fe-Düngung zu identifizieren. Die natürliche Fe-Düngung soll vor Süd-Georgien auf der PS-133 Expedition vom Littoral bis in den offen, hochproduktiven Ozean beobachtet und beprobt werden. Zum Vergleich sollen zusätzlich Proben aus dem Littoral und der Küstenregion vor King George Island von einer früheren Expedition analysiert werden.

1 2 3 4 580 81 82