Im Rahmen des Kölner Hitzeportals wird eine digitale Stadtkarte bereitgestellt, in die Bürger*innen ihre „Kühlen Orte“ eintragen können, welche einen angenehmen Aufenthalt bei sommerlicher Hitze bieten.
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
Das Projekt "Teil ICT" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Chemische Technologie durchgeführt. Pflanzliche Biomasse ist ein geeigneter Rohstoff zur nachhaltigen Gewinnung von Wertstoffen und Energie, wenn bei der Produktion, dem Aufschluss und der Konversion zu Energieträgern die Anforderungen des Marktes und des Klima- und Umweltschutzes berücksichtigt werden. Durch die biotechnologische Bearbeitung geeigneter Pflanzen und die Auswahl der Anbauflächen muss ein hoher Nettoenergieertrag pro Flächeneinheit erzielt und eine Konkurrenz zur Nahrungsmittelproduktion vermieden werden. In diesem Projekt sollen neue Modell- und Energiepflanzen entwickelt werden, die einer effizienten Konversion der Biomasse zu Wertstoffen und Energie zugänglich sind. Bisher war der kostengünstige Aufschluss von Biomasse und die Verwertung der in Pflanzen enthaltenen Wertstoffe (z.B. Malat, Cellulose, Lignin) ein Problem, da die für einen Aufschluss benötigten Cellulasen teuer und unter den verwendeten Bedingungen nicht sehr stabil sind. Eine neue effiziente Methode ist der fraktionierte Aufschluss der Biomasse unter Verwendung von ionischen Flüssigkeiten (ILS) bei gleichzeitiger enzymatischer Verzuckerung der Cellulose. Die dabei gebildete Glucose kann zu Biogas oder Bioethanol umgesetzt werden. Der ligninhaltige Reststoff soll durch einen chemo-enzymatischen Abbau zu Phenolderivaten umgewandelt oder zu Methan oder Synthesegas vergast werden. In diesem Projekt sollen entsprechende stabile Enzyme für einen effektiven ILs-Aufschluss von Energiepflanzen wie Luzerne, Schilf und Zuckerrüben entwickelt werden. Geeignete Cellulasen und Peroxidasen werden gesucht, durch 'gelenkte Evolution' optimiert, und für den effektiven Abbau von Cellulose vor der Ernte gezielt in den Energiepflanzen produziert. Analog wird auch die gentechnische Produktion von Malat und D-Lactat als zusätzlichem Wertstoff und als Hilfsstoff für den chemo-enzymatischen Aufschluss zunächst an Modellpflanzen getestet und nach dem Nachweis der Machbarkeit auf industrierelevante Energiepflanzen übertragen.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Hochschule Biberach, Institut für Angewandte Biotechnologie (IAB) durchgeführt. Biokatalytische Prozesse, die Enzyme nutzen um chemische Reaktionen effizient und ressourcenschonend zu betreiben, stellen einen wichtigen Teil der Biotechnologie dar, und werden bereits vielseitig z.B. für die Herstellung chemischer Produkte oder in der Lebensmittelindustrie eingesetzt. An vielen enzymkatalysierten Reaktionen sind außer den Enzymen und den umzusetzenden Substraten, jedoch zusätzliche Cofaktoren (Coenzyme) beteiligt, meist um die Reaktion mit Energie in Form von ATP und/oder Reduktionskraft z.B. durch NAD(P)H zu versorgen. Diese Coenzyme, die oft teuer und chemisch kompliziert sind, werden in den Reaktionen verbraucht und müssen daher ständig neu zugesetzt werden, was den Betrieb erschwert und die ökonomische Bilanz verschlechtert. Zielsetzung des Projekts CORENZ ist es, diese Cofaktoren innerhalb eines zellfreien enzymatischen Systems zu regenerieren und dadurch Enzymsysteme nachhaltig und kostengünstiger in geschlossenen Kreisläufen betreiben zu können. Als Modelsystem wird die enzymatische Umsetzung von Acetat und CO2 zu Malat unter Verbrauch von ATP, Ferredoxin und NADPH untersucht. In letzter Zeit werden zellfreie enzymatische Verfahren vermehrt untersucht um das klimaschädliche Treibhausgas CO2 als Rohstoff für die Herstellung von chemischen Produkten zu nutzen. Durch das gewählte Reaktionsystem kann CO2 in einer organischen Dicarbonsäure fixiert werden, welche eine wichtige Plattformchemikalie für die chemische Industrie darstellt.
Das Projekt "Teilprojekt 9" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Molekulare Biowissenschaften durchgeführt. Konstruktion von Hefen zur C5-Zuckervergärung zur Produktion von Bioethanol und Malat/Fumarat Zur Produktion von Lignozellulose-Ethanol sollen rekombinante Pentose-vergärende Hefen für den industriellen Einsatz konstruiert werden. Hierfür soll das bestehende Know-how auf so genannte Industriehefestämme übertragen werden, welche sich durch eine deutlich höhere Robustheit, Stabilität und Produktivität gegenüber Laborstämmen auszeichnen. Die neuen Hefestämme sollen unter industriellen Bedingungen getestet und durch evolutive Strategien an diese weiter angepasst werden. Neben der Produktion von Bioethanol soll die Produktion von Malat und Fumarat als aus Biomasse herstellbare Funktionsbausteine ('Building Blocks') für chemische Synthesen entwickelt werden. Dazu sollen rekombinante Hefestämme hergestellt werden, die anstelle von Ethanol diese beiden Dicarbonsäuren produzieren. Dazu werden die Hefen mittel der Methoden des Metabolic und Evolutionary Engineerings genetisch modifiziert. Die Produktion von Malat bzw. Fumarat soll mit der Verwertung von Pentosezuckern und der Fermentation von lignocellulosischen Hydrolysaten kombiniert werden.
Das Projekt "BioEnergie 2021 - Optimierung von Energiepflanzen zur vollständigen Nutzung der Biomasse als nachhaltige Energie- und Rohstoffquelle für ILs Extraktion" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Fachgruppe Biologie, Institut für Biologie III durchgeführt. Pflanzliche Biomasse ist ein nachwachsender Rohstoff zur nachhaltigen Gewinnung von Wertstoffen und Energie. Im beantragten Projekt sollen dementsprechend innovative chemo-enzymatische Aufschlussmethoden für Energiepflanzen entwickelt werden, die einen vollständigen Aufschluss und somit eine effiziente Konversion der Biomasse zu Wertstoffen und zu Energie ermöglichen. Bisher war der kostengünstige Aufschluss von Biomasse und die Verwertung der in Pflanzen enthaltenen Wertstoffe (z.B. Malat, Cellulose, Lignin) ein Problem, da die für einen Aufschluss benötigten Cellulasen teuer und unter den verwendeten Aufschlußbedingungen nicht ausreichend stabil sind. Eine neue effiziente Methode ist der fraktionierte Aufschluss der Biomasse unter Verwendung von ionischen Flüssigkeiten (ILS) bei gleichzeitiger enzymatischer Verzuckerung der Cellulose. Die dabei gebildete Glukose kann zu Biogas oder Bioethanol umgesetzt werden. Der ligninhaltige Reststoff soll durch einen chemo-enzymatischen Abbau zu Phenolderivaten umgewandelt bzw. zu Methan oder Synthesegas vergast werden. Geeignete Cellulasen wurden aus Metagenomen isoliert und werden mittels Gelenkter Evolution in ILS optimiert; geeignete Peroxidasen werden in Metagenomen gesucht und optimiert. In diesem Projekt sollen stabile Enzyme für einen effektiven ILs-Aufschluss von Energiepflanzen wie Luzerne, Schilf und Zuckerrüben entwickelt werden mit breiten Anwendungsmöglichkeiten, die in den LOEs der beteiligten Unternehmen (EOn; Biomasse) und (Smurfit Kappa; Papierherstellung). Diese potentiellen Anwendungsfelder könnten deutschen Wirtschaftsunternehmen ermöglichen, Energie aus heimischer Biomasse substanziell und international wettbewerbsfähig zu nutzen.
Das Projekt "BioEnergie 2021 - Optimierung von Energiepflanzen zur vollständigen Nutzung der Biomasse als nachhaltige Energie- und Rohstoffquelle für ILs Extraktion" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Biologie, Institut für Pflanzenwissenschaften und Mikrobiologie, Abteilung Mikrobiologie und Biotechnologie durchgeführt. Pflanzliche Biomasse ist ein geeigneter Rohstoff zur nachhaltigen Gewinnung von Wertstoffen und Energie, wenn bei der Produktion, dem Aufschluss und der Konversion zu Energieträgern die Anforderungen des Marktes und des Klima- und Umweltschutzes berücksichtigt werden. Durch die biotechnologische Bearbeitung geeigneter Pflanzen und die Auswahl der Anbauflächen muss ein hoher Nettoenergieertrag pro Flächeneinheit erzielt und eine Konkurrenz zur Nahrungsmittelproduktion vermieden werden. In diesem Projekt sollen neue Modell- und Energiepflanzen entwickelt werden, die einer effizienten Konversion der Biomasse zu Wertstoffen und Energie zugänglich sind. Bisher war der kostengünstige Aufschluss von Biomasse und die Verwertung der in Pflanzen enthaltenen Wertstoffe (z.B. Malat, Cellulose, Lignin) ein Problem, da die für einen Aufschluss benötigten Cellulasen teuer und unter den verwendeten Bedingungen nicht sehr stabil sind. Eine neue effiziente Methode ist der fraktionierte Aufschluss der Biomasse unter Verwendung von ionischen Flüssigkeiten (ILS) bei gleichzeitiger enzymatischer Verzuckerung der Cellulose. Geeignete Cellulasen und Peroxidasen werden gesucht, durch 'gelenkte Evolution' optimiert, und für den effektiven Abbau von Cellulose vor der Ernte gezielt in den Energiepflanzen produziert. Analog wird auch die gentechnische Produktion von Malat und D-Lactat als zusätzlichem Wertstoff und als Hilfsstoff für den chemo-enzymatischen Aufschluss zunächst an Modellpflanzen getestet und nach dem Nachweis der Machbarkeit auf industrierelevante Energiepflanzen übertragen. Cellulasen und Peroxidasen für die industrielle Verwertung von Lignocellulose sind von großem Interesse beim Aufschluss verschiedener Biomaterialen und eine Verwertung ist daher wahrscheinlich (siehe LoI der Fa. Merck).