API src

Found 133 results.

Related terms

Internationale Karte der Eisenerz-Vorkommen in Europa 1:2.500.000 - Blatt 16 Baghdad

Die Internationale Karte der Eisenerz-Vorkommen in Europa 1 : 2 500 000 wurde 1977 fertig gestellt und von der BGR herausgegeben. Über 70 Geologen aus Europa, Nordafrika und dem Mittlerem Osten arbeiteten gemeinsam mit dem Redaktionsteam an der Kompilation der Karte und den Erläuterungen. Die Karte, die 42 Länder in 16 Kartenblättern abdeckt, zeigt mehr als 800 Eisenerz-Vorkommen. Alle bedeutenden Vorkommen (im Abbau oder stillgelegt) sind enthalten. Auch Vorkommen, die nur von genetischem oder historischem Interesse sind, wurden mit abgebildet. Detaillierte Informationen zur Internationalen Karte der Eisenerz-Vorkommen in Europa 1 : 2 500 000 - zu Struktur, Aufbau und Hintergrunddaten - sind in den Erläuterungen zur Karte zu finden.

Bedrohter See des Jahres 2006: Totes Meer, Israel, Jordanien und Palästina

Die internationale Umweltstiftung Global Nature Fund (GNF) hat das Tote Meer zum Bedrohten See des Jahres 2006 ernannt. Der GNF macht damit auf den starken Rückgang des Wasserspiegels und die fortschreitende Zerstörung natürlicher Lebensräume am salzhaltigsten See der Welt aufmerksam.

Internationales Abkommen über Pipeline-Projekt zur Rettung des Toten Meeres

Mit einem gemeinsamen Projekt wollen Israel, Jordanien und die Palästinenser das Tote Meer vor dem Austrocknen bewahren. Die drei Seiten unterzeichneten am 9. Dezember 2013 nach Angaben der Weltbank in Washington ein Abkommen zum Bau einer Wasser-Pipeline, die bis zu 400 Millionen Dollar kosten soll. Damit soll Wasser aus dem Roten Meer in das 180 Kilometer nördlich gelegene Tote Meer gepumpt werden, das unter anderem wegen der massiven Nutzung des Süßwassers aus dem Fluss Jordan ständig von Austrocknung bedroht ist. Der Spiegel sinkt jedes Jahr durchschnittlich knapp einen Meter. Den Plänen zufolge sollen 80 der jährlich 200 Millionen Kubikmeter Wasser in einer neuen Entsalzungsanlage in Jordanien zu Trinkwasser aufbereitet und an Jordanien, Israel und Palästinenser verteilt werden. Bei Umweltschützern stößt die auch als «Zwei-Meere-Kanal» bekannte Pipeline auf Kritik.

Ölkatastrophe in der israelischen Wüste

Aus einer gebrochenen Pipeline in der israelischen Arava-Wüste sind große Mengen Rohöl ausgetreten. Das Unglück ereignete sich am 3. Dezember 2014 nördlich der Stadt Eilat, nur unweit der Grenze zu Jordanien. Über eine Länge von sechs bis sieben Kilometern sollen rund 1.000 Kubikmeter Öl ausgelaufen sein. Das Öl breitete sich über eine große Fläche aus und gelangte auch in Flußläufe des nahgelegenen Naturschutzgebietes der Evrona-Quelle. Es sei die schlimmste Umweltkatastrophe in der Geschichte Israels, erklärten Vertreter des Umweltministeriums in Tel Aviv.

Solar-KW-Turm-ES-2000 (Mittelmeer) no backup

Solarthermisches Kraftwerk mit einem zentralen volumetrischen Luft-Receiver; die Daten für diesen Prozess stammen aus #1, einer Studie der DLR für einen Solarturm namens PHOEBUS. Die einzelnen Komponenten dieser Anlage wurden bereits auf der Plataforma Solar de Almeria in Südspanien getestet. Der Ölkessel als backup entspricht dem Prozess "Solar-SEGS-GR-Kreta". Der Solaranteil der Erzeugung ist 50,2%; die Kostendaten stammen aus #2. Diese künftige Anlage kann auch in anderen südlichen Ländern errichtet werden, Jordanien und Brasilien sind dazu in der Diskussion. Eine grosse Menge an Wasser ist zur Reinigung der Spiegel notwendig. Die Materialdaten stammen aus #3. Auslastung: 3760h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 642000m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 25a Leistung: 30MW Nutzungsgrad: 100% Produkt: Elektrizität

Solar-KW-Turm-ES-2000 (Mittelmeer)

Solarthermisches Kraftwerk mit einem zentralen volumetrischen Luft-Receiver; die Daten für diesen Prozess stammen aus #1, einer Studie der DLR für einen Solarturm namens PHOEBUS. Die einzelnen Komponenten dieser Anlage wurden bereits auf der Plataforma Solar de Almeria in Südspanien getestet. Der Ölkessel als backup entspricht dem Prozess "Solar-SEGS-GR-Kreta". Der Solaranteil der Erzeugung ist 50,2%; die Kostendaten stammen aus #2. Diese künftige Anlage kann auch in anderen südlichen Ländern errichtet werden, Jordanien und Brasilien sind dazu in der Diskussion. Eine grosse Menge an Wasser ist zur Reinigung der Spiegel notwendig. Die Materialdaten stammen aus #3. Auslastung: 3760h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 642000m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 25a Leistung: 30MW Nutzungsgrad: 100% Produkt: Elektrizität

Small Modular Reactors

Small Modular Reactors Die wichtigsten Informationen zu Small Modular Reactors – kurz SMR – bietet unser Überblick: Was ist von den neuen Reaktorkonzepten zu erwarten? Welche Einsatzbereiche haben diese Konzepte, welche Länder entwickeln sie und wie hoch ist ihr Sicherheitsrisiko? Gutachten zu Small Modular Reactors Montage des Kernmoduls des SMR Linglong One in der südchinesischen Provinz Hainan © picture alliance / Xinhua News Agency | Liu Yiwei Das BASE hat ein Gutachten zu SMR erstellen lassen. Darin wurden 136 verschiedene historische sowie aktuelle Reaktoren bzw. SMR-Konzepte betrachtet, 31 davon besonders detailliert. Das Gutachten liefert eine wissenschaftliche Einschätzung zu möglichen Einsatzbereichen und den damit verbundenen Sicherheitsfragen und Risiken. Das Gutachten ist im Auftrag des BASE vom Öko-Institut Freiburg in Zusammenarbeit mit dem Fachgebiet für Wirtschafts- und Infrastrukturpolitik der TU Berlin sowie dem Physikerbüro Bremen angefertigt worden. SMR-Konzepte („Small Modular Reactors“) gehen auf Entwicklungen der 1950er Jahre zurück, insbesondere den Versuch, Atomkraft als Antriebstechnologie für Militär-U-Boote nutzbar zu machen. Weltweit existieren heute unterschiedlichste Konzepte und Entwicklungen für SMR. Die überwiegende Mehrzahl davon befindet sich auf der Ebene von Konzeptstudien. Das BASE hat ein Gutachten zu SMR in Auftrag gegeben. Daraus lassen sich folgende Schlussfolgerungen ziehen: Die Bandbreite der durch den Begriff SMR erfassten Konzepte reicht von „heutigen“ Leichtwasserreaktoren mit geringer Leistung bis hin zu andersartigen Konzepten, für die bislang wenig oder keine industrielle Vorerfahrung vorliegt (wie beispielsweise Hochtemperatur- oder Salzschmelze-Reaktorkonzepte). Die diskutierten Einsatzbereiche betreffen neben der regulären Stromversorgung insbesondere die dezentrale Stromversorgung für Industrie bzw. Haushalte sowie Wärme für Fernwärme, Meerwasserentsalzung und Industrieprozesse. Darüber hinaus werden auch militärische Nutzungen wie mobil einsetzbare Mikroreaktoren verfolgt. Um weltweit dieselbe elektrische Leistung zu erzeugen wie mit heutigen neuen Atomkraftwerken wäre eine um den Faktor 3-1000 größere Anzahl an Anlagen erforderlich. Anstelle von heute circa 400 Reaktoren mit großer Leistung würde dies also den Bau von vielen tausend bis zehntausend SMR-Anlagen bedeuten. Gegenüber Atomkraftwerken mit großer Leistung könnten SMR potenziell sicherheitstechnische Vorteile erzielen, da sie ein beispielsweise geringeres radioaktives Inventar pro Reaktor aufweisen. Die hohe Anzahl an Reaktoren, die für die gleiche Produktionsmenge an elektrischer Leistung notwendig ist, erhöht das Risiko jedoch wiederum um ein Vielfaches. Anders als teilweise von Herstellern angegeben, muss bisher davon ausgegangen werden, dass für den anlagenexternen Notfallschutz bei SMR die Möglichkeit von Kontaminationen besteht, die deutlich über das Anlagengelände hinausreichen. Durch die geringe elektrische Leistung sind bei SMR die Baukosten relativ betrachtet höher als bei großen Atomkraftwerken . Eine Produktionskostenrechnung unter Berücksichtigung von Skalen-, Massen- und Lerneffekten aus der Atomindustrie legt nahe, dass im Mittel dreitausend SMR produziert werden müssten bevor sich der Einstieg in die SMR-Produktion lohnen würde. Folgende Fragen und Antworten lassen sich aus dem Gutachten ableiten: Definition: Was ist ein SMR? Trotz der seit langem praktizierten Verwendung des Begriffs SMR gibt es bis heute keine international einheitliche Definition für diesen Begriff. Eine Definition der IAEA beschreibt SMR als eine Gruppe kleiner Leistungsreaktoren mit geringerer Leistung als die heutiger Atomkraftwerke von bis zu unter 10 MWe (Mikroreaktoren) bis zu einer Leistung von typischerweise 300 MWe. Übliche konventionelle Reaktoren haben demgegenüber eine Leistung in der Größenordnung von über 1000 MWe. Die Funktionsweise dieser Reaktorgruppe ist sehr divers: Bei einer Reihe von Konzepten entspricht sie der Funktionsweise heutiger Leichtwasserreaktoren. Diese Typen der SMR unterliegen somit geringeren Entwicklungsrisiken, die Entwickler können auf Betriebserfahrung zurückgreifen. Zum anderen liegen den SMR auch neuartige Konzeptideen mit wenig bzw. keiner industrieller Vorerfahrung zugrunde. Letztere können den Hochtemperaturreaktoren, Reaktoren mit einem schnellen Neutronenspektrum oder den Salzschmelzreaktoren zugeordnet werden. Einsatzbereiche: Welche Länder entwickeln SMR? Die aktuelle Entwicklung von SMRs ist derzeit größtenteils staatlich finanziert und findet in starkem Maß in den USA , Kanada und dem Vereinten Königreich statt. Die SMRs können bei entsprechenden Voraussetzungen nicht nur im eigenen Land errichtet, sondern auch in andere Länder verkauft werden. Im Bereich der SMR spielen industrie- und geopolitische Motivlagen sowie militärische Interessen eine Rolle. Die Mehrheit der Länder, die SMR-Entwicklungsaktivitäten verfolgen, unterhalten Atomwaffenprogramme und bauen Atom -U-Boote und/oder verfügen bereits über ein großes „ziviles“ Atomprogramm. Neben der regulären Stromversorgung werden insbesondere die dezentrale Stromversorgung für Industrie bzw. Haushalte sowie Wärme für Fernwärme, Meerwasserentsalzung und Industrieprozesse genannt; darüber hinaus werden auch militärische Nutzungen wie mobil einsetzbare Mikroreaktoren verfolgt. In Russland erfolgt der Einsatz von sogenannten Floating Nuclear Power Plants (Akademik Lomonossow, KLT-40S), um abgelegene Regionen zu versorgen. Neben traditionellen Atomenergieländern zeigen auch Länder mit fehlender Kompetenz und Infrastruktur in der Kerntechnik zunehmend Interesse an SMRs, wie zum Beispiel Saudi-Arabien und Jordanien. Maßnahmen gegen den Klimawandel: Können SMR einen Beitrag leisten? Sofern SMR auch als Lösung im Kontext der Bekämpfung der Gefahren des Klimawandels und der damit verbundenen Reduzierung der Treibhausgasemissionen zur globalen Stromversorgung vorgeschlagen werden, ist die mit ihnen erzielte Stromproduktion relevant. Heutige neue Atomkraftwerke weisen elektrische Leistungen im Bereich von 1.000-1.600 MWe auf. Die SMR-Konzepte, die in dem vom BASE in Auftrag gegebenen Gutachten (siehe Infokasten auf dieser Seite) betrachtet worden sind, sehen dagegen geplante elektrische Leistungen von 1,5-300 MWe vor. Entsprechend wäre zur Bereitstellung derselben elektrischen Leistung eine um den Faktor 3-1000 größere Anzahl an Anlagen erforderlich. Anstelle von heute circa 400 Reaktoren mit großer Leistung würde dies also den Bau von mehreren tausend bis zehntausend SMR-Anlagen bedeuten. Dieses Ziel liegt in weiter Ferne. Zudem werden verschiedene Risiken, die mit Vervielfachung der Zahl der Anlagen einhergehen, bei der Planung weitgehend vernachlässigt: insbesondere Fragen des Transports, des Rückbaus sowie der Zwischen- und Endlagerung . Wirtschaftlichkeit: Würde sich der Einstieg in die SMR-Produktion lohnen? SMR versprechen durch ihre Modularität kürzere Produktionszeiten sowie geringere Produktionskosten. Einzelne Komponenten oder auch der gesamte SMR sollen industriell (massen-)gefertigt und bei Bedarf zu den ausgewählten Standorten zur Installation transportiert werden. Vergleichbar mit einem Baukastenprinzip kann am Standort in kurzer Zeit aus den Komponenten (Modulen) ein einzelner Reaktor mit kleiner Leistung oder auch eine größere Anlage aus mehreren kleinen Reaktor-Modulen errichtet werden. Durch die geringe elektrische Leistung sind die spezifischen Baukosten durch den Verlust der Skaleneffekte höher als bei großen Atomkraftwerken . In dem vom BASE in Auftrag gegebenen Gutachten (siehe Infokasten in der oberen Hälfte dieser Seite) wird eine Produktionskostenrechnung unter Berücksichtigung von Skalen-, Massen- und Lerneffekten aus der Nuklearindustrie aufgemacht: Demnach müssen im Mittel dreitausend SMR produziert werden bevor sich der Einstieg in die SMR-Produktion lohnen würde. Es ist somit nicht zu erwarten, dass der strukturelle Kostennachteil von Reaktoren mit kleiner Leistung durch Lern- bzw. Masseneffekte kompensiert werden kann. Die Bereitstellung von SMR erfolgt wie bei Atomkraftwerken mit großer Leistung überwiegend staatlich bzw. von der Nachfrage (Endkunden, Militär) abgesichert. Zwar entwickeln sich auch Spin-Offs aus staatlich finanzierten Großforschungseinrichtungen und es gibt auch neu gegründete Start-ups, aber deren Geschäftsmodelle beruhen ebenfalls auf langfristiger staatlicher Finanzierung. Insgesamt ist daher nicht abzusehen, dass SMR-Konzepte andere Organisationsmodelle entwickeln können, als sie seit circa 70 Jahren im Bereich der Atomtechnik betrieben werden. Eine weitere wesentliche Begründung für die Entwicklung von SMR-Konzepten ist die Erwartung kürzerer Zeithorizonte, insbesondere geringerer Bauzeiten und unter Umständen auch ein weniger komplizierter Rückbau . Die Betrachtung aktuell im Bau bzw. Betrieb befindlicher Anlagen lässt diese Vermutung als nicht empirisch fundiert erscheinen: Planungs-, Entwicklungs- und Bauzeiten übersteigen die ursprünglichen Zeithorizonte in der Regel um ein Vielfaches. Die Erfahrung mit historischen SMR deuten darauf hin, dass die Betriebszeiten von nicht-wassergekühlten SMR-Vorhaben kurz sind und der Rückbau sich als langwierig erweist. Regulatorische Anforderungen: Wie hoch ist das Sicherheitsrisiko bei SMR? Spezielle Einsatzszenarien wie die Modularität, neue Herstellungsverfahren, Materialien und technologische Lösungen für die Sicherheitsfunktionen erfordern vielfach neue regulatorische Ansätze. Bei einer geplanten, weltweiten Verbreitung von SMR ergeben sich damit vollkommen neue Fragestellungen für die zuständigen Genehmigungs- und Aufsichtsbehörden. So liegen bislang keine SMR-spezifischen nationalen oder internationalen Sicherheitsstandards vor. Da viele SMR-Entwickler einen weltweiten Einsatz ihrer SMR-Konzepte anstreben, würde dies eine internationale Standardisierung der Anforderungen erforderlich machen. Dies ist gerade bei etablierten Atomenergiestaaten derzeit nicht absehbar. Insgesamt könnten SMR potenziell sicherheitstechnische Vorteile gegenüber Atomkraftwerken mit großer Leistung erzielen, da sie ein geringeres radioaktives Inventar pro Reaktor aufweisen und durch gezielte Vereinfachungen und einen verstärkten Einsatz der Nutzung passiver Systeme ein höheres Sicherheitsniveau anstreben. Durch ihre geringere Größe versprechen Entwickler ein geringeres Sicherheitsrisiko der Reaktoren. Die hohe Anzahl an Reaktoren zur Bereitstellung signifikanter Mengen elektrischer Leistung und ihre geplante weltweite Nutzung wird das Risiko jedoch wiederum um ein Vielfaches erhöht. Auch verfolgen viele SMR-Konzepte den Anspruch auf reduzierte Sicherheitsanforderungen beispielsweise mit Blick auf die Diversität bei Sicherheitssystemen. Manche SMR-Konzepte fordern sogar den Verzicht auf heutige Anforderungen ein, so im Bereich des anlageninternen Notfallschutzes. Andere verzichten vollständig auf eine externe Notfallschutzplanung. Diese, auch zur Kosteneffizienz verfolgte Sicherheitskonzepte, tragen zu einer Erhöhung der Risiken bei. Zugang zu atomwaffenfähigem Material: Vergrößert SMR das Risiko? Verschiedene nicht-wassergekühlte SMR -Konzepte sehen den Einsatz von höheren Urananreicherungen oder die Nutzung von Plutoniumbrennstoffen sowie von Wiederaufarbeitungstechnologie vor. Dies wirkt sich nachteilig auf die Proliferationsresistenz – also die Erfordernis, den Zugang zu oder die Technologie zur Herstellung von atomwaffenfähigen Material zu verhindern – aus. Als ein weiterer wesentlicher Unterschied von SMR -Konzepten zu heutigen Leistungsreaktoren wird häufig die Nutzung von Systemen genannt, die eine lange Laufzeit aufweisen und als geschlossenes System geliefert würden. Dies könnte durch Versiegelung die Überwachung vereinfachen und Transporte minimieren. Durch den hohen Abbrand wird das Spaltmaterial zudem nach einiger Zeit unattraktiv. Nachteilig wirkt sich aber die hohe erforderliche Menge an Spaltmaterial zu Beginn des Reaktorbetriebs aus. Ein zusätzlicher Aspekt betrifft die Möglichkeiten der Spaltmaterialüberwachung durch die Internationale Atomenergieorganisation. Viele der Standardmethoden zur Spaltmaterialüberwachung passen nicht direkt auf die Besonderheiten von SMR -Konzepten, es stellen sich damit neue Herausforderungen. Definition: Was ist ein SMR? Trotz der seit langem praktizierten Verwendung des Begriffs SMR gibt es bis heute keine international einheitliche Definition für diesen Begriff. Eine Definition der IAEA beschreibt SMR als eine Gruppe kleiner Leistungsreaktoren mit geringerer Leistung als die heutiger Atomkraftwerke von bis zu unter 10 MWe (Mikroreaktoren) bis zu einer Leistung von typischerweise 300 MWe. Übliche konventionelle Reaktoren haben demgegenüber eine Leistung in der Größenordnung von über 1000 MWe. Die Funktionsweise dieser Reaktorgruppe ist sehr divers: Bei einer Reihe von Konzepten entspricht sie der Funktionsweise heutiger Leichtwasserreaktoren. Diese Typen der SMR unterliegen somit geringeren Entwicklungsrisiken, die Entwickler können auf Betriebserfahrung zurückgreifen. Zum anderen liegen den SMR auch neuartige Konzeptideen mit wenig bzw. keiner industrieller Vorerfahrung zugrunde. Letztere können den Hochtemperaturreaktoren, Reaktoren mit einem schnellen Neutronenspektrum oder den Salzschmelzreaktoren zugeordnet werden. Einsatzbereiche: Welche Länder entwickeln SMR? Die aktuelle Entwicklung von SMRs ist derzeit größtenteils staatlich finanziert und findet in starkem Maß in den USA , Kanada und dem Vereinten Königreich statt. Die SMRs können bei entsprechenden Voraussetzungen nicht nur im eigenen Land errichtet, sondern auch in andere Länder verkauft werden. Im Bereich der SMR spielen industrie- und geopolitische Motivlagen sowie militärische Interessen eine Rolle. Die Mehrheit der Länder, die SMR-Entwicklungsaktivitäten verfolgen, unterhalten Atomwaffenprogramme und bauen Atom -U-Boote und/oder verfügen bereits über ein großes „ziviles“ Atomprogramm. Neben der regulären Stromversorgung werden insbesondere die dezentrale Stromversorgung für Industrie bzw. Haushalte sowie Wärme für Fernwärme, Meerwasserentsalzung und Industrieprozesse genannt; darüber hinaus werden auch militärische Nutzungen wie mobil einsetzbare Mikroreaktoren verfolgt. In Russland erfolgt der Einsatz von sogenannten Floating Nuclear Power Plants (Akademik Lomonossow, KLT-40S), um abgelegene Regionen zu versorgen. Neben traditionellen Atomenergieländern zeigen auch Länder mit fehlender Kompetenz und Infrastruktur in der Kerntechnik zunehmend Interesse an SMRs, wie zum Beispiel Saudi-Arabien und Jordanien. Maßnahmen gegen den Klimawandel: Können SMR einen Beitrag leisten? Sofern SMR auch als Lösung im Kontext der Bekämpfung der Gefahren des Klimawandels und der damit verbundenen Reduzierung der Treibhausgasemissionen zur globalen Stromversorgung vorgeschlagen werden, ist die mit ihnen erzielte Stromproduktion relevant. Heutige neue Atomkraftwerke weisen elektrische Leistungen im Bereich von 1.000-1.600 MWe auf. Die SMR-Konzepte, die in dem vom BASE in Auftrag gegebenen Gutachten (siehe Infokasten auf dieser Seite) betrachtet worden sind, sehen dagegen geplante elektrische Leistungen von 1,5-300 MWe vor. Entsprechend wäre zur Bereitstellung derselben elektrischen Leistung eine um den Faktor 3-1000 größere Anzahl an Anlagen erforderlich. Anstelle von heute circa 400 Reaktoren mit großer Leistung würde dies also den Bau von mehreren tausend bis zehntausend SMR-Anlagen bedeuten. Dieses Ziel liegt in weiter Ferne. Zudem werden verschiedene Risiken, die mit Vervielfachung der Zahl der Anlagen einhergehen, bei der Planung weitgehend vernachlässigt: insbesondere Fragen des Transports, des Rückbaus sowie der Zwischen- und Endlagerung . Wirtschaftlichkeit: Würde sich der Einstieg in die SMR-Produktion lohnen? SMR versprechen durch ihre Modularität kürzere Produktionszeiten sowie geringere Produktionskosten. Einzelne Komponenten oder auch der gesamte SMR sollen industriell (massen-)gefertigt und bei Bedarf zu den ausgewählten Standorten zur Installation transportiert werden. Vergleichbar mit einem Baukastenprinzip kann am Standort in kurzer Zeit aus den Komponenten (Modulen) ein einzelner Reaktor mit kleiner Leistung oder auch eine größere Anlage aus mehreren kleinen Reaktor-Modulen errichtet werden. Durch die geringe elektrische Leistung sind die spezifischen Baukosten durch den Verlust der Skaleneffekte höher als bei großen Atomkraftwerken . In dem vom BASE in Auftrag gegebenen Gutachten (siehe Infokasten in der oberen Hälfte dieser Seite) wird eine Produktionskostenrechnung unter Berücksichtigung von Skalen-, Massen- und Lerneffekten aus der Nuklearindustrie aufgemacht: Demnach müssen im Mittel dreitausend SMR produziert werden bevor sich der Einstieg in die SMR-Produktion lohnen würde. Es ist somit nicht zu erwarten, dass der strukturelle Kostennachteil von Reaktoren mit kleiner Leistung durch Lern- bzw. Masseneffekte kompensiert werden kann. Die Bereitstellung von SMR erfolgt wie bei Atomkraftwerken mit großer Leistung überwiegend staatlich bzw. von der Nachfrage (Endkunden, Militär) abgesichert. Zwar entwickeln sich auch Spin-Offs aus staatlich finanzierten Großforschungseinrichtungen und es gibt auch neu gegründete Start-ups, aber deren Geschäftsmodelle beruhen ebenfalls auf langfristiger staatlicher Finanzierung. Insgesamt ist daher nicht abzusehen, dass SMR-Konzepte andere Organisationsmodelle entwickeln können, als sie seit circa 70 Jahren im Bereich der Atomtechnik betrieben werden. Eine weitere wesentliche Begründung für die Entwicklung von SMR-Konzepten ist die Erwartung kürzerer Zeithorizonte, insbesondere geringerer Bauzeiten und unter Umständen auch ein weniger komplizierter Rückbau . Die Betrachtung aktuell im Bau bzw. Betrieb befindlicher Anlagen lässt diese Vermutung als nicht empirisch fundiert erscheinen: Planungs-, Entwicklungs- und Bauzeiten übersteigen die ursprünglichen Zeithorizonte in der Regel um ein Vielfaches. Die Erfahrung mit historischen SMR deuten darauf hin, dass die Betriebszeiten von nicht-wassergekühlten SMR-Vorhaben kurz sind und der Rückbau sich als langwierig erweist. Regulatorische Anforderungen: Wie hoch ist das Sicherheitsrisiko bei SMR? Spezielle Einsatzszenarien wie die Modularität, neue Herstellungsverfahren, Materialien und technologische Lösungen für die Sicherheitsfunktionen erfordern vielfach neue regulatorische Ansätze. Bei einer geplanten, weltweiten Verbreitung von SMR ergeben sich damit vollkommen neue Fragestellungen für die zuständigen Genehmigungs- und Aufsichtsbehörden. So liegen bislang keine SMR-spezifischen nationalen oder internationalen Sicherheitsstandards vor. Da viele SMR-Entwickler einen weltweiten Einsatz ihrer SMR-Konzepte anstreben, würde dies eine internationale Standardisierung der Anforderungen erforderlich machen. Dies ist gerade bei etablierten Atomenergiestaaten derzeit nicht absehbar. Insgesamt könnten SMR potenziell sicherheitstechnische Vorteile gegenüber Atomkraftwerken mit großer Leistung erzielen, da sie ein geringeres radioaktives Inventar pro Reaktor aufweisen und durch gezielte Vereinfachungen und einen verstärkten Einsatz der Nutzung passiver Systeme ein höheres Sicherheitsniveau anstreben. Durch ihre geringere Größe versprechen Entwickler ein geringeres Sicherheitsrisiko der Reaktoren. Die hohe Anzahl an Reaktoren zur Bereitstellung signifikanter Mengen elektrischer Leistung und ihre geplante weltweite Nutzung wird das Risiko jedoch wiederum um ein Vielfaches erhöht. Auch verfolgen viele SMR-Konzepte den Anspruch auf reduzierte Sicherheitsanforderungen beispielsweise mit Blick auf die Diversität bei Sicherheitssystemen. Manche SMR-Konzepte fordern sogar den Verzicht auf heutige Anforderungen ein, so im Bereich des anlageninternen Notfallschutzes. Andere verzichten vollständig auf eine externe Notfallschutzplanung. Diese, auch zur Kosteneffizienz verfolgte Sicherheitskonzepte, tragen zu einer Erhöhung der Risiken bei. Zugang zu atomwaffenfähigem Material: Vergrößert SMR das Risiko? Verschiedene nicht-wassergekühlte SMR -Konzepte sehen den Einsatz von höheren Urananreicherungen oder die Nutzung von Plutoniumbrennstoffen sowie von Wiederaufarbeitungstechnologie vor. Dies wirkt sich nachteilig auf die Proliferationsresistenz – also die Erfordernis, den Zugang zu oder die Technologie zur Herstellung von atomwaffenfähigen Material zu verhindern – aus. Als ein weiterer wesentlicher Unterschied von SMR -Konzepten zu heutigen Leistungsreaktoren wird häufig die Nutzung von Systemen genannt, die eine lange Laufzeit aufweisen und als geschlossenes System geliefert würden. Dies könnte durch Versiegelung die Überwachung vereinfachen und Transporte minimieren. Durch den hohen Abbrand wird das Spaltmaterial zudem nach einiger Zeit unattraktiv. Nachteilig wirkt sich aber die hohe erforderliche Menge an Spaltmaterial zu Beginn des Reaktorbetriebs aus. Ein zusätzlicher Aspekt betrifft die Möglichkeiten der Spaltmaterialüberwachung durch die Internationale Atomenergieorganisation. Viele der Standardmethoden zur Spaltmaterialüberwachung passen nicht direkt auf die Besonderheiten von SMR -Konzepten, es stellen sich damit neue Herausforderungen. Gutachten zum Download Sicherheitstechnische Analyse und Risikobewertung einer Anwendung von SMR-Konzepten (Small Modular Reactors) Herunterladen (PDF, 3MB, barrierefrei⁄barrierearm) Kurzinformationen zu Small Modular Reactors Small Modular Reactors (SMR) Herunterladen (PDF, 72KB, barrierefrei⁄barrierearm) Informationsseite des World Nuclear Industry Status Reports 2023 World Nuclear Industry Status Report 2023

Besuch aus Jordanien in der HVZ

27 Gäste aus Jordanien informierten sich in der Hochwasservorhersagezentrale des Landesamtes für Umwelt. Organisiert wurde der Besuch von der Gesellschaft für internationale Zusammenarbeit (GIZ) und der Hochschule Koblenz.

Ministerpräsident Haseloff in Jordanien: Universität Madaba fördert Dialog der Kulturen

Normal 0 21 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Normale Tabelle"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Gemeinsam mit Bundesbildungsministerin Dr. Annette Schavan hat Ministerpräsident Dr. Reiner Haseloff heute an der Einweihung der German-Jordanian University in Madaba in Jordanien teilgenommen. ?Die deutsch-jordanischen Beziehungen sind traditionell gut. Sachsen-Anhalt ist an ihrer Weiterentwicklung interessiert. So schaffen wir ein gutes Fundament für unsere gemeinsame Zukunft.? Das erklärte Haseloff in seinem Grußwort zur Einweihung.   Haseloff würdigte die Rolle der Hochschule Magdeburg-Stendal bei der Realisierung des Universitätsprojektes. Die sachsen-anhaltische Hochschule war Träger des Projektbüros für den Aufbau der German-Jordanian University. Diese sei, so Haseloff, ein wichtiger Baustein im Dialog der Kulturen. Das Modell der Universität Madaba sei innovativ und vielversprechend. Rund ein Viertel der Lehrkräfte kommen aus Deutschland. Die Studenten wiederum absolvieren ein Studienjahr an Partnerhochschulen in Deutschland.   ?Die arabische Welt verfügt über eine außergewöhnlich traditionsreiche Wissenschaftsgeschichte. Das Abendland hat davon an entscheidenden Schwellen seiner Entwicklung profitiert. Gemeinsames Ringen um wissenschaftlichen Fortschritt treibt uns auch heute an. Dieser friedliche Austausch vereint unsere Kulturen?, betonte Haseloff abschließend.   Die German-Jordanian University (GJU) wurde ab 2004 unter der Projektträgerschaft der Hochschule Magdeburg-Stendal aufgebaut. Zum Wintersemester 2005/06 wurde an einem vorläufigen Standort in Amman der Studienbetrieb aufgenommen. Inzwischen ist der eigene Campus in Madaba fertig gestellt und kann seiner Bestimmung übergeben werden. Der Aufbau der GJU wurde aus Mitteln des Bundes und des Deutschen Akademischen Austauschdienstes (DAAD) unterstützt. Impressum: Staatskanzlei des Landes Sachsen-Anhalt Pressestelle Hegelstraße 42 39104 Magdeburg Tel: (0391) 567-6666 Fax: (0391) 567-6667 Mail: staatskanzlei@stk.sachsen-anhalt.de

Internationaler Erfahrungsaustausch an der Brandschutz- und Katastrophenschutzschule Heyrothsberge

Ministerium des Innern - Pressemitteilung Nr.: 039/07 Ministerium des Innern - Pressemitteilung Nr.: 039/07 Magdeburg, den 24. Januar 2007 Internationaler Erfahrungsaustausch an der Brandschutz- und Katastrophenschutzschule Heyrothsberge Am heutigen Mittwoch besucht eine internationale Experten­delegation aus den Ländern Algerien, Israel, Jordanien, Libanon, Marokko und Türkei die Brandschutz- und Katastrophenschutzschule Heyrothsberge, um sich dort über die Ausbildung von Führungskräften im Katastrophenschutz zu informieren und Erfahrungen auszutauschen. Der Besuch ist Teil eines mehrtägigen Treffens von Katastrophenschutzexperten sechs verschiedener Länder in Magdeburg. Dabei stehen verschiedene Maßnahmen zur Hochwasserbekämpfung im Mittelpunkt. Dieser Erfahrungs­austausch, der durch das Technische Hilfswerk (THW) und das Bundesamt für Bevölkerungsschutz und Katastrophenhilfe (BBK) veranstaltet wird, ist Teil des "EuroMed"-Projektes der Europäischen Union (EU). Die "Euro-Mediterranean Partnership" (EuroMed) wurde auf einem Treffen der Außenminister der damaligen 15 EU-Mit­gliedstaaten und der zwölf Mittelmeeranrainerstaaten (Marokko, Algerien, Tunesien, Ägypten, Israel, Jordanien, palästinen­sisches Gebiet, Libanon, Syrien, Türkei, Zypern und Malta) im November 1995 in Barcelona ins Leben gerufen. Ziel ist, die bilateralen und multilateralen Beziehungen zwischen einzelnen Staaten zu stärken und die regionale Zusammenarbeit zu verbessern. Gegenstand der Zusammenarbeit sind unter anderem Sicherheitsfragen und Zusammenwirken bei Natur­katastrophen, wirtschaftliche, finanzielle, soziale, kulturelle und zwischenmenschliche Partnerschaften sowie Fragen der Justiz, Sicherheit, Migration und sozialer Integration. Impressum: Verantwortlich: Martin Krems Pressestelle Halberstädter Straße 2 / Am Platz des 17. Juni 39112  Magdeburg Tel: (0391) 567-5504/-5516/-5517 Fax: (0391) 567-5519 Mail: Pressestelle@mi.lsa-net.de Impressum:Ministerium für Inneres und Sport des Landes Sachsen-AnhaltVerantwortlich:Danilo WeiserPressesprecherHalberstädter Straße 2 / am "Platz des 17. Juni"39112 MagdeburgTel: (0391) 567-5504/-5514/-5516/-5517/-5377Fax: (0391) 567-5520Mail: Pressestelle@mi.sachsen-anhalt.de

1 2 3 4 512 13 14