Störungen des Kohlenstoffkreislaufs, sowohl natürlichen als auch anthropogenen Ursprungs, führen zu globale Erwärmung, Ozeanversauerung (OA) und Sauerstoffzehrung des Tiefenwassers. Natürliche Störungen des Kohlenstoffkreislaufs sind als Hauptursache von mindestens 4 von 5 Massensterben in der Erdgeschichte identifiziert wurden (z.B. Hönisch et al, 2009, Bijma et al.., 2013).Anthropogene Aktivitäten setzten CO2 zehnmal schneller frei als jedes andere Ereignis in den letzten 65 Mio. Jahren - vielleicht sogar während der letzten 300 Mio Jahren. Dies macht den heutigen CO2 Ausstoß zu einer der größten gesellschaftlichen Herausforderungen. Um die Auswirkungen der anthropogenen Störungen vorhersagen zu können, ist es zwingend erforderlich, die natürlichen Speicher und Dynamik des Kohlenstoffsystems zu verstehen. Dies erfordert die genaue Rekonstruktion der marinen Karbonatchemie für Zeiträume mit natürlichen Änderungen. In diesem Projekt wollen wir Veränderlichkeit am Übergang Glazial/Interglazial untersuchen weil die Änderungen der Karbonatchemie in der gleichen Größenordnung wie heute lagen. Da das Reservoir an anorganischem Kohlenstoff im Ozean ungefähr 60 mal größer ist als das der Atmosphäre, sind Rekonstruktionen der Veränderungen der Kohlenstoffsenke/-speicherung in der Tiefsee ein Schlüssel, um die glazialen/interglazialen Schwankungen im atmosphärischen CO2 - wie sie in Eisbohrkernen beobachtet werden - zu erklären. Prozesse im Südozean, wo der Großteil des Tiefenwassers ventiliert wird, spielen hierbei vermutlich eine zentrale Rolle. Man vermutet, dass der träge glaziale Süd Ozean mehr Kohlenstoff einlagern konnte, die Biologische Pumpe effektiver war und dass eine höhere Wassermassen-Stratifizierung das Entweichen von CO2 in die Atmosphäre verringert hat. Nach dem glazialen Maximum wird mit dem Rückzug des Meereises die Tiefsee Kohlenstoff - Pumpe wieder mit der Atmosphäre verbunden und führt zu einer erhöhten CO2-Freisetzung. Bislang ist dies, wenn auch von Indizienbeweisen unterstützt, nur eine Hypothese, zum Beweis bedarf es der Rekonstruktionen der glazialen/interglazialen variierenden Karbonatchemie. Dies ist das übergreifende Ziel unseres Antrags. Auf dem Weg zur Rekonstruktion des glazialen/interglazialen Kohlenstoffpools liegen 3 Zwischenziele: 1) Rekonstruktion von Oberflächenwasser-Tiefsee- CO2-Gradienten, glaziale Kohlenstoffspeicherung und deglaziale Entgasung mittels Bor-Isotopen und B/Ca fossiler Foraminiferen als Hauptvariablen. 2) Erstellen der ersten Kalibrationen von Bor-Isotopen und B/Ca Ratio für Cibicides wuellerstorfi (Tiefseeforaminifere) unter in-situ Druck. 3) Entwicklung von analytischen Methoden, welche die Analyse von einzelnen Foraminiferen Schalen erlauben.
Höhlensinter, so genannte Speläotheme, stellen ein im Vergleich zu See-Ablagerungen, Tiefsee-Sedimenten oder Baumringen relativ neues Paläoklima-Archiv dar, an dem unsere Arbeitsgruppe an der Leopold-Franzens-Universität Innsbruck seit einigen Jahren mit Erfolg forscht. Mit dem vorliegenden Antrag soll eine Teiluntersuchung im Rahmen einer bereits seit Jänner 2005 laufenden Dissertation an einer steirischen Höhle, dem Katerloch bei Weiz, erfolgreich zu Ende geführt werden können. Diese Höhle - viele Jahre lang nicht zugänglich - ist vermutlich die tropfsteinreichste Höhle Österreichs. Interessanterweise sind die allermeisten dieser eindrucksvollen, bis 6 m hohen Formationen aber heute nicht mehr aktiv, d.h. ihr Wachstum steht still. Die Ausscheidung von Kalzit - das in-die-Höhe-Wachsen eines Stalagmiten - ist ursächlich an die Menge an Grundwasser gebunden ist, das durch feine Risse in den Höhlenraum tropft und seinen Ursprung im Niederschlag hat, der auf dem Gebiet oberhalb der Höhle fällt. So gesehen können Tropfsteine bzw. deren Wachstumsabschnitte als Maß für die Änderungen der Niederschlagsmenge verwendet werden. Das Katerloch bietet die Möglichkeit, diese Rekonstruktion des Niederschlages vergangener Jahrtausende und Jahrzehntausende in sehr hoher Auflösung zu erforschen, da die Stalagmite aus dieser Höhle eine feine regelmäßige Schichtung aufweisen, die nach bislang vorliegenden absoluten Altersbestimmungen jährlichen Ursprungs ist. Mit diesen Untersuchungen können somit wertvolle Beiträge zur Frage der natürlichen Klima-Änderungen am Alpensüdrand gemacht werden, die mit anderen Archiven kaum bzw. überhaupt nicht erzielt werden können.
Gegenstand des Vorhabens ist die organisch-geochemische Untersuchung von diatomeenspezifischen organischen Verbindungen (Biomarker) aus Sedimenten des Südpolarmeeres für die letzten ca. 150.000 Jahre. Diatomeen sind die wichtigsten Primärproduzenten südlich der heutigen Antarktischen Polarfront. Die Kohlenstoffisotope und Anteile der in den Sedimenten überlieferten Biomarker aus Diatomeen spiegeln unmittelbare Veränderungen in der Meerwasserchemie, ozeanischen Zirkulation und der Primärproduktivität wider und sind daher ein ausgezeichneter Indikator für klimagekoppelte Umweltveränderungen. Die Untersuchungen basieren auf etablierten Methoden der organischen Geochemie, Biomarkenanalytik und Isotopengeochemie und sind somit ohne methodische Neuentwicklungen durchzuführen.
Das Klima während der langen Glazialzeiten der jüngsten Erdgeschichte (des Quartärs) war geprägt von großer Instabilität. Interstadiale begannen mit einer abrupten Erwärmung, waren aber nur von kurzer Dauer (maximal ca. 3000 Jahre) und leiteten in eine graduelle Abkühlung hin zu sehr kalt-trockenen Stadialen über. Dieser ausgesprochen asymmetrische Verlauf des Eiszeitklimas - bekannt als Dansgaard-Oeschger Zyklen - beschäftigt die Paläoklimaforschung intensiv und es besteht kein Konsens über die zugrunde liegenden Ursachen. Eine große Schwierigkeit bei der Untersuchung dieses Phänomens ist die genaue zeitliche Fassung der einzelnen Dansgaard-Oeschger Zyklen, von denen es allein im letzten Glazialzyklus gut zwei Dutzend gab. Eine spannende neue Möglichkeit, diese kurzfristigen Klima-Ereignisse in Sedimenten zu erkennen und zu datieren stellen Tropfsteine dar. Im vorliegenden Projekt sollen Tropfsteine aus Höhlen in den Ost- und Westalpen analysiert werden, denn vorangegangene Untersuchungen unserer Arbeitsgruppe haben gezeigt, dass sich alpine Höhlen sehr gut als Klima-Archive für diese Fragestellung eignen. Zur Erkennung der Klimaspuren in diesen anorganischen Karbonatablagerungen werden die stabilen Isotope des Sauerstoffs im Kalzit herangezogen; die präzise Datierung beruht auf dem radioaktiven Zerfall der Spurenelemente Uran und Thorium. Die Ergebnisse dieser Forschungen werden es u.a. ermöglichen, die bestehenden Zeitskalen der wichtigen Eiskerne aus Grönland deutlich zu verbessern.
Der Verlauf der atmosphärischen CO2-Konzentrationen während der vergangenen Klimazyklen ist durch ein Sägezahnmuster mit Maxima in Warmzeiten und Minima in Kaltzeiten geprägt. Es besteht derzeit Konsens, dass insbesondere der Süd Ozean (SO) eine Schlüsselfunktion bei der Steuerung der CO2-Entwicklung einnimmt. Allerdings sind die dabei wirksamen Mechanismen, die in Zusammenhang mit Änderungen der Windmuster, Ozeanzirkulation, Stratifizierung der Wassersäule, Meereisausdehnung und biologischer Produktion stehen, noch nicht ausreichend bekannt. Daten zur Wirkung dieser Prozesse im Wechsel von Warm- und Kaltzeiten beziehen sich bislang fast ausschließlich auf den atlantischen SO. Um ein umfassendes Bild der Klimasteuerung durch den SO zu erhalten muss geklärt werden, wie weit sich die aus dem atlantischen SO bekannten Prozesswirkungen auf den pazifischen SO übertragen lassen. Dies ist deshalb von Bedeutung, da der pazifische SO den größten Teil des SO einnimmt. Darüber hinaus stellt er das hauptsächliche Abflussgebiet des Westantarktischen Eisschildes (WAIS) in den SO dar. Im Rahmen des Projektes sollen mit einer neu entwickelten Proxy-Methode Paläoumwelt-Zeitreihen an ausgewählten Sedimentkernen von latitudinalen Schnitten über den pazifischen SO hinweg gewonnen werden. Dabei handelt es sich um kombinierte Sauerstoff- und Siliziumisotopenmessungen an gereinigten Diatomeen und Radiolarien. Es sollen erstmalig die physikalischen Eigenschaften und Nährstoffbedingungen in verschiedenen Stockwerken des Oberflächenwassers aus verschiedenen Ablagerungsräumen und während unterschiedlicher Klimabedingungen beschrieben werden. Dies umfasst Bedingungen von kälter als heute (z.B. Letztes Glaziales Maximum) bis zu wärmer als heute (z.B. Marines Isotopen Stadium, MIS 5.5). Die Untersuchungen geben Hinweise zur (1) Sensitivität des antarktischen Ökosystems auf den Eintrag von Mikronährstoffen (Eisendüngung), (2) Oberflächenwasserstratifizierung und (3) 'Silicic-Acid leakage'-Hypothese, und tragen damit zur Überprüfung verschiedener Hypothesen zur Klimawirksamkeit von SO-Prozessen bei. Die neuen Proxies bilden überdies Oberflächen-Salzgehaltsanomalien ab, die Hinweise zur Stabilität des WAIS unter verschiedenen Klimabedingungen geben. Darüber hinaus kann die Hypothese getestet werden, nach der der WAIS während MIS 5.5 vollständig abgebaut war. Die Projektergebnisse sollen mit Simulationen mit einem kombinierten biogeochemischen (Si-Isotope beinhaltenden) Atmosphäre-Ozean-Zirkulations-Modell aus einem laufenden SPP1158-DFG Projekt an der CAU Kiel (PI B. Schneider) verglichen werden. Damit sollen die jeweiligen Beiträge der Ozeanzirkulation und der biologischen Produktion zum CO2-Austausch zwischen Ozean und Atmosphäre getrennt und statistisch analysiert werden. Informationen zu Staubeintrag, biogenen Flussraten, physikalischen Ozeanparametern und zur Erstellung von Altersmodellen stehen durch Zusammenarbeit mit anderen (inter)nationalen Projekten zur Verfügung.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Der südliche Indische Ozean gehört zu den am wenigsten untersuchten Meeresgebieten. Entlang eines zonalen Transekts bei 23°S im südlichen Indischen Ozean wollen wir mit Hilfe der Verteilung von isotopischen Tracern (Radiumisotope, Thorium, Helium) die Quellen, die Senken und die Flüsse von Spurenelementen (TEs: Cd, Co, Cu, Fe, Mn, Mo, Ni, V, Zn) in der Wassersäule untersuchen. Die Anwendung von Radiumisotopen (224Ra, 223Ra, 228Ra,226Ra,), Thoriumisotopen (234Th, 232Th) und Heliumisotopen (3He, 4He) erlaubt ein besseres Verständnis der biogeochemischen Zyklen von TEs. Da einige dieser Spurenelemente als Mikronährstoffe fungieren, wollen wir ihre biogeochemischen Kreisläufe und ihre Wechselwirkungen mit der Bioproduktivität im Oberflächenwasser sowie ihre Wechselwirkungen mit den Kohlenstoff- und Nährstoffkreisläufen erforschen. Durch die Kombination von Messungen von TEs mit Radium- und 234Th-Isotopen als Tracer für vertikale und horizontale Flüsse, 232Th als Tracer für den Staubeintrag und Heliumisotope als Tracer für einen hydrothermalen Eintrag, werden wir die Zufuhrpfade von TEs aus der Atmosphäre, den Kontinenten (hauptsächlich dem Sambesi-Fluss), den Sedimenten der afrikanischen und australischen Kontinentalschelfe und aus den hydrothermalen Quellen (Hydrothermalismus am Mittelindischen Ozeanrücken) bestimmen und quantifizieren. Diese Untersuchungen sollen auf Probenmaterial basieren, das während der Sonne Ausfahrt SO-276 (Juli – August 2020) von Durban (Südafrika) nach Fremantle (Australien) gewonnen wird. Unsere Untersuchungen sind Teil des international koordinierten Programms GEOTRACES und werden zum „Second Indian Ocean Expedition Program (IIOE-2)“ beitragen. Wir erwarten, dass die Ergebnisse der vorgesehenen Untersuchungen einen signifikanten Beitrag zum Verständnis von Ökosystemen und ihrem chemischen Milieu liefern werden.
To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.
Das Edelgasradioisotop 39Ar ist einzigartig, da es das einzige Isotop ist, das den wichtigen Altersbereich von ca. 50 bis 1000 Jahren abdeckt. Damit ist es von großem Interesse für die Datierung in Ozeanagraphie, Glaziologie und Hydrogeologie. Die Entwicklung der Atom Trap Trace Analysis (ATTA) hat 81Kr Datierung möglich gemacht und hat das Potenzial, fundamental neue Anwendungen von 39Ar zu eröffnen. In einem Vorgängerprojekt haben wir zum ersten Mal gezeigt, dass die Messung von 39Ar an natürlichen Proben mit ATTA möglich ist. Aufbauend auf der im vorherigen Projekt und weiteren Vorarbeiten erworbenen Erfahrung soll das vorliegende Projekt die intellektuellen und instrumentellen Grundlagen von ATTA für 39Ar (ArTTA) als neues Werkzeug der Isotopenhydrologie schaffen. Wir zielen darauf ab, ArTTA vom proof-of-principle Stadium zu einer voll etablierten Methode voranzubringen und seine erste umfassende Anwendung durchzuführen. Basierend auf der vorhandenen Expertise in Grundwasser- und Paläoklimaforschung und unter Nutzung der Vorteile von Grundwasser als Testfeld für ArTTA, planen wir, die erste detaillierte Paläotemperaturzeitreihe für das letzte Jahrtausend aus Grundwasser zu gewinnen. Wir haben die folgenden zwei zentralen Ziele identifiziert: 1. Signifikante Verbesserung der Effizienz der ArTTA Apparatur. Eine Erhöhung der Zählrate ist notwendig, um den Probendurchsatz sowie die erreichbare Messgenauigkeit zu verbessern. 2. Realisierung der ersten kompletten Studie zur 39Ar-Datierung von Grundwasser mit ArTTA, um Grundwasser-Altersverteilung und Paläoklimaentwicklung auf der Zeitskala von Jahrhunderten zu bestimmen.
Es ist dringend erforderlich, die relevanten hydrologischen Prozesse in montanen mediterranen Einzugsgebieten zu verstehen, um deren potentielle Änderungen in ihren Funktionen für die Wasserversorgung durch den Klimawandel und Landnutzungsänderungen zu kennen. Daher möchte ich zusammen mit meiner Gastinstitution, dem IDAEA-CSIC in Barcelona, untersuchen, wie die Vegetation, die Böden und das Grundwasser das Speichern, die Mischung, die Abflussbildung, sowie die Evapotranspiration in dem Einzugsgebiet Vallcebre im Nordosten Spaniens beeinflussen. Die Forscher des IDAEA -CSIC haben hydrometrische Daten und stabile Isotope (d2H, d18O) der verschiedenen hydrologischen Kompartimente des Einzugsgebiets gesammelt. Somit liegen Informationen über den Freiland- und Bestandniederschlag, Stammabfluss, Bach- und Grundwasser, sowie Wasser im Boden und der Vegetation vor. Ich plane, diesen umfangreichen Datensatz zur Bestimmung der Verweilzeiten mit neue Methoden anzuwenden, damit sich unser Verständnis von Wasserfluss und Stofftransport in Einzugsgebieten verbessert. Ich werde zunächst testen, wie mittels 'StorAge Selection functions' (Rinaldo et al. 2015) die Dynamik der Verweilzeiten des Abflusses und der Evapotranspiration beschrieben werden können. Des Weiteren habe ich als Ziel die neuen Konzepte der 'young water fraction' (Kirchner 2016) and 'new water fraction' (Kirchner 2017) anzuwenden, um besser die kurzfristige Komponente der Verweilzeiten beschreiben zu können. Diese Methoden sind noch nicht für Mediterrane Einzugsgebiete getestet worden, aber der umfangreiche Datensatz für die Vallcebre Einzugsgebiete ermöglicht die Untersuchung aktueller Fragen der Einzugshydrologie: Können Studien zur Verweilzeit verbessert werden mit höherer Rate der Probennahme von Niederschlag und Abfluss? Wie wirken sich neu erschlossene Daten über Bestandsniederschlag, Stammabfluss, Wurzelwasseraufnahme oder Bodenwasserfluss auf die Analysen aus? Zuletzt werde ich die Information von Tiefenprofilen der Isotopenzusammensetzung von Porenwasser einbeziehen, um hydrologische Modelle zu testen und die Verweilzeiten im Boden mit der Verweilzeit des Einzugsgebietsabflusses in Bezug zu setzen. Letzteres baut auf meine Dissertation und derzeitiger Postdoc-Studien auf.
| Origin | Count |
|---|---|
| Bund | 881 |
| Land | 1 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 881 |
| unbekannt | 2 |
| License | Count |
|---|---|
| offen | 882 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 618 |
| Englisch | 401 |
| Resource type | Count |
|---|---|
| Keine | 533 |
| Webseite | 350 |
| Topic | Count |
|---|---|
| Boden | 775 |
| Lebewesen und Lebensräume | 813 |
| Luft | 622 |
| Mensch und Umwelt | 883 |
| Wasser | 714 |
| Weitere | 883 |