Ziel des Vorhabens ist es, die Grundlagen für den energieeffizienz- und lebensdaueroptimalen Betrieb von Fernwärme- und Fernkältenetze zu erarbeiten. Berücksichtigt werden dabei die zukünftig regenerative und eher dezentrale Erzeugungsstruktur, niedrigere Vorlauftemperaturen sowie ein zunehmender Ausbau der Sensorik durch Smart Metering. Zur Erreichung dieser Ziele sollen Modelle zur Ermittlung von Energieverluste sowie Stressfaktoren entwickelt und durch Messungen von z.B.Temperatur und Feuchtigkeit im Boden kalibriert werden. Weiterhin soll ein vorhandenes, hydraulisches Netzberechnungsverfahren um die thermische Komponente erweitert sowie für die Anwendung auf Kältenetze angepasst werden. Lebensdauerverluste sollen auf Basis von Erkenntnissen aus dem Forschungsvorhaben 'FW- Instandhaltung' abgeschätzt werden. Zudem sollen diesbezüglich neue, KI-basierte Algorithmen entwickelt werden. Das Verfahren zur Netzberechnung soll um diese Lebensdauerprognose erweitert werden, sodass jederzeit die hydraulischen und thermischen Zustandsgrößen sowie Stressfaktoren vorliegen und bei der Netzregelung berücksichtigt werden können. Auf Basis dessen soll sowohl ein modellprädiktiver als auch ein KI-basierter Ansatz zur optimalen Netzregelung entwickelt und im praktischen Einsatz erprobt werden. Teilvorhaben: Physikalische Modellierung und Regelungsentwurf Im Rahmen dieses Teilvorhabens werden bestehende Netzmodelle zur hydraulischen Simulation von Fernwärmenetzen um thermische Komponenten (Temperaturverläufe, Energieverluste) erweitert. Zudem wird das Simulationsmodell für die Verwendung im Rahmen modellprädiktiver Regelungen angepasst, welche ebenfalls in diesem Teilvorhaben entwickelt und implementiert werden soll. Neben dem modellprädiktiven Ansatz werden die vorhandenen Messdaten verwendet, um den KI-basierten Ansatz zu trainieren. Die beiden Ansätze sollen abschließend beim Projektpartner Stadtwerke München implementiert und ausgiebig getestet werden.
Ziel des Vorhabens ist es, die Grundlagen für den energieeffizienz- und lebensdaueroptimalen Betrieb von Fernwärme- und Fernkältenetze zu erarbeiten. Berücksichtigt werden dabei die zukünftig regenerative und eher dezentrale Erzeugungsstruktur, niedrigere Vorlauftemperaturen sowie ein zunehmender Ausbau der Sensorik durch Smart Metering. Zur Erreichung dieser Ziele sollen Modelle zur Ermittlung von Energieverluste sowie Stressfaktoren entwickelt und durch Messungen von z.B.Temperatur und Feuchtigkeit im Boden kalibriert werden. Weiterhin soll ein vorhandenes, hydraulisches Netzberechnungsverfahren um die thermische Komponente erweitert sowie für die Anwendung auf Kältenetze angepasst werden. Lebensdauerverluste sollen auf Basis von Erkenntnissen aus dem Forschungsvorhaben 'FW-Instandhaltung' abgeschätzt werden. Zudem sollen diesbezüglich neue, KI-basierte Algorithmen entwickelt werden. Das Verfahren zur Netzberechnung soll um diese Lebensdauerprognose erweitert werden, sodass jederzeit die hydraulischen und thermischen Zustandsgrößen sowie Stressfaktoren vorliegen und bei der Netzregelung berücksichtigt werden können. Auf Basis dessen soll sowohl ein modellprädiktiver als auch ein KI-basierter Ansatz zur optimalen Netzregelung entwickelt und im praktischen Einsatz erprobt werden. Teilvorhaben: Hard-/Softwaretechnische Umsetzung und Praxiserprobung Im Rahmen dieses Teilvorhabens werden die von den forschenden Verbundpartnern entwickelten Ansätze und Verfahren zur Praxistauglichkeit gebracht und in realen Anlagen erprobt. Dies umfasst sowohl die Unterstützung der Verbundpartner bei den Entwicklungsarbeiten mit Expertenwissen zu Fernwärme- und Kältenetzen als auch die Bereitstellung von Netz- und Betriebsdaten, wie beispielsweise Messdaten zu Druck, Durchfluss oder Temperatur. Weiterhin muss die für den Betrieb der entwickelten Ansätze erforderliche Hard- und Softwareinfrastruktur geschaffen und bereitgestellt werden.
Ziel des Vorhabens ist es, die Grundlagen für den energieeffizienz- und lebensdaueroptimalen Betrieb von Fernwärme- und Fernkältenetze zu erarbeiten. Berücksichtigt werden dabei die zukünftig regenerative und eher dezentrale Erzeugungsstruktur, niedrigere Vorlauftemperaturen sowie ein zunehmender Ausbau der Sensorik durch Smart Metering. Zum Erreichen dieser Ziele sollen Modelle zur Ermittlung von Energieverlusten sowie Stressfaktoren entwickelt und durch Messungen von z.B.Temperatur und Feuchtigkeit im Boden kalibriert werden. Weiterhin soll ein vorhandenes, hydraulisches Netzberechnungsverfahren um die thermische Komponente erweitert sowie für die Anwendung auf Kältenetze angepasst werden. Lebensdauerverluste sollen auf Basis von Erkenntnissen aus dem Forschungsvorhaben 'FW-Instandhaltung' abgeschätzt werden. Zudem sollen diesbezüglich neue, KI-basierte Algorithmen entwickelt werden. Das Verfahren zur Netzberechnung soll um diese Lebensdauerprognose erweitert werden, sodass jederzeit die hydraulischen und thermischen Zustandsgrößen sowie Stressfaktoren vorliegen und bei der Netzregelung berücksichtigt werden können. Auf Basis dessen soll sowohl ein modellprädiktiver als auch ein KI-basierter Ansatz zur optimalen Netzregelung entwickelt und im praktischen Einsatz erprobt werden. Teilvorhaben: Alterung und Stressfaktoren Im Rahmen dieses Teilvorhabens werden Algorithmen zur Ermittlung von Alterungseffekten und Stressfaktoren in Wärme- und Kältenetzen entwickelt. Dabei sollen sowohl vorhandene Messdaten verwendet als auch neue, innovative Messkonzepte entwickelt werden, um eine möglichst genaue Lebensdauervorhersage treffen zu können. Um in Echtzeit eine Lebensdauerbewertung durchführen zu können, kommen und A. KI-basiert Verfahren zum Einsatz. Die entwickelten Ansätze sollen zudem in ein thermo-hydraulisches Netzmodell integriert werden, sodass dieses im Rahmen einer modellprädiktiven Regelung zur Effizienz- und Lebensdaueroptimierung verwendet werden kann.
Zur Erfüllung der nationalen und europäischen Klimaziele muss die erneuerbare fluktuierende Stromerzeugung schnell ausgebaut und effizient genutzt werden. Neben dem kostenintensiven Ausbau der Energienetze und Speicherkapazitäten können vorhandene lokale Energiesysteme genutzt werden, um mittels multimodaler Lastverschiebung die Nachfrage in Abhängigkeit vom Angebot an erneuerbarer Energie zu verschieben. Es wird eine schnell umsetzbare, skalierbare und wirtschaftliche Lösung benötigt. Supermärkte sind von großem Interesse, da die entsprechenden Energiesysteme weitestgehend standardisiert sind. Sie sind weiterhin flächendeckend mit Messtechnik ausgestattet und weisen einen hohen Automatisierungsgrad auf. Ein Lastverschiebepotential ist durch die Flexibilität des lokalen Kältenetzes des Supermarktes im Zusammenspiel mit den steuerbaren Kälteverbrauchern, wie z.B. Kühltruhen oder Kältekammern vorhanden. Energiesysteme von modernsten Supermärkten werden aktuell typischerweise anhand statischer Regeln rein bedarfsorientiert betrieben. Ein solcher Betrieb ist nicht zielführend, da das Angebot von fluktuierenden, erneuerbaren Energien nicht berücksichtigt wird und somit nicht effizient genutzt werden kann. Ziel des Projektes ist es zu untersuchen, ob eine effiziente Nutzung von fluktuierenden, erneuerbaren Energien durch multimodale Lastverschiebung, insbesondere im Hinblick auf die Kälteversorgung von Supermärkten, möglich ist. Dabei werden sowohl dynamische Strompreise, als auch Vorhersagen von dynamischen Randbedingungen, wie beispielsweise elektrische und thermische Grundlasten, berücksichtigt Die technische Machbarkeit wird in der Simulation aufgezeigt und im realen Betrieb eines Pilot-Supermarktes validiert. Dabei soll der Aufwand für die Installation des Energiemanagementsystems und die evtl. notwendige Ertüchtigung des Energiesystems, z.B. durch zusätzliche Messgeräte oder Anpassungen in der Automatisierung, so gering wie möglich gehalten werden.
In einem der größten städtischen Transformationsprojekte in Deutschland entwickelt Braunschweig die ehemaligen Gleisanlagen für Güter und Transport rund um den Hauptbahnhof zur Bahnstadt Braunschweig. Die Stadt Braunschweig als Initiatorin möchte das Projekt nutzen, um die Energiebereitstellung für die gesamte Stadt zu transformieren und die Treibhausgasemissionen (THG) bis 2035 auf den Status der Klimaneutralität zu reduzieren. Mit dem Mikroprojekt wird die Umsetzung der Bahnstadt als Reallabor für Braunschweig vorbereitet und soll eine Plattform für eine Vielzahl innovativer Technologien und Produkte insbesondere von KMUs und Startups im Kontext der Transformation von Wärme- und Kältenetzen sein. Im Mikroprojekt werden in Zusammenarbeit mit der Technischen Universität Braunschweig und BS Energy als örtlichem Versorger die notwendigen Vorbereitungen für die Umsetzung getroffen. Im Projekt werden konzeptionelle Randbedingungen konkretisiert und technisch wie städtebaulich verankert. Die Verwaltung der Stadt ist als verantwortliche Instanz für die Planung und Entwicklung und als Projektpartner ohne Förderanteile in den Prozess integriert.
In einem der größten städtischen Transformationsprojekte in Deutschland entwickelt Braunschweig die ehemaligen Gleisanlagen für Güter und Transport rund um den Hauptbahnhof zur Bahnstadt Braunschweig. Die Stadt Braunschweig als Initiatorin möchte das Projekt nutzen, um die Energiebereitstellung für die gesamte Stadt zu transformieren und die Treibhausgasemissionen (THG) bis 2035 auf den Status der Klimaneutralität zu reduzieren. Mit dem Mikroprojekt wird die Umsetzung der Bahnstadt als Reallabor für Braunschweig vorbereitet und soll eine Plattform für eine Vielzahl innovativer Technologien und Produkte insbesondere von KMUs und Startups im Kontext der Transformation von Wärme- und Kältenetzen sein. Im Mikroprojekt werden in Zusammenarbeit mit der Technischen Universität Braunschweig und BS Energy als örtlichem Versorger die notwendigen Vorbereitungen für die Umsetzung getroffen. Im Projekt werden konzeptionelle Randbedingungen konkretisiert und technisch wie städtebaulich verankert. Die Verwaltung der Stadt ist als verantwortliche Instanz für die Planung und Entwicklung und als Projektpartner ohne Förderanteile in den Prozess integriert.
Basierend auf dem Energiewendeziel der Bundesregierung will sich der Campus Charlottenburg (TU Berlin, UdK Berlin) energetisch als vorbildliche Einrichtung etablieren. Dafür soll der HochschulCampus Berlin-Charlottenburg (HCBC) so saniert werden, dass bereits ab dem Jahr 2023 die Wärmewendeziele 2050 in Teilen demonstriert werden können. Die Basis für die Umsetzung ist das Ergebnis der ersten Phase des Projekts (FKZ: 03ET1354-X). Dieser Masterplan Energie berücksichtigt die Energiebedarfe von Heizung, Kälte und den Hilfsenergien für den Transport von Wärme, Kälte und Luft. Ein Hauptaugenmerk liegt auf der lokalen Gewinnung und Speicherung von Energie, wo günstige Bedingungen für eine anschließende Verschiebung von Wärmeenergieströmen herrschen. Das andere Augenmerk liegt auf der gebäudeweisen energetischen Teilsanierung im Quartiersverbund im Gegensatz zur gebäudeweisen Einhaltung der EnEV. Im Rahmen der 1. Umsetzungsphase sollen in den nächsten 5 Jahren Primärenergieeinsparungen/-substitutionen auf dem gesamten Campus in Höhe von zunächst 40 % zur Basis 2016 bis 2035 das Wärmewendeziel in Höhe von 80 % zur Basis 2008 realisiert werden. Parallel zu den Sanierungsmaßnahmen soll eine Demonstrationsanlage entstehen, in dem die gebäudeübergreifende Nutzung von erneuerbaren Energien und Abwärme über ein Mehrleiter-Wärmenetz gepaart mit Kurz- und Langzeitspeichern getestet und optimiert wird. Aus den Ergebnissen des EnEff: HCBC Projekts sollen Handlungsempfehlungen entwickelt werden, die auf andere Stadtgebiete übertragen werden können.
Das Ziel dieses Anschlussvorhabens ist es, einen Beitrag zur Verbesserung der Energieeffizienz von Wärme- und Kältenetzen durch eine praxisgerechte Weiterentwicklung einer Messtechnologie für Betriebsbedingungen zu leisten. Die im vorangegangenen Projekt entwickelte Messtechnologie zur laseroptischen Vor-Ort-Kalibrierung von Volumenstrom-Messgeräten ermöglicht Maßnahmen zur Netzplanung und -optimierung sowie zur effizienteren Produktion. Im Anschlussvorhaben soll diese Technologie zu einer unsicherheits- und aufwandsminimierten Kalibrierung bei mehreren Betriebspunkten weiter entwickelt werden sowie die Gerätetechnik flexibler und robuster gestaltet werden. Mit Hilfe der Vor-Ort-Kalibrierung werden qualitativ hochwertige Messergebnissen für die Ermittlung von Kennzahlen (z.B. für die Ermittlung von Wirkungsgraden, Primärenergiefaktoren und für die CO2-Bilanzierung) und zur Abrechnung der Energieströme zur Verfügung gestellt. Durch eine neuartige effiziente Kalibrierung über den gesamten Betriebsbereich der Durchfluss-Sensoren (DFS) und die Einbeziehung von derartigen Messgeräten in Kältenetzen mit ihren speziellen Anforderungen wird der Anwendungsbereich der Vor-Ort-Kalibrierung wesentlich erweitert. Darüber hinaus wird eine deutliche Reduzierung der Messunsicherheit des Verfahrens auch bei gestörten Zuströmbedingungen der Messgeräte angestrebt. Vielfältige technologische Maßnahmen dienen zur Aufwands- und Kostenreduzierung des Verfahrens sowie der Erweiterung des Leistungsspektrums und des Kundennutzens. Zur Erreichung dieser Ziele besteht auf verschiedenen Ebenen erheblicher Forschungsbedarf. OPTOLUTION wird Projektaufgaben in allen fünf Arbeitspaketen und die Projektleitung übernehmen. Im Mittelpunkt stehen die Aktivitäten zur weiteren Reduzierung der Messunsicherheiten, die Anwendung der Vor-Kalibrierung für Kälte-DFS und die Erweiterung des Leistungsangebotes (vgl. Detaillierung in der Vorhabensbeschreibung).
Das Ziel dieses Anschlussvorhabens ist es, einen Beitrag zur Verbesserung der Energieeffizienz von Wärme- und Kältenetzen durch eine praxisgerechte Weiterentwicklung einer Messtechnologie für Betriebsbedingungen zu leisten. Die im vorangegangenen Projekt entwickelte Messtechnologie zur laseroptischen Vor-Ort-Kalibrierung (VOK) von Volumenstrom-Messgeräten ermöglicht Maßnahmen zur Netzplanung und -optimierung sowie zur effizienteren Produktion. Im Anschlussvorhaben soll diese Technologie zu einer unsicherheits- und aufwandsminimierten Kalibrierung bei mehreren Betriebspunkten weiter entwickelt werden sowie die Gerätetechnik flexibler und robuster gestaltet werden. Mit Hilfe der VOK werden qualitativ hochwertige Messergebnissen für die Ermittlung von Kennzahlen (Wirkungsgrade, Primärenergiefaktoren, CO2-Bilanzierung) und zur Abrechnung der Energieströme zur Verfügung gestellt. Durch eine neuartige effiziente Kalibrierung über den gesamten Betriebsbereich der Durchfluss-Sensoren und die Einbeziehung von derartigen Messgeräten in Kältenetzen mit ihren speziellen Anforderungen wird der Anwendungsbereich der VOK wesentlich erweitert. Darüber hinaus wird eine deutliche Reduzierung der Messunsicherheit des Verfahrens auch bei gestörten Zuströmbedingungen der Messgeräte angestrebt. Vielfältige technologische Maßnahmen dienen zur Aufwands- und Kostenreduzierung des Verfahrens sowie der Erweiterung des Leistungsspektrums und des Kundennutzens. Zur Erreichung dieser Ziele besteht auf verschiedenen Ebenen erheblicher Forschungsbedarf. Der vorhandenen Prüfstand wird um die Möglichkeit erweitert, eine gleitende Kalibrierung zu untersuchen. Um den Einfluss der wandnahen Strömung auf die Genauigkeit des VOK-Verfahrens zu untersuchen, wird eine modifizierte Fensterkammer konstruiert und untersucht. Mit der numerischen SPH-Methode wird versucht, die Unsicherheit der VOK weiter zu reduzieren. Es wird ein Messsystem konstruiert, das den Rohrinnendurchmesser direkt bestimmen kann.
Das Ziel dieses Anschlussvorhabens ist es, einen Beitrag zur Verbesserung der Energieeffizienz von Wärme- und Kältenetzen durch eine praxisgerechte Weiterentwicklung einer Messtechnologie für Betriebsbedingungen zu leisten. Die im vorangegangenen Projekt entwickelte Messtechnologie zur laseroptischen Vor-Ort-Kalibrierung von Volumenstrom-Messgeräten unterstützt Maßnahmen zur Netzplanung und -optimierung sowie zur effizienteren Produktion. Im Anschlussvorhaben soll diese Technologie zu einer unsicherheits- und aufwandsminimierten Kalibrierung bei mehreren Betriebspunkten weiter entwickelt werden sowie die Gerätetechnik flexibler und robuster gestaltet werden. Mit Hilfe der Vor-Ort-Kalibrierung werden qualitativ hochwertige Messergebnissen für die Ermittlung von Kennzahlen (z.B. für die Ermittlung von Wirkungsgraden, Primärenergiefaktoren und für die CO2-Bilanzierung) und zur Abrechnung der Energieströme zur Verfügung gestellt. Durch eine neuartige effiziente Kalibrierung über den gesamten Betriebsbereich der Durchfluss-Sensoren (DFS) und die Einbeziehung von derartigen Messgeräten in Kältenetzen mit ihren speziellen Anforderungen wird der Anwendungsbereich der Vor-Ort-Kalibrierung wesentlich erweitert. Darüber hinaus wird eine deutliche Reduzierung der Messunsicherheit des Verfahrens auch bei gestörten Zuströmbedingungen der Messgeräte angestrebt. Vielfältige technologische Maßnahmen dienen zur Aufwands- und Kostenreduzierung des Verfahrens sowie der Erweiterung des Leistungsspektrums und des Kundennutzens. Zur Erreichung dieser Ziele besteht auf verschiedenen Ebenen erheblicher Forschungsbedarf. - Unterstützung bei der Erweiterung des Einsatzgebietes auf DFS in Kältenetzen - Vorbereitung und Bereitstellung der Messstellen - Nutzensbewertung des erweiterten VOK-Verfahrens für energetische Effizienzsteigerungen.
| Origin | Count |
|---|---|
| Bund | 21 |
| Type | Count |
|---|---|
| Förderprogramm | 21 |
| License | Count |
|---|---|
| offen | 21 |
| Language | Count |
|---|---|
| Deutsch | 20 |
| Englisch | 12 |
| Resource type | Count |
|---|---|
| Keine | 13 |
| Webseite | 8 |
| Topic | Count |
|---|---|
| Boden | 14 |
| Lebewesen und Lebensräume | 17 |
| Luft | 8 |
| Mensch und Umwelt | 21 |
| Wasser | 8 |
| Weitere | 21 |