API src

Found 506 results.

Related terms

SteamTP (Steam Test Procedure)

Entwicklung Flex-Wärmepumpe

Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)

Entwicklung Flex-Wärmepumpe, Teilvorhaben: Konstruktion und Erprobung Flex-Wärmepumpe

Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)

Entwicklung Flex-Wärmepumpe, Teilvorhaben: Voruntersuchungen und Entwicklung Flex-Wärmepumpe

Wärmepumpen werden bei der Wärmeversorgung der Zukunft (Stichworte: Wärmewende, Sektorenkopplung, 'bezahlbares Heizen') eine große Rolle spielen. Unter Nutzung von regenerativ erzeugter elektrischer Energie können sie die unterschiedlichsten Wärmequellen (z.B. Abwärme oder Umweltwärme) auf ein nutzbares Temperaturniveau heben. Sogenannte 'kalte' Netze (Wärmenetze der neuesten Generation) können insbesondere in neu zu erschließenden Gebieten als Quelle dienen. Dezentral können dann Raumwärme und Warmwasserbereitung getrennt voneinander und sehr energieeffizient 'erzeugt' werden. Geplant ist die Entwicklung einer für unterschiedliche Anwendungen flexibel einsetzbaren Wärmepumpe (Flex-WP) auf Basis natürlicher zeotroper Kältemittelgemische mit einem mittleren bis hohen Temperaturgleit sowohl auf der kalten als auch auf der warmen Seite im Leistungsbereich von ca. 50 kW. Damit können große Spreizungen zwischen Vor- und Rücklauf sowohl auf der Wärmequellen- als auch -senkenseite genutzt bzw. erzeugt werden. Durch den Temperaturgleit bei der Wärmeübertragung passt sich die Wärmepumpe sehr energieeffizient an die Temperaturen der externen Medien an. Im Vergleich zu Wärmepumpen mit Einstoffkältemitteln bzw. azeotropen Gemischen sind Effizienzsteigerungen von bis zu 20% möglich. Allerdings ist die technische Umsetzung insbesondere in den Wärmeübertragern ein seit Jahrzehnten bekanntes, aber ungelöstes Problem. Die Entwicklung einer grundsätzlichen, technischen Lösung ist ein wesentlicher Schwerpunkt und stellt ein hohes Risiko dar. Entsprechend dem weltweit anvisierten Ausstieg aus fluorierten Kältemitteln (auch europäische 'F-Gase-Verordnung') sollen natürliche Kältemittel zum Einsatz kommen. Die geplante Verwendung von brennbaren Kohlenwasserstoffen erfordert dabei die Erarbeitung von Sicherheitskonzepten für die Innen- und Außenaufstellung. Dies reicht von der Begrenzung der Füllmenge über die Vermeidung von Leckagen und Zündquellen bis hin zur Detektion von Undichtheiten (Text abgebrochen)

Schallreduzierte effiziente elektrische Wärmepumpen mit natürlichen Kältemitteln - Mikrokanal-Verdampfer mit geometrischen Adaptionen (TP 1A)

Wärmepumpen sind eine der zentralen Lösungen für die klimaneutrale Gebäudeheizung und Klimatisierung der Zukunft. Die Absatzzahlen im Heizungsbereich stiegen in den letzten Jahren in Deutschland stark an, auf 154.000 installierte Geräte im Jahr 2021. Im Neubau wurde jede zweite Heizung mit der Wärmepumpentechnologie umgesetzt. Im Jahr 2021 waren 1,2 Mio. Wärmepumpen in Deutschland im Betrieb. Die überwiegende Zahl dieser Wärmepumpen (70%) nutzen als Wärmequelle die Luft. Steigt ihre Zahl weiter so stark an, wird eine Herausforderung immer zentraler: Die Geräuschentwicklung der Wärmepumpen auf ein Minimum bringen. Diese Herausforderung geht der Projektverbund für Luft/Wasser-Wärmepumpen mit Wärmepumpenherstellern, Komponentenlieferanten und Forschungsinstituten an. Der Projektverbund QUEEN-HP verbindet Methodenentwicklung zur akustischen Analyse und Bewertung von Wärmepumpen und deren Komponenten mit Lösungsentwicklungen in Technologieprojekten mit neuen Komponenten in Wärmepumpen, neuen Formen der Schalldämpfung und innovativen Gerätemodifikationen. Das Technologieprojekt 1A 'Mikrokanal-Verdampfer mit Geometrischen Adaptionen' befasst sich mit Geometrieänderungen an Microchannel Wärmeübertragern für deren Einsatz als Verdampfer mit Kältemittel R290 (Propan) für Luft-Wasser-Wärmepumpen im Heizleistungsbereich von 10kW. Die geometrischen Änderungen am Verteiler und den Lamellen zielen auf eine bessere Verteilung des Kältemittels und langsameres Vereisen des Verdampfers ab. Die Performance mehrerer iterativ optimierter Microchannel-Verdampfer wird experimentell bestimmt. Bei der Vermessung wird eine kombinierte Methode aus u.a. Infrarotaufnahmen, Makrodetailaufnahmen und Messungen des Dampfgehalts eingesetzt, um gezielt geometrische Anpassungen am Verdampfer vornehmen zu können.

Schallreduzierte effiziente elektrische Wärmepumpen mit natürlichen Kältemitteln - Mikrokanal-Verdampfer mit geometrischen Adaptionen (TP 1A), Teilvorhaben: Kältemittelverteilung und Vermessung

Wärmepumpen sind eine der zentralen Lösungen für die klimaneutrale Gebäudeheizung und Klimatisierung der Zukunft. Die Absatzzahlen im Heizungsbereich stiegen in den letzten Jahren in Deutschland stark an, auf 154.000 installierte Geräte im Jahr 2021. Im Neubau wurde jede zweite Heizung mit der Wärmepumpentechnologie umgesetzt. Im Jahr 2021 waren 1,2 Mio. Wärmepumpen in Deutschland im Betrieb. Die überwiegende Zahl dieser Wärmepumpen (70%) nutzen als Wärmequelle die Luft. Steigt ihre Zahl weiter so stark an, wird eine Herausforderung immer zentraler: Die Geräuschentwicklung der Wärmepumpen auf ein Minimum bringen. Diese Herausforderung geht der Projektverbund für Luft/Wasser-Wärmepumpen mit Wärmepumpenherstellern, Komponentenlieferanten und Forschungsinstituten an. Der Projektverbund QUEEN-HP verbindet Methodenentwicklung zur akustischen Analyse und Bewertung von Wärmepumpen und deren Komponenten mit Lösungsentwicklungen in Technologieprojekten mit neuen Komponenten in Wärmepumpen, neuen Formen der Schalldämpfung und innovativen Gerätemodifikationen. Das Technologieprojekt 1A 'Mikrokanal-Verdampfer mit Geometrischen Adaptionen' befasst sich mit Geometrieänderungen an Microchannel Wärmeübertragern für deren Einsatz als Verdampfer mit Kältemittel R290 (Propan) für Luft-Wasser-Wärmepumpen im Heizleistungsbereich von 10kW. Die geometrischen Änderungen am Verteiler und den Lamellen zielen auf eine bessere Verteilung des Kältemittels und langsameres Vereisen des Verdampfers ab. Die Performance mehrerer iterativ optimierter Microchannel-Verdampfer wird experimentell bestimmt. Bei der Vermessung wird eine kombinierte Methode aus u.a. Infrarotaufnahmen, Makrodetailaufnahmen und Messungen des Dampfgehalts eingesetzt, um gezielt geometrische Anpassungen am Verdampfer vornehmen zu können.

Schallreduzierte effiziente elektrische Wärmepumpen mit natürlichen Kältemitteln - Mikrokanal-Verdampfer mit geometrischen Adaptionen (TP 1A), Teilvorhaben: Design und Fertigung

Wärmepumpen sind eine der zentralen Lösungen für die klimaneutrale Gebäudeheizung und Klimatisierung der Zukunft. Die Absatzzahlen im Heizungsbereich stiegen in den letzten Jahren in Deutschland stark an, auf 154.000 installierte Geräte im Jahr 2021. Im Neubau wurde jede zweite Heizung mit der Wärmepumpentechnologie umgesetzt. Im Jahr 2021 waren 1,2 Mio. Wärmepumpen in Deutschland im Betrieb. Die überwiegende Zahl dieser Wärmepumpen (70%) nutzen als Wärmequelle die Luft. Steigt ihre Zahl weiter so stark an, wird eine Herausforderung immer zentraler: Die Geräuschentwicklung der Wärmepumpen auf ein Minimum bringen. Diese Herausforderung geht der Projektverbund für Luft/Wasser-Wärmepumpen mit Wärmepumpenherstellern, Komponentenlieferanten und Forschungsinstituten an. Der Projektverbund QUEEN-HP verbindet Methodenentwicklung zur akustischen Analyse und Bewertung von Wärmepumpen und deren Komponenten mit Lösungsentwicklungen in Technologieprojekten mit neuen Komponenten in Wärmepumpen, neuen Formen der Schalldämpfung und innovativen Gerätemodifikationen. Das Technologieprojekt 1A 'Mikrokanal-Verdampfer mit Geometrischen Adaptionen' befasst sich mit Geometrieänderungen an Microchannel Wärmeübertragern für deren Einsatz als Verdampfer mit Kältemittel R290 (Propan) für Luft-Wasser-Wärmepumpen im Heizleistungsbereich von 10kW. Die geometrischen Änderungen am Verteiler und den Lamellen zielen auf eine bessere Verteilung des Kältemittels und langsameres Vereisen des Verdampfers ab. Die Performance mehrerer iterativ optimierter Microchannel-Verdampfer wird experimentell bestimmt. Bei der Vermessung wird eine kombinierte Methode aus u.a. Infrarotaufnahmen, Makrodetailaufnahmen und Messungen des Dampfgehalts eingesetzt, um gezielt geometrische Anpassungen am Verdampfer vornehmen zu können.

Entwicklung einer Hochtemperatur-Wärmepumpe mit Wasserdampf-Schraubenverdichter zur Wärme- und Prozessdampfbereitstellung, Teilvorhaben: Entwicklung einer Hochtemperatur-Wärmepumpe mit Wasserdampf-Schraubenverdichter

In dem Projekt SteamScrew soll eine Hochtemperatur-Wärmepumpe mit einem Wasserdampf-Schraubenverdichter entwickelt werden. Die Quellentemperatur der Wärmepumpe liegt dabei zwischen 80 und 120 Grad C, während die Wärme auf bis zu 200 Grad C bereitgestellt werden soll. Übergeordnetes Ziel ist die Dekarbonisierung der industriellen Wärmeversorgung, die in energieintensiven Industrien häufig konventionell durch werkseigene BHKW geschieht. Die Verwendung von Wasser als Kältemittel ist technisch anspruchsvoll, da Wasserdampf während der Kompression eine starke Temperaturerhöhung erfährt. Als Verdichter kommt daher ein ölfreier Schraubenverdichter mit Wassereinspritzung zum Einsatz, der aufbauend auf bewährten Verdichterkonzepten entwickelt wird. Schraubenverdichter sind geeignet, den benötigten Druck- bzw. Temperaturhub einstufig zu realisieren. Nach der experimentellen Vermessung der Wärmepumpe besteht die Möglichkeit, den Verdichter bzw. den Wärmepumpenkreislauf zur industriellen Anwendung in den Megawatt-Maßstab zu skalieren. Perspektivisch soll damit eine umweltfreundliche Wärmepumpe zur Dekarbonisierung der industriellen Wärmeversorgung etabliert werden.

Entwicklung einer Hochtemperatur-Wärmepumpe mit Wasserdampf-Schraubenverdichter zur Wärme- und Prozessdampfbereitstellung

In dem Projekt SteamScrew soll eine Hochtemperatur-Wärmepumpe mit einem Wasserdampf-Schraubenverdichter entwickelt werden. Die Quellentemperatur der Wärmepumpe liegt dabei zwischen 80 und 120 Grad C, während die Wärme auf bis zu 200 Grad C bereitgestellt werden soll. Übergeordnetes Ziel ist die Dekarbonisierung der industriellen Wärmeversorgung, die in energieintensiven Industrien häufig konventionell durch werkseigene BHKW geschieht. Die Verwendung von Wasser als Kältemittel ist technisch anspruchsvoll, da Wasserdampf während der Kompression eine starke Temperaturerhöhung erfährt. Als Verdichter kommt daher ein ölfreier Schraubenverdichter mit Wassereinspritzung zum Einsatz, der aufbauend auf bewährten Verdichterkonzepten entwickelt wird. Schraubenverdichter sind geeignet, den benötigten Druck- bzw. Temperaturhub einstufig zu realisieren. Nach der experimentellen Vermessung der Wärmepumpe besteht die Möglichkeit, den Verdichter bzw. den Wärmepumpenkreislauf zur industriellen Anwendung in den Megawatt-Maßstab zu skalieren. Perspektivisch soll damit eine umweltfreundliche Wärmepumpe zur Dekarbonisierung der industriellen Wärmeversorgung etabliert werden.

Entwicklung einer Hochtemperatur-Wärmepumpe mit Wasserdampf-Schraubenverdichter zur Wärme- und Prozessdampfbereitstellung, Teilvorhaben: Theoretische und experimentelle Untersuchung von Wasserdampf-Schraubenverdichtern

In dem Projekt SteamScrew soll eine Hochtemperatur-Wärmepumpe mit einem Wasserdampf-Schraubenverdichter entwickelt werden. Die Quellentemperatur der Wärmepumpe liegt dabei zwischen 80 und 120 Grad C, während die Wärme auf bis zu 200 Grad C bereitgestellt werden soll. Übergeordnetes Ziel ist die Dekarbonisierung der industriellen Wärmeversorgung, die in energieintensiven Industrien häufig konventionell durch werkseigene BHKW geschieht. Die Verwendung von Wasser als Kältemittel ist technisch anspruchsvoll, da Wasserdampf während der Kompression eine starke Temperaturerhöhung erfährt. Als Verdichter kommt daher ein ölfreier Schraubenverdichter mit Wassereinspritzung zum Einsatz, der aufbauend auf bewährten Verdichterkonzepten entwickelt wird. Schraubenverdichter sind geeignet, den benötigten Druck- bzw. Temperaturhub einstufig zu realisieren. Nach der experimentellen Vermessung der Wärmepumpe besteht die Möglichkeit, den Verdichter bzw. den Wärmepumpenkreislauf zur industriellen Anwendung in den Megawatt-Maßstab zu skalieren. Perspektivisch soll damit eine umweltfreundliche Wärmepumpe zur Dekarbonisierung der industriellen Wärmeversorgung etabliert werden.

1 2 3 4 549 50 51