Erhöhte Konzentrationen an Sulfat im Trinkwasser können negative Auswirkungen auf die Gesundheit der Konsumenten haben und führen zu einem erhöhten Risiko für Korrosionen im Leitungsnetz. Aufgrund dessen schreibt die Trinkwasserverordnung einen Grenzwert von 240 mg/l vor. Erhöhte Konzentrationen an Sulfat im Grundwasser, die eine spezielle Aufbereitungstechnik erfordern, kommen vor allem durch den Einfluss von Tagebauaktivitäten zustande. Im ausgehobenen Kippenmaterial kommt es zur Oxidation des Pyrits, was nach der Verfüllung der Gruben zu einem Anstieg der Sulfat-, Calcium- und Schwermetallkonzentration im Grundwasser führt. In betroffenen Grundwasservorkommen in Deutschland wurden Konzentrationen von bis zu 2500 mg/l Sulfat gemessen. Die Nanofiltration ist eine mögliche Aufbereitungstechnologie, die die Grundwassernutzung in derart beeinträchtigten Standorten auch nach der Verfüllung der Gruben erlaubt. Es wird erwartet, dass die Nanofiltration im Vergleich zu den anderen in Frage kommenden Technologien Ionenaustauscher, Destillation, Elektrodialyse und Umkehrosmose vor allem bei höheren Sulfatkonzentration in der Größenordnung >1000 mg/l das wirtschaftlichste Verfahren darstellt. In dem Projekt Nanofiltration zur Sulfatabscheidung bei der Trinkwasseraufbereitung wird die Aufbereitung mittels Nanofiltration experimentell im Labor- und Pilotmaßstab untersucht. Es wird dabei schwerpunktmäßig ein Standort betrachtet, der im Einflussgebiet des Braunkohletagebaureviers Inden I liegt und derzeit Sulfatkonzentrationen von 1000-1500 mg/l in einem Trinkwasserbrunnen aufweist. Neben der Untersuchung der Nanofiltration an sich wird eine Konzentrataufbereitung mittels CaSO4-Kristallisation auf ihre Effektivität geprüft.
Die Versorgung der Apfelfrüchte mit Ca2+ ist oft unzureichend, was zu physiologischen Erkrankungen, erhöhter Atmungsaktivität und zu Anfälligkeit gegen Krankheiten führen kann. Diese Probleme lassen sich nicht durch Maßnahmen im Bereich Wurzel/Boden lösen, so daß Applikation von Calciumchlorid oder Calciumnitratlösungen auf die Früchte weltweit praktiziert werden. Zahlreiche Spritzungen werden empfohlen, um den Ca-Gehalt der Früchte meßbar zu erhöhen, und das Auftreten der Stippigkeit zu reduzieren. Trotzdem ist die Wirkung oft unzureichend und deshalb werden außerhalb Europas die Früchte nach der Ernte mit CaCl2-Lösungen infiltriert. Dieses Verfahren ist außerordentlich effektiv, darf aber in Deutschland und anderen europäischen Ländern nicht angewandt werden. Damit bleibt die Applikation von Calciumsalzlösungen durch Spritzung auf die Früchte vor der Ernte die einzige Alternative. Obwohl es hunderte von Veröffentlichungen zum Thema Stippigkeit gibt, ist die Aufnahme in Früchte bisher nie systematisch untersucht worden. Um zu klären, wann und wie häufig gespritzt werden muß, sind solche Versuche aber unerläßlich. Im Wesentlichen geht es um die Beantwortung der folgenden Fragen: (1) Wie ändert sich die Geschwindigkeit der Aufnahme von CaCl2 im Verlauf der Fruchtentwicklung? Wie viele Behandlungen sind erforderlich und welche Zeitpunkte sind optimal? (2) Welchen Einfluß haben Schorffungizide auf die Calciumaufnahme? Die Literaturrecherche ergab, daß zu diesen Fragen bisher keine systematischen und quantitativen Untersuchungen durchgeführt worden sind. Eigene Vorversuche haben ergeben, daß viele Zusatzstoffe die Calciumaufnahme drastisch reduzieren.
Neue billige, leichte Wasserstoffspeicher. Zur Zeit Untersuchung von Mg- und Ca-Verbindungen. Ca-Mg-Ni-System.
Der Bausektor stellt eine bedeutende CO₂ Emissionsquelle dar. Global gehen jährlich CO₂ Emissionen von rund 2,5 Milliarden Tonnen auf die Herstellung der Baustoffe Zement, Stahl und Aluminium für den Gebäudebau zurück. Mehr als 1,5 Milliarden Tonnen davon werden der Herstellung von Zement und Beton zugeschrieben, ca. 8 % der globalen CO₂ Emissionen. Gleichzeitig trägt die Bauwirtschaft wesentlich zur Ressourcenbeanspruchung bei. In Deutschland wurden in 2022 rund 571 Millionen Tonnen mineralische Rohstoffe aus der Umwelt entnommen. Mineralische Bauabfälle stellen mit knapp 210 Millionen Tonnen den mit Abstand größten Abfallmassenstrom dar, der entsprechend aufbereitet als wichtige Rohstoffquelle zur Baustoffproduktion dienen kann. Um die Treibhausgasemissionen und den Ressourcenverbrauch im Bausektor zu reduzieren, setzt Berlin auf nachhaltige Baustoffe und zirkuläres Bauen. Die Berliner Senatsumweltverwaltung förderte daher in drei aufeinander folgenden Projektphasen die Untersuchung und Markteinführung einer vielversprechenden Technologie mit großem Potenzial, künftig zur Verbesserung der Klimabilanz von ressourcenschonendem Recycling-Beton (RC-Beton) beizutragen. Partnerinnen von Teilprojekten der Reihe „CORE – CO₂-reduzierter R-Beton“, waren u. a. die neustark AG , die Heim Gruppe Cemex-Heim RC-Baustoffe GmbH & Co. KG, Berger Beton SE , CEMEX Deutschland AG, das ifeu Institut Heidelberg gGmbH und das Museum für Naturkunde Berlin. Im Mittelpunkt stand dabei eine Technologie der neustark AG, die aufbereitete RC-Gesteinskörnungen aus Altbeton mit biogenem CO₂ beaufschlagt. Dabei wird CO₂ über ein Injektionssystem in Verbindung mit gebrochenem Altbeton gebracht und reagiert mit dem Calcium des Altbetons zu Kalkstein in Form von Kalzit. Das entstandene Material kann gemäß der Betonproduktnorm (DIN 1045-2) analog zur klassischen RC-Gesteinskörnung in bestimmten Betonrezepturen verwendet werden und in Anteilen natürliche Gesteinskörnungen ersetzen sowie tendenziell den Bindemittelbedarf in Betonrezepturen senken. Dies schafft einen ressourcenschonenden RC-Baustoff, der gleichzeitig als CO₂-Senke dient. In Adlershof wird ein zweiter Standort für die notwendige räumliche Erweiterung des Museums für Naturkunde (MfN) entwickelt. Nachhaltigkeitsziele des Museums für Naturkunde Das Museum für Naturkunde verfolgt bei der Entwicklung der Standorte in Mitte und Adlershof ambitionierte Nachhaltigkeitsziele. Besondere Bedeutung kommt dem Bereich Bau und Baubetrieb zu. Von der gründlichen Prüfung der tatsächlichen Bedarfe über sinnfällige funktionale Anordnungen bis hin zur Optimierung einzelner Baukörper und Konstruktionen wurden die Ziele der Nachhaltigkeit in jedem Arbeitsschritt prioritär beachtet, bei gleichzeitiger Sicherstellung der angemessenen und sicheren Unterbringung der wertvollen Sammlungen. Die aus einer kompakten Sammlungsunterbringung resultierenden hohen Verkehrslasten sind nur in einem Bauwerk aus Stahlbeton zu verwirklichen. Der Neubau in Adlershof wurde aus diesem Grund als Stahlbetonskelettbau konzipiert. Der Einsatz von RC-Betonen war in diesem Kontext naheliegend und so bot sich die Gelegenheit, in Zusammenarbeit mit der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt und weiteren Partnerinnen den Einsatz des innovativen, bereits in Bauvorhaben bewährten, CO₂-speichernden CORE-Betons weiter zu untersuchen. Wo sich der CORE-Beton bei der Errichtung des Zweitstandortes des MfN in Adlershof einsetzen ließe, wurde gemeinsam unter dem Titel „CORE 3 – CO₂-reduzierter R-Beton – Phase 3“ durch die Berliner Senatsumweltverwaltung, das ifeu Institut Heidelberg, die Heim-Gruppe, die Cemex Deutschland AG und das Museum für Naturkunde untersucht. Dabei lag das Hauptaugenmerk auf dem Einsatz von RC-Gesteinskörnung, dem Einsatz aktiv karbonatisierter RC-Gesteinskörnung und dem Einsatz von klinkereffizienten Zementen zur Herstellung CO₂-armer Betone. In der praktischen Anwendung getestet werden konnte überdies die neue Normung für den RC-Beton-Einsatz (die überarbeitete DIN 1045-2), welche wesentlich größere Mengenanteile an RC-Gesteinskörnung zulässt, als es bisher der Fall war. Ziel war ein möglichst breiter Einsatz der ‚neuen‘ Betone. Im Ergebnis ist es bei einer großen Zahl der Betonbauteile möglich, Recyclingbeton mit möglichst hohen Anteilen rezyklierter Körnung zu nutzen (alle bis zu einer Druckfestigkeitsklasse von C30/37). Lediglich die Deckenplatten der Sammlungsräume, welche für besonders hohe Verkehrslasten ausgelegt sind (15 kN/m²), werden in Spannbeton und damit in konventionellem Beton ausgeführt. Insgesamt können so Bauteile in einer Menge von ca. 12.000 m³ als RC-Beton ausgeführt werden (für die Gründung ca. 6.000 m³, die Innenbauteile ca. 3.000 m³, die Außenwände ca. 1.300 m³ und das Dach ca. 1.600 m³.) Ausgehend von den für das Bauvorhaben benötigten Betonsorten (v.a. Druckfestigkeiten und Expositionsklassen) wurden unter Berücksichtigung der Projektziele und unter Beachtung der neuen Vorgaben aus dem Regelwerk (DIN 1045-2) die maximal möglichen Anteile an mineralisierter RC-Gesteinskörnung in den einzelnen Betonrezepturen abgeleitet. Der Bericht zum Projekt kann am Seitenende heruntergeladen werden. Bezogen auf den Zweitstandort in Adlershof hätte eine Herstellung aller Betonbauteile, welche im Rahmen des CORE 3 Projektes in Recyclingbeton hergestellt werden, mit einem CEM I-Beton entsprechend dem Branchenreferenzwert des C.E.C. (CONCRETE for Engineering and Contracting) einen Ausstoß von 3.200 Tonnen CO₂ zur Folge (mit deutschem Durchschnittsbeton 2.700 Tonnen CO₂). Erfolgte die Herstellung dieser Bauteile mit der hier angesetzten Referenzrezeptur (RC-Beton mit 25 % grober RC-Gesteinskörnung, CEM II/C), wäre eine Verringerung des CO₂ Ausstoßes auf 1.800 Tonnen CO₂ möglich. Ziel des Projektes ist es zu zeigen, wie durch die individuelle, den jeweiligen Bauteilen spezifisch angepasste Betonrezeptur – und unter Beachtung der novellierten DIN 1045-2 – und die Speicherung von CO₂ der CO₂-Fußabdruck pro m³ Beton weiter verringert werden kann, soweit dies Vorgaben aus dem Regelwerk zu Mindestzementgehalten ermöglichen. Bei Errichtung des Gebäudes mit den Betonrezepturen, die im Projekt in Kombination von karbonatisierter RC-Gesteinskörnung und CO₂-armer Zemente (mit gleichzeitiger Reduktion der Bindemittelgehalte) entwickelt wurden, kann der Ausstoß auf 1.360 Tonnen CO₂ reduziert werden. Dies entspricht einer Einsparung gegenüber der Referenzrezeptur um gut 430 Tonnen CO₂, was einer relativen Einsparung von knapp 25 % entspricht (inklusive CO₂-Speicherwirkung). Der detaillierte Bericht CORE 3 kann am Ende der Seite heruntergeladen werden. CORE 1: Baustoff-Entwicklung im Labor und ökologisches Potenzial Von Dezember 2020 bis April 2021 lief die erste Projektphase. Hier wurden im Labormaßstab die Grundlagen zur Baustoffentwicklung gelegt und die Erkenntnisse ökologisch und ökonomisch bilanziert und bewertet. Dazu stellte die Heim-Gruppe gebrochenen Altbeton sowie RC-Gesteinskörnungen zur Verfügung, welche die neustark AG mit CO₂ beaufschlagte und karbonatisierte. Aus diesem Material sowie aus nicht karbonatisiertem Referenzmaterial wurden bei der Firma Berger Betonrezepturen mit erhöhten Recyclinggehalten und reduzierten Zementanteilen hergestellt. Dabei wurden sowohl aktuelle als auch zukünftige regulatorische Rahmenbedingungen für RC-Beton (insbesondere Verwendung von Brechsanden 0–2 mm) beachtet. Zudem erstellte das ifeu-Institut Heidelberg eine vereinfachte Ökobilanz des Verfahrens und eine Kostenrechnung für CO₂ aus Berliner Biogasquellen. Die Ergebnisse der ersten Projektphase bestätigten das enorme ökologische Potenzial des Verfahrens. Der detaillierte Bericht CORE 1 kann unter den unten genannten Kontaktdaten angefordert werden. In der zweiten Projektphase im Mai 2021 bis Dezember 2022 startete die praktische Anwendung im großen Maßstab: In der Aufbereitungsanlage für mineralische Bauabfälle der Firma Heim wurde RC-Gesteinskörnung aus reinem Altbeton (Typ 1) mit Hilfe einer mobilen Anlage der neustark AG mit CO₂ beaufschlagt. Die karbonatisierte RC-Gesteinskörnung erhielt erstmals eine Zertifizierung und Zulassung als Zuschlag nach DIN EN 12620 für Transportbeton. Im Herbst 2022 wurden rund 200 m³ dieses Betons in einem Bauabschnitt der Quartiersentwicklung Friedenauer Höhe in Berlin eingesetzt, die im Joint Venture mit OFB Projektentwicklung und Instone Real Estate realisiert wurde. Der Beton diente u.a. als Aufbeton für Geschossdecken sowie zur Betonierung von Wänden und des Aufzugsschachts. Parallel zeigte eine Bilanzierung des Umweltforschungsinstitut ifeu Heidelberg, dass mit den entwickelten Rezepturen eine relevante Umweltentlastung über alle betrachteten Umweltwirkungskategorien hinweg möglich ist. Je höher der Anteil insbesondere an feiner RC-Gesteinskörnung, desto höher die Bindungsrate für CO₂. Die Behandlung der RC-Gesteinskörnung zeigte, dass die Klimawirksamkeit des Betons bei gleichen Eigenschaften und Einhaltung aller einschlägigen Normen durch die Kombination von karbonatisierter RC-Gesteinskörnung und Bindemittelreduktion um bis zu 20 % verringert werden kann. Der detaillierte Bericht CORE 2 kann unter den unten genannten Kontaktdaten angefordert werden. Die im CORE-Pilotvorhaben demonstrierte Praxistauglichkeit der Technologie überzeugte alle Projektbeteiligten. Bereits mehr als 10 Anlagen der Firma neustark zur CO₂-Speicherung sind in der Schweiz in Betrieb. 2023 investierte Heim erstmals in Deutschland in eine entsprechende Anlage, sodass CO₂-speichernde RC-Gesteinskörnung seitdem auf dem Berliner Markt verfügbar ist. Die erste CO₂-Speicheranlage in Deutschland wurde am 28.09.2023 feierlich durch neustark und HEIM in Anwesenheit von über 100 Gästen und Vertreterinnen und Vertretern der Politik in Berlin Marzahn eröffnet. Bei einem flächendeckenden Einsatz der im CORE-Projekt entwickelten und in der Praxis erprobten Betonrezepturen ließen sich im Land Berlin durch die Kombination von karbonatisierter RC-Gesteinskörnung und den effizienten Einsatz CO₂-armer Zemente signifikante CO₂-Einsparungen erreichen. Bilanziell anrechenbar wären die Negativemissionen aus der karbonatisierten RC-Gesteinskörnung, wenn die aktuell zur Querfinanzierung des Baustoffs auf dem privaten CO₂-Markt emittierten Zertifikate durch den Bauherrn aufgekauft würden oder ein entsprechendes Arrangement dazu mit neustark gefunden würde. Das Berliner Ausschreibungs- und Vergabegesetz (BerlAVG) verpflichtet öffentliche Auftraggeber der unmittelbaren Berliner Landesverwaltung bei der Vergabe von Bauleistungen ab einem geschätztem Auftragswert von 50.000 Euro ökologische Kriterien zu berücksichtigen und umweltfreundlichen und energieeffizienten Produkten, Materialien und Verfahren den Vorzug zu gegeben. Wesentliches Instrument zur Umsetzung dieser Vorgabe ist die Verwaltungsvorschrift Beschaffung und Umwelt (VwVBU). Die Federführung für die Entwicklung von Vorschlägen an den Senat zur Fortentwicklung der VwVBU liegt bei der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt. Verwaltungsvorschrift Beschaffung und Umwelt – VwVBU Nachhaltiges Bauen in der öffentlichen Beschaffung Nachbericht Fachdialog zirkuläres Bauen am Beispiel ressourcenschonender Beton Leitfaden für nachhaltiges Bauen des Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen Pressemitteilung der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt vom 07.10.2022 zum erstmaligen Einsatz von ressourcenschonendem und klimaverträglicherem Transportbeton in Berliner Bauvorhaben Friedenauer Höhe
Das Forschungsprojekt befasst sich mit Kronenerkrankungen, die nachweislich auf Phytophthora-Arten zurückgehen und gerade an älteren Bäumen in den Parkanlagen der Bayerischen Schlösserverwaltung derzeit zunehmen. Dabei wurde ein in Australien an Eukalyptusbäumen bewährtes Pflanzenstärkungsmittel erstmalig im größeren Stil an europäischen Baumarten in seiner Wirkung getestet. Die Auswertung wird fotografisch über eine Kronenansprache erfolgen, wobei bei allen Versuchsbäumen das Kronenverlichtungsprozent als Kenngröße dient.
Der ökologische und ökonomische Umgang mit Ressourcen in der Landwirtschaft und die Schaffung sinnvoller und nachhaltiger Stoffkreisläufe führen heute zu hohen Ansprüchen an die Produktivität landwirtschaftlicher Prozesse und die Umweltverträglichkeit. Dies schließt auch die bedarfsorientierte Verwendung von Nährstoffen ein. Im Kreis Borken fallen bspw. mehr als 1.000.000 m3 Überhanggülle an, die nicht auf eigenen Flächen ausgebracht werden kann. Die heutige Lösung des Nährstoffproblems: Abtransport über z.T. weite Strecken. Am Standort Nordvelen werden zukünftig 200.000 t/a regionale Wirtschaftsdünger (Überhanggülle) vollaufbereitet. In einem mehrstufigen Prozess (mechanisch-biologisch-thermisch-chemisch) werden dabei die in der Gülle enthaltenen Wertstoffe (Phosphor-, Stickstoff- u. Kaliverbindungen) in Form von marktfähigen upcycling Produkten für andere Prozessketten zurückgewonnen. Hierbei verbleiben keine umweltbelastenden oder entsorgungspflichtigen Stoffströme. Als Nebeneffekt kann auch die im Prozess gewonnenen Energie (Strom und Wärme) fast vollständig selbst genutzt werden, um so mindestens 90 % des Energiebedarfs der Gesamtanlage im Regelbetrieb decken zu können. Mit Fördermitteln werden am Standort umwelttechnologische Verfahren unter wissenschaftlicher Begleitung entwickelt und sollen am Standort unter realen Anlagenbedingungen im Betrieb erprobt werden. Im engen Dialog mit Ministerien und Institutionen auf Bundes- und Landesebene sowie unseren Partnern befassen wir uns mit den Fragestellungen der Stickstoffminderungsstrategie des BMUB (Nachhaltigkeitsoffensive) sowie Grundsatzstrategien zur Hygienisierung von Gülle. Das Konzept der zentralen Gülle-Vollaufbereitung der NDM ermöglicht hierbei in einem einmaligen Industrieprozess eine 100 %ige Stickstoffausschleusung als Beitrag zum Klimaschutz. Im Hinblick auf die weitere Verbreitung der Afrikanischen Schweinepest (ASP) besteht, durch die prozessbedingte Hygienisierung der festen und flüssigen Stoffströme, zudem eine nachhaltige und wirksame Lösung zur Hygienisierung von Güllen unabhängig vom Seuchenfall. In einer ersten Prozessstufe erfolgt eine Trennung der Güllen in feste und flüssige Bestandteile. Aus der Vergärung der Dünnphase nach Separation wird Biogas gewonnen, welches im BHKW zur Erzeugung von Strom und Heißwasser zur Deckung des Eigenbedarfs der Anlage genutzt wird. In der zweiten Prozessstufe wird ein P-Feststoff und eine N-Dünnphase gewonnen, letztere wird hygienisiert und der enthaltene Stickstoff eliminiert. P-Feststoff wird getrocknet und verbrannt, dabei wird zusätzliche Energie in Form von Warmwasser zur internen Prozessnutzung erzeugt. Nach dem Verbrennungsprozess verbleibt eine Phosphorasche, die als Phosphatdünger eingesetzt wird bzw. zukünftig zur Herstellung von hochreinen Phosphorsäuren dienen soll. Das verbleibende Wasser enthält hauptsächlich Kalium und andere Spurenelemente.
Mit der Erforschung eines geschäumten Calciumsulfatbaustoffes und der dafür geeigneten Applikationstechnolgien soll der Nachfrage nach neuen Baustoffen / Materialien und deren Einsatz entgegen gekommen werden. Zwei der vielfältigen Nutzungsmöglichkeiten sollen im Rahmen dieses Projektes erschlossen werden. Dabei handelt es sich zum einen um die Herstellung einer horizontalen Dämmschicht im Fußbodenbereich, die auch Brandschutzaufgaben erfüllen kann und unter anderem zur Kaltdachsanierung geeignet ist. Zum anderen soll der neue Schaumbaustoff der Verfüllung von sanierungsbedürftigem sulfathaltigen Mauerwerk dienen und damit erstmals einen vollkommen sulfatverträglichen Baustoff darstellen. Gipsbaustoffe unterliegen durch Einflüsse aus Lagerung, Temperatur und Luftfeuchte einer sogenannten 'Alterung', das heißt es verändern sich deren Eigenschaften über die Zeit nach der Herstellung. Im Wesentlichen davon betroffen ist die Haltbarkeit und damit die Lagerdauer. Es wurde bislang noch keine definierte Alterung von Gipsbindemitteln technisch umgesetzt. Ziel des Teilprojektes ist, diese Alterung zu erforschen und umzusetzen. Hierzu dient das umfassende Arbeitspaket des Teilvorhabens Alterungsuntersuchungen. Dazu gehören das Testen unterschiedlicher Alterungsaggregate und die ausführliche Untersuchung der entstandenen gealterten Bindemittel. Für die Überwachung der Qualitätskriterien und Verfügbarkeit für die verschiedensten Anwendungen ist CASEA ebenfalls zuständig. Die künstliche Alterung und die Abstimmung der Gipsbindemittel zielt auf die radikale Reduzierung des Wasseranspruches ab. CASEA obliegt die Durchführung der wichtigsten bindemittelseitigen Maßnahmen zum Erreichen dieses Forschungszieles. Diese Maßnahmen sind 1. die künstliche Alterung und 2. die Optimierung des Kornbandes sowie 3. die Erforschung eines Bindemittels mit erhöhter innerer Wasserbindung (EIW).
Im Verbundvorhaben werden neue Baustoffe / Materialien - geschäumte Calciumsulfatbaustoffe (Gipsbaustoffe) - und die dafür geeigneten Applikationstechnologien sowie deren Einsatzmöglichkeiten erforscht. Zwei der vielfältigen Einsatzmöglichkeiten sollen im Rahmen dieses Projektes erschlossen werden. Dabei handelt es sich zum einen um die Herstellung einer horizontalen Dämmschicht im Fußbodenbereich, die auch Brandschutzaufgaben erfüllen kann und unter anderem zur Kaltdachsanierung geeignet ist. Zum anderen soll der neue Schaumbaustoff der Verfüllung von sanierungsbedürftigem sulfathaltigen Mauerwerk dienen und damit erstmals einen vollkommen sulfatverträglichen Baustoff darstellen. Im Teilvorhaben werden Schaumbaustoffsysteme erforscht sowie deren Technologien zur Herstellung und Verarbeitung erarbeitet. Es ergeben sich folgende wissenschaftlich/technischen Arbeiten: Es werden Schäume für den Einsatz in Calciumsulfatbaustoffen auf der Basis von durch die Forschungspartner bereitgestellten Schaumbildnern, Schaumstabilisatoren und Schaumerzeugern erforscht. Die Zusammenführung von Schaum und Gipsleim zu einem Zweikomponentensystem zur Erzeugung von Schaumbaustoffmischungen wird erarbeitet. Sowohl die Eigenschaften von erhärteten geschäumten Gipsbaustoffen als auch die Zusammenhänge zwischen den Schaumbaustoffmischungen (Frischmörtel) und den erreichbaren Schaumbaustoffeigenschaften werden erforscht. Aus diesen Ergebnissen werden Schlussfolgerungen für die technologischen Prozesse und speziellen Anwendungen abgeleitet.
Origin | Count |
---|---|
Bund | 41 |
Land | 4 |
Type | Count |
---|---|
Chemische Verbindung | 3 |
Daten und Messstellen | 1 |
Förderprogramm | 38 |
Gesetzestext | 1 |
Text | 1 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 4 |
offen | 41 |
Language | Count |
---|---|
Deutsch | 40 |
Englisch | 7 |
Resource type | Count |
---|---|
Archiv | 1 |
Dokument | 1 |
Keine | 33 |
Webdienst | 2 |
Webseite | 12 |
Topic | Count |
---|---|
Boden | 30 |
Lebewesen und Lebensräume | 33 |
Luft | 29 |
Mensch und Umwelt | 45 |
Wasser | 31 |
Weitere | 45 |