API src

Found 7951 results.

Similar terms

s/k3/O3/gi

Luftqualitätsdaten (Datenstrom E1a) - Validierte Einzelwerte 2016 (Datensatz)

Datenstrom E1a umfasst gemessene (Link zu Datenstrom D) Einzelwerte von gasförmigen Schadstoffen (z. B. Ozon, Stickstoffdixoid, Schwefeldioxid, Kohlenmonoxid), von partikelförmigen Schadstoffen (z.B. Feinstaub, Ruß, Gesamtstaub) und Staubinhaltsstoffen (z.B. Schwermetalle, PAK in PM10, PM2.5, TSP) sowie der Gesamtdeposition (BULK), der nassen Deposition und meteorologische Messgrößen (z.B. Temperatur, Windgeschwindigkeit, Luftdruck), für die eine Datenbereitstellungspflicht besteht. Der Bericht umfasst zudem die Datenqualitätsziele (Messunsicherheit, Mindestzeiterfassung (time coverage) erfüllt ja/nein, Mindestdatenerfassung (data capture) erfüllt ja/nein) und Informationen zu Konzentrationswerten die natürlichen Quellen und der Ausbringung von Streusand und Ätzsalz zuzurechnen sind (Konzentrationswerte ohne etwaige Korrekturabzüge).

Model Output Statistics for GHARDAIA AIRPORT (60566)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for KINLOSS (03066)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for NANTES (BOUGUENAIS) (07222)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for Selters, Westerwaldkreis (K172)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

GTS Bulletin: LTDL32 EDZO - Aviation Information in XML (details are described in the abstract)

The LTDL32 TTAAii Data Designators decode as: T1 (L): Aviation Information in XML A1A2 (DL): Germany T1T2 (LT): Aerodrome Forecast ("TAF") (VT>=12 hours)(The bulletin collects reports from stations: EDDB;BERLIN-SCHOENEFELD INT;EDDC;DRESDEN;EDDP;LEIPZIG HALLE;EDDV;HANNOVER;EDDW;BREMEN;EDZO;)

Luftmessstelle Nr. 0617 in Frankfurt-Höchst

Dieser Datensatz enthält Informationen der Luftmessstelle Nr. 0617 in Frankfurt-Höchst. Es werden nur die an der Station erfassten Messwerte der letzten 20 Jahre publiziert. Ältere Daten können auf Anfrage erhalten werden. Auf der Webseite zur Messstelle ist ein Link zum Herunterladen der Rohdaten vorhanden.

Ozon Kiel, Bremerskamp 1-Stunden Mittelwert 2025

Um die Gesundheit der Menschen und die Vegetation vor den Einflüssen zu hoher Luftschadstoffbelastungen zu schützen, wird die Luftqualität laufend untersucht und nach gesetzlichen Vorschriften beurteilt. Dafür betreibt das Landesamt für Umwelt (LfU) in Schleswig-Holstein ein Netz aus Messstationen, an denen mit unterschiedlichen Methoden Luftschadstoffe gemessen werden. Die Messdaten aus Schleswig-Holstein und viele zusätzliche Informationen zu den Messungen werden an das Umweltbundesamt weiter geleitet und von dort gemeinsam mit den Daten aller Bundesländer an die Europäische Kommission gemeldet. Alle aktuell veröffentlichten Daten sind als ***vorläufig*** einzustufen, da sie zu Ihrer schnellen Information zunächst automatisch auf Gültigkeit geprüft werden. Vor der abschließenden Bewertung und Beurteilung der Luftqualität findet später eine mehrstufige Prüfung nach gesetzlichen Vorgaben statt. Bei den CSV-Dateien „fehlt“ am Tag der Umstellung von Normalzeit (MEZ) auf Sommerzeit (MESZ) die 3-Uhr-Messung, am Tag der Umstellung von Sommer- auf Normalzeit gibt es hingegen zwei 3-Uhr-Messungen. Die JSON-Dateien sind von dieser Problematik nicht betroffen, hier wird durchgängig Normalzeit verwendet. [Informationen zur Messstation](https://www.schleswig-holstein.de/DE/Fachinhalte/L/luftqualitaet/Messstationen/KielBremerskamp.html)

Sentinel-5P TROPOMI – Aerosol Layer Height (ALH), Level 3 – Global

Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Nichtinvasive Detektion von Mikroplastikpartikeln im Boden - Analyse der Auswirkungen von Mikroplastik auf Bodenaggregate, Wurzeln und Infiltrationsverhalten

Weltweit werden Böden zunehmend mit Plastikmüll belastet. Der kontinuierliche Eintrag von Mikroplastik beeinflusst Lebensbedingungen von Pflanzen und Bodenorganismen. Bislang verstehen wir nur unzureichend, wie sich die Anwesenheit von Mikroplastik auf Struktur und Funktionsweise des Bodens auswirkt. Es ist unklar, wie stark die Rhizosphäre dadurch beeinflusst wird und welche Risiken sich daraus für die Pflanzen ergeben. Inzwischen gibt es verschiedene Analyseverfahren, um unterschiedliche Aspekte der Mikroplastikverschmutzung des Bodens zu untersuchen. Allerdings beinhalten diese Verfahren üblicherweise Prozessschritte, bei denen die Integrität der Probe zerstört wird, wodurch sich der Zusammenhang zwischen der Verteilung von Mikroplastik in der Probe und der Mikrostruktur und Hydraulik des Bodens nicht mehr erschließen lässt. Vor kurzem haben wir jedoch einen nicht-invasiven Ansatz entwickelt, mit dem Mikroplastik in sandigen Böden nachgewiesen werden kann. Mittels komplementärer Neutronen- und Röntgentomographie lassen sich Mikroplastikpartikeln im trockenen Boden detektieren und gleichzeitig die dreidimensionale Struktur der Bodenmatrix analysieren. In diesem Projekt wird die Methode getestet, optimiert und dann angewandt, um besser zu verstehen, wie Mikroplastik unterschiedlicher Größe und Form die Mikrostruktur und Eigenschaften des Bodens beeinflusst. Außerdem wird untersucht, ob in die Rhizosphäre eingelagertes Mikroplastik die Bedingungen für das Wurzelwachstum und die Wasseraufnahme verändert und welchen Einfluss Mikroplastik unterschiedlicher Größe und Form auf die Infiltration und Wasserbewegung im Boden hat. Zunächst wird die Auflösung der Methode optimiert, um auch sehr feine Strukturen, wie Mikroplastikfasern und Folienfragmente, detektieren zu können. Die Segmentierung der 3D Bilddaten wird durch die Berücksichtigung von Form-Deskriptoren sowie durch Maschinelles Lernen unterstützt, um Mikroplastikpartikeln von organischen Bodenbestandteilen zu unterscheiden. In einem Aggregationsexperiment mit wird für einen natürlichen Sandboden der Einfluss von Mikroplastikfasern auf die Bildung und Stabilität von Bodenaggregaten mittels hochauflösender Dual-mode Tomographie analysiert. Im nächsten Schritt wird die Rhizosphäre junger Mais- und Lupinenpflanzen untersucht, um potentielle Einflüsse verschieden geformter Mikroplastikpartikel auf lokale Strukturen der Bodenmatrix, Wurzeln und Wasserpfade zu ermitteln. Schließlich werden wir High-Speed Neutronentomographie einsetzen, um dynamischen 3D-Infiltrationsmuster in Bodensäulen mit und ohne Wurzelsysteme zu erfassen. Die Form und Geschwindigkeit der Wasserfront wird zeigen, ob und wie die Bodenbenetzbarkeit durch eingelagerte Mikroplastikpartikel beeinflusst wird. Das vorgeschlagene Projekt wird einzigartige neue Einblicke in die durch Mikroplastik modifizierte Struktur der Bodenmatrix geben, die für das mechanistische Verständnis der resultierenden Bodeneigenschaften gebraucht werden.

1 2 3 4 5794 795 796