API src

Found 8307 results.

Similar terms

s/k3/O3/gi

Luftdaten Deutschland API | Air Data Germany API

Mehrmals täglich ermitteln Fachleute an Messstationen der Bundesländer und des Umweltbundesamtes die Qualität unserer Luft. Schon kurz nach der Messung können Sie sich über die Luftdaten-API die aktuellen Messwerte abrufen. Zurzeit sind Daten ab dem Jahr 2016 abrufbar. Bitte beachten Sie, dass es sich bei den Daten des laufenden Jahres um noch nicht endgültig geprüfte Daten handelt. Erst im Juni des Folgejahres werden die finalen Daten bereitgestellt. Die aktuellen Daten können Lücken aufgrund Übertragungsproblemen enthalten. Das UBA kann keine Vollständigkeit garantieren. Unterjährig erfolgen Updates mit vorläufig geprüften Daten.

Model Output Statistics for Saldenburg-Entschenreuth (P586)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for AADORF / TAENIKON (06679)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for SAMARKAND (38696)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for BAD RADKERSBURG (11248)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Modell-gestützte Szenarienanalyse zur Optimierung der Pflanzenproduktion für den Klimaschutz, Modell-gestützte Szenarienanalyse zur Optimierung der Pflanzenproduktion für den Klimaschutz

Der menschengemachte Klimawandel bedroht langfristig die Stabilität der Ökosysteme des Planeten, und damit auch die Stabilität der menschlichen Gesellschaft durch Verknappung von Wasser, Nahrung und Lebensraum. Insbesondere die landwirtschaftliche Nahrungsmittelproduktion blickt einer ungewissen Zukunft entgegen und es besteht erheblicher Informationsbedarf hinsichtlich geeigneter Klimaschutzstrategien. Übergeordnetes Ziel des Vorhabens ist die Identifizierung von geeigneten Bewirtschaftungsmaßnahmen und betrieblichen Strategien zur Optimierung der Pflanzenproduktion im Sinne des Klimaschutzes. Das Projekt ModOKlim verfolgt dabei vorrangig folgende wissenschaftliche Ziele: (i) die verlässliche Reproduktion von räumlichen und zeitlichen Mustern der Produktivität landwirtschaftlicher Kulturen in Deutschland über die vergangenen 30 Jahre mit Hilfe von Agrarökosystemmodellen, (ii) die deterministische Projektion der Ertragsaussichten und damit verbundener THG-Emissionen landwirtschaftlicher Kulturen in Deutschland, (iii) die Szenarienanalyse mit Hilfe von biophysikalischen und ökonomischen Modellen zur Beurteilung von Erfolgsaussichten von Klimaschutzstrategien in Richtung von profitablen, klimaangepassten und artenreichen Anbausystemen und (iv) die Integration des aktuellsten Stands der Wissenschaft in Bezug auf die probabilistische Projektion von Extremwetterereignissen in die Projektionen der deterministischen Modelle. Ziel des Arbeitspakets 1 ist die Analyse des Auftretens ertragsrelevanter Extremwetter für landwirtschaftliche Kulturen in Vergangenheit und Zukunft. Mit Hilfe eines objekt-orientierten Ansatzes basierend auf Radardaten wird am KIT untersucht, bei welchen Umgebungsbedingungen sich schaden-relevante Hagelstürme bilden und wie sich diese Bedingungen in einem zukünftigen Klima verändern. Durch den objekt-orientierten Ansatz und Verfahren des maschinellen Lernens werden robustere Trendaussagen erwartete im Vergleich zu den bisher verwendeten Methoden.

Messwerte Feinstaub PM10 (1980 - 2026)

Im Messwertarchiv steht eine umfangreiche Sammlung der kontinuierlich erfassten Luftschadstoffmessdaten des LÜB-Messnetzes seit dem Jahr 1980 in stündlicher zeitlicher Auflösung zum Download zur Verfügung. Das Datenangebot umfasst die Stoffe Stickstoffdioxid, Stickstoffmonoxid, Feinstaub-PM10, Feinstaub-PM2,5, Ozon, Kohlenmonoxid, BTX (Benzol, Toluol und o-Xylol), Schwefeldioxid und Schwefelwasserstoff. Die Daten können je Schadstoff und Kalenderjahr für alle im jeweiligen Zeitraum aktiven LÜB-Messstationen heruntergeladen werden. [Wichtige Hinweise zu den Daten - PDF](https://www.lfu.bayern.de/luft/immissionsmessungen/messwertarchiv/doc/wichtige_hinweise_zu_den_daten.pdf) [Informationen zu den Messstationen](https://www.lfu.bayern.de/luft/immissionsmessungen/dokumentation/index.htm)

Vorhersage urbaner atmosphärischer Anzahlkonzentrationen ultrafeiner Partikel mit Hilfe von Machine Learning- und Deep Learning-Algorithmen (ULTRAMADE)

Ultrafeine Partikel (UFP) mit einem aerodynamischen Durchmesser kleiner als 100 nm stehen unter dem Verdacht die menschliche Gesundheit zu schädigen, allerdings fehlt bisher die abschließende wissenschaftliche Evidenz aus epidemiologischen Studien. Zur Herleitung von Expositionskonzentrationen gegenüber UFP wurden zum Teil statistische Modellierungsverfahren genutzt um UFP-Anzahlkonzentrationen vorherzusagen. Ein häufig genutztes Verfahren ist eine auf Flächennutzung basierte lineare Regression („land-use regression“, LUR). Allerdings wurden in luftqualitativen Studien auch andere, ausgefeiltere Modellansätze benutzt, z.B. „machine learning“ (ML) oder „deep learning“ (DL), die eine bessere Vorhersagegenauigkeit versprechen. Das Ziel des Projekts ist die Modellierung von UFP-Anzahlkonzentration in urbanen Räumen basierend auf ML- und DL-Algorithmen. Diese Algorithmen versprechen eine bessere Vorhersagegenauigkeit gegenüber linearen Modellansätzen. Mit unserem Modellansatz wollen wir sowohl räumliche als auch zeitliche Variabilität der UFP-Anzahlkonzentrationen abbilden. In einem ersten Schritt werden die Messergebnisse aus mobilen Messkampagnen genutzt um ein ML-basiertes LUR Modell zu kalibrieren. Zusätzlich werden urbane Emissionen aus lokalen Quellen, abseits vom Straßenverkehr, identifiziert und explizit in das Modell einbezogen. In einem zweiten Schritt wird ein DL-Modellansatz basierend auf Langzeit-UFP-Messungen mit dem ML-Modell gekoppelt um die Repräsentierung der zeitlichen Variabilität zu verbessern. Unser vorgeschlagenes Arbeitsprogramm besteht aus fünf Arbeitspaketen (WP): WP 1 beinhaltet mobile Messungen mittels eines mobilen Labors und eines Messfahrads. WP 2 besteht aus stationären Messungen, die an Stationen des German Ultrafine Aerosol Network durchgeführt werden. In WP 3 werden wichtige UFP-Emissionsquellen, insbesondere Nicht-Verkehrsemissionen, mit Hilfe von zusätzlichen kurzzeitigen stationären Messungen identifiziert und quantifiziert. In WP 4 werden ML-Algorithmen genutzt um ein statistisches Modell aufzubauen. Als Kalibrierungsdatensatz werden die Messungen aus WP 1 benutzt. Das Modell wird UFP-Anzahlkonzentrationen mit Hilfe eines Datensatzes aus erklärenden Variablen, u.a. meteorologische Größen, Flächennutzung, urbaner Morphologie, Verkehrsmengen und zusätzlichen Informationen zu UFP-Quellen nach WP 3, vorhersagen. In WP 5 werden die UFP-Anzahlkonzentrationen aus WP 2 für einen DL-Modellansatz genutzt, der die zeitliche Variabilität repräsentieren wird. Dieser wird dann mit dem ML-Modell aus WP 4 gekoppelt. Der Nutzen der Modellkopplung wird mit dem Datensatz aus WP 3 validiert. Aus unserem Projekt wird ein Modell hervorgehen, das in der Lage ist die räumliche und zeitliche Variabilität urbaner UFP-Anzahlkonzentrationen in einer hohen Genauigkeit zu repräsentieren. Damit wird unsere Studie einen Beitrag zur Quantifizierung von Expositionskonzentrationen gegenüber UFP z.B. in epidemiologischen Studien leisten.

Digital GreenTech 2 - TreeMon: Entwicklung eines autonomen Schallemission-Sensorknoten für das Zustandsmonitoring von stehenden Bäumen, Teilprojekt 4

Anwendung Luftgütedatenbank des Landes Brandenburg

Die im Land Brandenburg kontinuierlich ermittelten Zeitreihen verschiedenster Luftschadstoffe werden erfasst, archiviert und fortgeschrieben. Die Überwachung der Luftqualität in Brandenburg erfolgt durch ein automatisches Luftgütemessnetz nach EU-weiten Vorgaben. Zeitnah werden die aktuellen Messwerte der Schadstoffe Ozon (O3), Stickstoffdioxid (NO2), Feinstaub- Partikel (PM10), Schwefeldioxid (SO2), Kohlenmonoxid (CO) und weitere mehr im LandesUmwelt / VerbraucherInformationssystem Brandenburg (LUIS-BB) veröffentlicht. Ergänzt werden diese Ergebnisse durch eine Zusammenstellung gültiger Grenzwerte sowie Monats- und Jahresauswertungen. Das Landesamt für Umwelt (LfU) betreibt für die kontinuierliche Luftüberwachung das automatische Luftgütemessnetz mit derzeit 17 Stationen zur Überwachung der Luft in Städten und ländlichen Regionen und 5 Stationen zur Überwachung der Luft im verkehrsnahen Raum. Zusätzlich existieren Messpunkte zur Bestimmung von Inhaltsstoffen im Staubniederschlag / in der Deposition. Mehr als 100 Messgeräte liefern täglich bis zu 12.000 Messwerte, die automatisch in die Messnetzzentrale des LfU übertragen, kontrolliert und von hier veröffentlicht werden.

1 2 3 4 5829 830 831