API src

Found 47 results.

Related terms

Zelluläre Klima-Adaptionen in alpinen und polaren Pflanzen

Das Projekt "Zelluläre Klima-Adaptionen in alpinen und polaren Pflanzen" wird vom Umweltbundesamt gefördert und von Universität Innsbruck, Institut für Botanik, Abteilung für Physiologie und Zellphysiologie Alpiner Pflanzen durchgeführt. Die Pflanzen der Hochgebirge und der polaren Zonen müssend im Vergleich zu Pflanzen gemäßigter Bereiche mit drei besonderen Anforderungen fertig werden: kurze Vegetationszeit, Kälte, auch im Sommer möglich, und hoher Sonneneinstrahlung. Die Anpassungsstrategien, die ein Überleben in Hochgebirge und Arktis möglich machen, sind nur z.T. bekannt. Von seiten der Ökologie und Ökophysiologie wurden etliche solcher Strategien beschrieben, allerdings meist nur auf der Ebene der Pflanze oder eines Organs. Erst in jüngerer Zeit gibt es einige Untersuchungen, die die Adaptionen des Stoffwechsels verstehen wollen. Die Anpassung eines Stoffwechsels an ungünstige Bedingungen ist aber auch ein Ausdruck des Zusammenspiels von Zellorganellen und Membranen. Bislang ist nur von seiten des Antragstellers eine erste Beschreibung der Ultrastruktur alpiner Pflanzen mit Anbindung an den Stoffwechsel und Einbeziehung der Standortbedingungen erfolgt. Hier zeigte sich, daß mit Methoden der modernen Zellbiologie ein enormer Wissenszuwachs erhalten werden kann. So wurden vom Antragsteller in elektronenmikroskopischen Untersuchungen festgestellt, daß bei Kälte und Starklicht die Chloroplasten vieler alpiner und polarer Pflanzen besondere Strukturen zeigen ('Protrusionen), die einige physiologische Anpassungen erklärbar machen können. Die dem Auftreten dieser dynamischen Strukturen zugrunde liegenden Vorgänge in der Zelle können am besten mit modernen zellbiologischen Verfahren, wie sie etwa für Cytoskelett-Untersuchungen üblich sind, beschrieben werden. Daher sollen mit Hilfe eines confokalen Laser-Scanning-Mikroskopes (CLSM) unter Verwendung des 'green fluorescent protein (GFP) sowie fluoreszenz-markierter Antikörpern oder Cytoskelett-Inhibitoren die Bildungsmechanismen, Stabilität und 3-D Struktur dieser Protrusionen untersucht werden. Grundlage ist hierzu die vorherige Erfassung des Standortklimas der Pflanzen und ihrer Photosyntheseaktivität, um die Faktoren zu kennen, die die Zelle veranlassen, die Chloroplasten umzubilden. Voruntersuchungen haben auch ergeben, daß bei Hochgebirgspflanzen eine mögliche Kooperation von Plastiden, Mitochondrien und Microbodies überlebenswichtig sein kann. Diese dynamische Organell-Kooperation soll ebenfalls untersucht werden. Alle Arbeiten werden mit Wildpflanzen aus geeigneten hochalpinen und polaren Wuchsorten gemacht und die zellbiologischen Beobachtungen müssen über die Ökophysiologie dieser Pflanzen interpretiert werden.

Indikator Klimasensitive Vogelarten

Der Indikator klimasensitive Vogelarten zeigt die Bestandsentwicklung von Vogelarten unter dem Einfluss klimatischer Veränderungen. Als Grundlage zur Erfassung des Indikators dienen die landesweit repräsentativen Brutvogeldaten aus der Ökologischen Flächenstichprobe (ÖFS), das Basisjahr ist 2006. Dabei werden 30 Arten, die relativ hohe durchschnittliche Temperaturwerte (über 13 °C) von Arealen bevorzugen, in einer Gruppe zusammengefasst. Hierzu zählen beispielsweise der Grünspecht, der Pirol oder der Steinkauz. Eine weitere Gruppe wird von 20 Arten gebildet, die eher in Arealen mit kühleren Bedingungen vorkommen (unter 11 °C). Innerhalb dieser Gruppe befinden sich zum Beispiel das Wintergoldhähnchen, der Tannenhäher oder die Weidenmeise. Daneben wird eine Gruppe mit Arten, die einen mittleren STI-Wert aufweisen, identifiziert (beispielsweise Kohlmeise, Buchfink, Amsel und Mönchsgrasmücke).

How is the stratospheric water vapour affected by climate change, and which processes are responsible? (SHARPI-WV)

Das Projekt "How is the stratospheric water vapour affected by climate change, and which processes are responsible? (SHARPI-WV)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Abteilung Dynamik der mittleren Atmosphäre durchgeführt. Observational data sets of water vapour (H2O) and HDO from MIPAS and H2O from SCIAMACHY will be extended and further improved in data quality. An 'all-satellite' data set containing data of SAGE, HALOE, SMR, MLS, MIPAS and SCIAMACHY and covering 30 years from 1984 to 2014 will be generated by appropriate data merging. The MIPAS and SCIAMACHY data record will be analysed regarding the anomalies of the time series (tape recorder, monsoon systems), potential trends, and correlations to other atmospheric quantities like tropical tropopause temperature, with some focus on the HDO data record. Similar analysis will be performed with improved transient and sensitivity model runs available within SHARP. H2O modelling will be included in the Lagrangian version of EMAC, and case process studies will be performed to analyse the H2O transport into the stratosphere. The modelled H2O fields will be compared to H2O data sets made available from MIPAS. For ECHAM5/MESSy, a higher resolved version not producing the cold and dry bias in the tropopause will be sought for. The CMIP5 simulations of MPI-M will be analysed regarding water vapour, and internal variability will be compared to climate change signals. The role of methane for the stratospheric water vapour budget will be re-assessed in the light of recent changes in methane growth, both from the observational and model data side.

Transports and variability-driving mechanisms in Flemish Pass at the western boundary of the subpolar North Atlantic (FLEPVAR)

Das Projekt "Transports and variability-driving mechanisms in Flemish Pass at the western boundary of the subpolar North Atlantic (FLEPVAR)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Geowissenschaften, Institut für Meereskunde durchgeführt. Labrador Sea Water (LSW) formed in the Labrador Sea constitutes the lightest contribution to North Atlantic Deep Water (NADW), a conglomerate of water masses that form the cold return flow of the Atlantic meridional overturning circulation (MOC). Climate variability can be modulated by changes in the MOC strength; such changes are thought to be linked to variations in LSW formation. The Deep Western Boundary Current (DWBC) is the main southward pathway for newly formed LSW. Topographic obstacles at the southern exit of the Labrador Sea split the DWBC into an upper branch carrying LSW through Flemish Pass (1200m sill depth) and a branch carrying all NADW components along the continental slope around Flemish Cap. Up to now, transports through Flemish Pass and their contribution to the MOC are still uncertain, the importance of the pass for the export of LSW and its associated variability are yet unknown. In this project the transports through Flemish Pass will be quantified, and mechanisms driving and governing the variability of the flow will be investigated. The project focuses on the following questions: What is the magnitude of transports for waters passing through Flemish Pass and their associated variability? Which processes drive the variability? What is the relevance of the deep water export through Flemish Pass for the MOC, especially when compared to the DWBC export? Are both deep water export pathways (through Flemish Pass or around Flemish Cap) coupled? What processes govern the inflow of deep water into Flemish Pass? To answers these questions, ship-based measurements and time series from moored instruments in the Flemish Pass will be analyzed in conjunction with output from two state-of-the-art Ocean models run at high-resolution.

Meridional Overturning Exchange with the Nordic Seas (MOEN) - WP4: Modelling

Das Projekt "Meridional Overturning Exchange with the Nordic Seas (MOEN) - WP4: Modelling" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Backgrond: The mild climate of north western Europe is, to a large extent, governed by the influx of warm Atlantic water to the Nordic Seas. Model simulations predict that this influx and the return of flow of cold deep water to the Atlantic may weaken as a consequence of global warming. MOEN will assess the effect of anthropogenic climate change on the Meridional Overturning Circulation by monitoring the flux exchanges between the North Atlantic and the Nordic Seas and by assessing its present and past variability in relation to the atmospheric and thermohaline forcing. This information will be used to improve predictions of regional and global climate changes. MOEN is a self-contained project of the intercontinental Arctic-Subarctic Ocean Flux (ASOF) Array for European Climate project, which aims at monitoring and understanding the oceanic fluxes of heat, salt and freshwater at high northern latitudes and their effect on global ocean circulation and climate. MOEN will contribute to a better long-term observing system to monitor the exchanges between the North Atlantic and the Nordic Seas from direct and continuous measurements in order to allow an assessment of the effect of anthropogenic climate change on the Meridional Overturning Circulation. This we will be done by measuring and modelling fluxes and characteristics of total Atlantic inflow to the Nordic Seas and of the Iceland-Scotland component of the overflow from the Nordic Seas to the Atlantic. General objectives: To contribute to a better long-term observing system to monitor the exchanges between the North Atlantic and the Nordic Seas. To assess the effect of anthropogenic climate change on the Meridional Overturning Circulation. Modelling objectives (WP4, IfM): To model the flow field, the temperature and salinity distribution and the heat fluxes for an area focused on the Iceland-Faroe Ridge, the Faroe Bank and Faroe-Shetland Channel and Wyville-Thomson Ridge. To model long term variations of the locally induced and far field circulation and T/S distribution in order to understand climate variations.

Hotspot Ecosystem Research on the Margins of European Seas (HERMES)

Das Projekt "Hotspot Ecosystem Research on the Margins of European Seas (HERMES)" wird vom Umweltbundesamt gefördert und von IFM-GEOMAR Leibniz-Institut für Meereswissenschaften durchgeführt. HERMES is designed to gain new insights into the biodiversity, structure, function and dynamics of ecosystems along Europe's deep-ocean margin. It represents the first major attempt to understand European deep-water ecosystems and their environment in an integrated way by bringing together expertise in biodiversity, geology, sedimentology, physical oceanography, microbiology and biogeochemistry, so that the generic relationship between biodiversity and ecosystem functioning can be understood. Study sites will extend from the Arctic to the Black Sea and include open slopes, where landslides and deep-ocean circulation affect ecosystem development, and biodiversity hotspots, such as cold seeps, coldwater coral mounds, canyons and anoxic environments, where the geosphere and hydrosphere influence the biosphere through escape of fluids, presence of gas hydrates and deep-water currents. These important systems require urgent study because of their possible biological fragility, unique genetic resources, global relevance to carbon cycling and possible susceptibility to global change and man-made disturbances. Past changes, including catastrophic events, will be assessed using sediment archives. We will make estimates of the flow rates of methane from the geosphere and calculate how much is utilised by benthic communities, leaving the residual contribution to reach the atmosphere as a greenhouse gas. HERMES will enable forecasting of biodiversity change in relation to natural and man-made environmental changes by developing the first comprehensive pan-European margin Geographic Information System. This will provide a framework for integrating science, environmental modelling and socio-economic indicators in ecosystem management. The results will underpin the development of a comprehensive European Ocean and Seas Integrated Governance Policy enabling risk assessment, management, conservation and rehabilitation options for margin ecosystems. Prime Contractor: Natural Environment Research Council; Athens; United Kingdom.

Zirkulation von Fluiden und Gas an Kalten und Heißen Quellen entlang der Sandwich Mikroplatte

Das Projekt "Zirkulation von Fluiden und Gas an Kalten und Heißen Quellen entlang der Sandwich Mikroplatte" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für marine Umweltwissenschaften durchgeführt. We request financial support to perform multidisciplinary studies on hydrothermal vents and cold seeps at the Sandwich plate during RV POLARSTERN cruise ANT XXIX/4 from 22 March to 16 April 2013 (Scotia l). During this field campaign we plan to obtain geophysical, geological, and video-seafloor observation data from potential venting location in order to explore those fluid and gas emission sites and to perform a first geological and geochemical sampling. Cold seeps and hot vents are very rare in Antarctica and locations associated to the Sandwich plate are of high interest. This is because of its tectonic and geographic position between the World Ocean and Antarctica, the relevance in biogeography of the chemosynthetic organisms, the unique geochemical and geological settings within the ocean-to-ocean collision zone and its frontier character in the polar deep sea. Hydrothermal activity is indicated for two Segments of East-Scotia Ridge (E2 and E9), however, tectonically-induced seepage is yet unknown in the Sandwich fore-arc area, as it is a common phenomenon in other subduction-related compression zones. A subsequent POLARSTERN cruise (Scotia II), which is not scheduled up to now, plans to perform more detailed AUV- and ROV-work at the seep and vent sites. The cruise Scotia II will strongly relay on the results of ANT XXIX/6. A post-doctoral scientific position is applied for in order to comprehensively analyse and Interpret the data obtained from seeps and vents during ANT XXIX/4.

cCASHh - Climate Change and Adaptation Strategies for Human health in Europe

Das Projekt "cCASHh - Climate Change and Adaptation Strategies for Human health in Europe" wird vom Umweltbundesamt gefördert und von Deutscher Wetterdienst durchgeführt. Die Gesundheit der Bevölkerung in Europa wird in den kommenden Jahrzehnten durch den globalen Klimawandel betroffen sein. Anpassungsstrategie können die potenziellen Gesundheitsfolgen des Klimawandels minimieren und dazu beitragen, die negativen Effekte auf die Gesundheit kosteneffektiv zu reduzieren. Das Projekt wird Folgenabschätzungen und Anpassungsmöglichkeiten für folgende vier klimaabhängige Bereiche der menschlichen Gesundheit betrachten: 1. Gesundheitseffekte von Hitze und Kälte, 2. Gesundheitseffekte von extremen Wetterereignissen, 3. Infektionskrankheiten, die durch Insekten und Zecken übertragen werden und 4. Infektionskrankheiten, die durch Wasser oder durch Nahrung übertragen werden. Ziele: Ziele des Projekts sind 1. die Identifikation der Vulnerabilität der menschliche Gesundheit hinsichtlich der negativen Folgen des Klimawandels, 2. die Prüfung der gegenwärtigen Maßnahmen, Techniken, Politiken und Grenzen zur Verbesserung der Anpassungskapazität an den Klimawandel, 3. die Identifikation von angemessenen und effektiven Maßnahmen, Techniken und Politiken zur erfolgreichen Anpassung an den Klimawandel für die Bevölkerung in Europa, 4. die Abschätzung der Vorteile von spezifischen Strategien oder Strategiekombinationen für die Anpassung von vulnerablen Bevölkerungsgruppen unter Berücksichtigung verschiedener Klimawandelszenarien und 5. die Abschätzung der Kosten und des Nutzens klimawandelbedingter Folgen und Anpassungsmaßnahmen einschließlich des vom Klimawandel unabhängigen Zusatznutzens. KLIMASZENARIO Grundlage sind die Emissionsszenarien und Klimaprojektionen des 3. Sachstandberichts des IPCC von 2001. Parameter: Temperaturzunahme, Hitzewellen, Überflutungsereignisse räumlicher Bezug: Europa Zeithorizont: 2100 KLIMAFOLGEN Die Bevölkerung ist insbesondere gegenüber vier Typen von Wetter- und Klimabedingungen exponiert: 1. Langfristige Änderungen der mittleren Temperatur und anderer Klimamittelwerte im Klimawandel, für die eine Betrachtung über Jahrzehnte oder länger erforderlich ist; 2. Interannuelle Klimavariabilität; 3. Kurzfristige Variabilität, zu der monatliche, wöchentliche oder tägliche meteorologische Veränderungen gehören; 4. Einzelne Extremereignisse wie z.B. Temperatur- oder Niederschlagsextreme oder komplexe Überflutungsereignisse. Sektoren und Handlungsfelder: Gesundheit, Kommunikation ANPASSUNGSMASSNAHMEN Hintergrund und Ziele: Anpassung kann auf vielen Ebenen stattfinden. Das Projekt wird v.a. rechtliche, politische und institutionelle Maßnahmen identifizieren, die für die Erhaltung und Verbesserung des Gesundheitsstatus der Bevölkerung benötigt werden und der Anpassung an zukünftige Klimafolgen dienen. Solche Maßnahmen werden auf individueller und privater Ebene ebenso gebraucht, wie auf nationaler und internationaler Ebene. usw.

Transport und Zusammensetzung der UTLS der Südhemisphäre (SOUTHTRAC)

Das Projekt "Transport und Zusammensetzung der UTLS der Südhemisphäre (SOUTHTRAC)" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Änderungen der Verteilung von Spurengasen wie Wasserdampf und Ozon in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflussen den Strahlungsantrieb und das Klima sowie die Oberflächentemperaturen und haben eine Schlüsselbedeutung für das Verständnis des Klimawandels. Auf Grund der hohen Sensitivität des atmosphärischen Strahlungsantriebs gegenüber Änderungen der Konzentrationen dieser Substanzen gerade in der kalten Tropopausenregion haben kleine Änderungen z.B. des Wasserdampfgehaltes der unteren Stratosphäre eine große Wirkung auf die Variabilität der Oberflächentemperatur. Überdies sind Prognosen des zukünftigen Wasserdampf- und Ozongehaltes des UTLS nach wie vor mit großen Unsicherheiten behaftet, was exakte Vorhersagen des Strahlungsantriebs vor dem Hintergrund des wieder zunehmenden stratosphärischen Ozons und der damit verbundenen Prozesse erschwert. Mehrere Studien haben gezeigt, dass Klima-Chemie-Modelle sogar unterschiedliche Vorzeichen des Strahlungsantriebes durch die Ozonzunahme zeigen, da gerade im Bereich der Tropopause große Unsicherheiten bezüglich der simulierten Zusammensetzung, insbesondere des Ozons und Wasserdampfs auftreten. Aufgrund des unterschiedlichen Wellenantriebs in beiden Hemisphären und auch aufgrund des stark unterschiedlichen Polarwirbel, werden große Unterschiede des Transports und der Zusammensetzung zwischen der UTLS der Nord- und der Südhemisphäre erwartet. Trotz der Bedeutung der globalen UTLS wurden bisher kaum Studien zu Transportprozessen und Zusammensetzung sowie der Dynamik der südlichen UTLS durchgeführt. Frühere Kampagnen hatten die antarktische Ozonzerstörung und Vortexprozesse oder die Tropen oder die troposphärische Zusammensetzung zum Ziel. Außerdem beeinflusst die Südhemisphäre im Winter die globale stratosphärische Zirkulation, da die Anden dann ein globales Maximum der Schwerewellenaktivität bilden. Die Ausbreitung dieser Wellen und ihr Einfluss auf die Zirkulation sind noch nicht vollständig verstanden. Deshalb schlagen wir eine HALO Kampagne vor um die UTLS der Südhemisphäre zu untersuchen. Spezifische Aspekte, die hierbei im Fokus stehen, sind: (1) Austauschprozesse an der südhemisphärischen Tropopause (2) Schwerewellen in der Südhemisphäre (3) Einfluss von Biomassenverbrennung auf die südhemisphärische UTLS (4) Einfluss des antarktischen Polarwirbels auf die UTLS

Vorschläge zur Energiekennzeichnung für Strom, Gas, Wasserstoff, Wärme und Kälte als Praxisvorbild für eine europäische Lösung

Das Projekt "Vorschläge zur Energiekennzeichnung für Strom, Gas, Wasserstoff, Wärme und Kälte als Praxisvorbild für eine europäische Lösung" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt. Das Projekt soll Vorschläge für eine Energiekennzeichnung in Europa sammeln, entwerfen und bewerten und so eine Diskussionsgrundlage für politische Entscheidungsträger*innen schaffen. Aus welcher Energiequelle die eingesetzte Energie stammt, ist neben der Transparenz für Haushaltskunden über die Umweltwirkung ihres Energiekonsums unter anderem für den Emissionsbericht von Unternehmen und öffentlichen Einrichtungen relevant. Eine standardisierte und verpflichtende Energiekennzeichnung gibt es in Europa bisher im Bereich Strom. Eine standardisierte Kennzeichnung für die Energieträger Gas, H2, Wärme und Kälte gibt es bislang nicht. Die hier entwickelten Konzepte einer Energiekennzeichnung sollen sowohl zwischen den Mitgliedsstaaten als auch zwischen Energieträgern einheitlich sein. Es soll ein Analyserahmen entwickelt werden, mit dem sich der Nutzen von Energiekennzeichnung für verschiedene gesellschaftliche Gruppen sowie gesamtgesellschaftlich identifizieren lässt. Die aktuelle Stromkennzeichnung in Europa, in diesem Projekt entwickelte Konzepte sowie Konzepte für Energiekennzeichnung aus der Literatur sollen mit dem Analyserahmen bewertet werden.

1 2 3 4 5