API src

Found 369 results.

Related terms

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Nanopartikel und Kolloide als Vektoren von P-Verlusten und -Umverteilungen/Verlagerungen im Zuge der Entwicklung von Waldökosystemen

Hintergrund: Obwohl Nanopartikel und Kolloide (NPC) als Vektoren für P-Verluste und P-Neuverteilungen in Waldsystemen fungieren, fehlen grundsätzlichen Erkenntnisse über den Zusammenhang zwischen steuernden Umweltfaktoren und dem Schicksal, Transport und der zusammensetzung von NPC und ihrer P-Beladung. Wir postulieren, dass hydrologisch bedingte NPC-Verluste und -umverteilungen eine dreifache Gefahr für das langfristige biogeochemische Recycling von P in Waldökosystemen und damit die Ökosystemernährung darstellen. Projektziel: Aufklärung der Bedeutung und Steuerung von NPC-Verlusten und -umverteilungen für die langfristige Effizienz des P-Recycling in Waldökosystemen. Projekt-Hypothesen: Mobile Kolloide in Waldökosystemen entstammen hauptsächlich dem organischen Oberboden (alle WPs), (ii) Laterale Flüsse vom kolloidalen P während Starkregenereignissen begrenzen langfristig die maximale P-Wiederverwertungseffizienz von Waldökosystemen (WP1), (iii) P ist überwiegend mit organischen Kolloiden assoziiert und größtenteils bioverfügbar, was eine weitere Limitierung der P-Wiederverwertung im Wald darstellt (WP2), (iv) Die Kolloidverlagerung in Wäldern führt zu P-reichen und P-armen Stellen (laterale Umverteilung) bzw. zu einem P-Transfer aus oberflächennahen organischen Horizonten zum mineralischen Unterboden und damit zu einer P-Festlegung in diesem Horizont (WP3), und (v) Abnehmende atmosphärische Einträge von organischen Säuren und Kalkung erhöhen den pH Wert und reduzieren das austauschbare bzw. gelöste Al3+ im Waldoberboden, was die Mobilisierung bzw. den Verlust von kolloidalem P fördert (WP4). Methodik: Wir werden die Konzentration und Zusammensetzung von Kolloiden in den Wasserproben i) aus den Streulysimetern, ii) aus dem lateralen Fluss in Bodeneinschnitte (trenches) und iii) aus den Oberläufen von Bächen an den Versuchsstandorten in Bad Brückenau, Conventwald, Vessertal und Mitterfels bestimmen. Die Kolloide werden mittels Feld Fluss Fraktionierung fraktioniert bzw. isoliert und in Kombination mit ICP-MS, TOC und TN Analyse, sowie TEM gekoppelt mit Energiedispersiver Röntgenspektroskopie charakterisiert. Aufgaben/Arbeitspakete: WP1: Entnahme von Wasserproben aus dem lateralen Fluss in Bodeneinschnitten (trenches) (mit Puhlmann/Weiler und Julich/Feger). Entsprechend unserer Hypothese sollte die Gesamtmenge von NPCs aus präferenziellen Fließwegen, dem lateralen Fluss und den Oberläufen der freigesetzten Menge aus der organischen Bodenoberschicht gleich sein. WP2: Untersuchung der Bioverfügbarkeit der NPC aus dem 'interflow' und den Oberläufen durch Inkubationsexperimente mit Enzymen um Phosphatester und Inositol-Phosphate nachzuweisen (mit Kaiser/Hagedorn/Niklaus). (Text gekürzt)

Untersuchung zur Bestimmung des Stoffaustrags mit dem Sickerwasser in Waldoekosystemen

Ergaenzung von Stoffeintragsmessungen durch Luftverunreinigungen auf zwei Versuchsflaechen des Pilotprojektes 'Saure Niederschlaege'. Erstellung einer mehrjaehrigen Fluessebilanz. Auswirkungen einer Kalkung auf den Stoffaustrag.

Dynamischer Wiesenbau

Zielsetzung - Ausarbeitung eines EU-rechtskonformen Bewirtschaftungskonzeptes im Natura 2000- Gebiet 'Wiesengebiet im Mühlviertel' mit einer 'dynamischen' Bewirtschaftung der FFH Lebensraumtypen Bergmähwiesen (6520), Glatthaferwiesen (6510) und Borstgrasrasen (6230). - Beantwortung folgender Fragestellungen: 1. Wie wirken sich Umbruch, Kalkung, Vorverlegung des Schnittzeitpunktes und/oder Erhöhung der jährlichen Schnittzahl auf die Pflanzenartenvielfalt, Pflanzenartenzusammensetzung, Ertrag und Futterqualität in FFH-Wiesenlebensraumtypen aus? 2. Wie können durch traditionelle und moderne Bewirtschaftungsmethoden FFH-Wiesenlebensraumtypen erhalten werden? 3. Ist aus naturschutzfachlicher Sicht eine Verbesserung hinsichtlich Pflanzenartenvielfalt möglich und welche Zeiträume sind hierfür notwendig? - Das für das Natura 2000-Gebiet 'Wiesengebiete im Mühlviertel' ausgearbeitete Bewirtschaftungskonzept soll als Modell für andere Natura 2000-Gebiete dienen. - Information der entsprechenden Gremien der EU Kommission über die Forschungsergebnisse. Bedeutung des Projekts für die Praxis: Mit diesem Projekt soll die Zusammenarbeit zwischen Landwirtschaft und Naturschutz in Natura 2000-Gebieten verbessert werden. Das beantragte Forschungsprojekt wird daher vom Amt der Oberösterreichischen Landesregierung, von der Landwirtschaftskammer Österreich und Oberösterreich sowie von der Bezirksbauernkammer Freistadt unterstützt.

Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen

Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch). Treibhausgas-Emissionen aus der Landwirtschaft Das Umweltbundesamt legt im Rahmen des Bundes-Klimaschutzgesetzes (KSG) eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH 4 )-Emissionen und 77,3 % der Lachgas (N 2 O)-Emissionen in Deutschland aus der Landwirtschaft. Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO 2 )-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten ⁠ Treibhausgas ⁠-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO 2 )-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden. In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt. Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO 2 aus anderen kohlenstoffhaltigen Düngern aus. Die CO 2 -Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne ⁠ LULUCF ⁠) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“). Treibhausgas-Emissionen der Landwirtschaft nach Kategorien Quelle: Umweltbundesamt Diagramm als PDF Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024 Quelle: Umweltbundesamt Diagramm als PDF Klimagase aus der Viehhaltung Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO 2 -Äquivalente) und 2024 (33,2 Mio. t CO 2 -Äquivalente) um etwa 27,5 % zurückgegangen. Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N 2 O) und seiner Vorläufersubstanzen (Stickoxide, NO x und Stickstoff, N 2 ). Dieser Bereich trägt zu 16,2 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert. Somit lassen sich in 2024 rund 34,9 Mio. t CO 2 -Äquivalente direkte THG-Emissionen (das sind 56,2 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der ⁠ Deposition ⁠ unberücksichtigt. Klimagase aus landwirtschaftlich genutzten Böden Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO 2 )-Freisetzung infolge von Landnutzung und Landnutzungsänderungen (Umbruch von Grünland- und Niedermoorstandorten) sowie der CO 2 -Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO 2 -Äquivalente Lachgas durch die Bewirtschaftung landwirt­schaftlicher Böden emittiert. Es werden direkte und indirekte Emissionen unterschieden: Die direkten Emissionen stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO 2 -Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus. Quellen für indirekte Lachgas-Emissione n sind die atmosphärische ⁠ Deposition ⁠ von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen. Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab. Gründe für die Emissionsentwicklung Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen ⁠ Dürre ⁠ im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten. Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte Bundes-Klimaschutzgesetz legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO 2 -Äquivalente fest, welche mit 62 Mio. t CO 2 -Äquivalente unterschritten wurde. Weiterführende Informationen zur Senkung der ⁠ Treibhausgas ⁠-Emissionen finden Sie auf den Themenseiten „Ammoniak, Geruch und Staub“ , „Lachgas und Methan“ und „Stickstoff“ .

5-Länder-Evaluierung: Forstliche Förderung - Begleitung und Bewertung der Programme zur Entwicklung der ländlichen Räume nach der VO (EG) 1305/2013 der Länder Hessen, Niedersachsen/Bremen, Nordrhein-Westfalen und Schleswig-Holstein - Evaluierung der forstlichen Förderung

Am Thünen-Institut für Internationale Waldwirtschaft und Forstökonomie werden die forstlichen Fördermaßnahmen der ländlichen Entwicklungsprogramme von drei Bundesländern evaluiert. Wir betrachten die Effekte der Maßnahmen auf die Biodiversität sowie den Wasser-, Boden- und Klimaschutz und die Wettbewerbsfähigkeit von Forstbetrieben. Darüber hinaus betrachten wir die Strukturen der Umsetzung, um mögliche Umsetzungshemmnisse zu erkennen. Hintergrund und Zielsetzung: Mit der forstlichen Förderung im Rahmen der ländlichen Entwicklungsprogramme sollen Waldbesitzer bei der naturnahen und nachhaltigen Bewirtschaftung ihrer Wälder unterstützt werden. Die wichtigsten Maßnahmen der Länder, um dieses Ziel zu erreichen, sind der Waldumbau, die Bodenschutzkalkung und der forstliche Wegebau. Daneben werden u.a. verschiedene Naturschutzschutzmaßnahmen und die Holzverarbeitung gefördert. Im Rahmen der Evaluierung wird geprüft, ob die Maßnahmen geeignet sind, die festgestellten Probleme zu beseitigen (Relevanz), ob die gesetzten Ziele erreicht werden (Zielerreichung) und ob die Maßnahmen so umgesetzt werden, dass die angestrebten Wirkungen erreicht werden können (Wirkung und Kausalität). Die Evaluierung der forstlichen Förderung ist eingebunden in die Gesamtevaluierung der ländlichen Entwicklungsprogramme. Zielgruppe: Zielgruppe der Evaluation sind zunächst die an der Förderung der ländlichen Entwicklung beteiligten Ebenen EU, Bund und Land (Programm- und Maßnahmenverantwortliche), darüber hinaus die Fachöffentlichkeit und Wissenschaft. Vorgehensweise: Am Anfang steht der Maßnahmencheck: Wer erhält für was welche Zuwendungsbeträge? Was soll die Maßnahme erreichen? Ist ihr Design grundsätzlich so gestaltet, dass sie die angestrebten Ziele erreichen kann? Es folgt die Vollzugsanalyse: Wie wurde die Maßnahme in Anspruch genommen? Gibt es grundlegende Hemmnisse in der Ausgestaltung, die potentielle Antragsteller abhalten, eine Förderung in Anspruch zu nehmen? Zum Ende der Programmlaufzeit stehen dann v.a. die Wirkungen der Maßnahmen im Mittelpunkt. Daten und Methoden: Genutzt werden Daten der Förderverwaltung und des allgemeinen waldbezogenen Monitorings wie der Bundeswaldinventur. Daneben erfolgen Auswertungen weiterer Sekundärdaten sowie eigene Befragungen und Fallstudien.

Projekt Waldkalkung

Zweck der Waldkalkungen ist, der zum Teil tief reichenden Versauerung der Waldböden entgegenzuwirken. Die fortschreitende Versauerung der Böden geht mit erheblichen Schädigungen des Ökosystems Wald einher. So werden mit sinkenden pH-Werten (Säuregradmesser) das giftige Aluminium und Schwermetalle ausgewaschen, die die Wurzeln der Bäume schädigen und ins Grundwasser verlagert werden. Auch Nährstoffe werden dem Boden entzogen und stehen damit den Pflanzen nicht mehr zur Verfügung. Durch die Kalkungsmaßnahmen werden die Waldböden sozusagen mit einer Schutzhülle aus Kalk bedeckt. Der Kalk soll die über die Niederschläge eingetragenen Säuremengen in den obersten Bodenschichten über einen gewissen Zeitabschnitt neutralisieren, um damit den Bodenzustand zu stabilisieren und ggfs. auch wieder zu verbessern. Die Kalkung dient zudem auch dem Grundwasser- und damit letztlich dem Trinkwasserschutz. Besonders kalkungsbedürftig sind die Waldflächen der Buntsandsteingebiete im Saarland, da deren Böden von Natur aus ein nur geringes Pufferungsvermögen gegenüber Säureeinträgen aufweisen. Den Kalkungsmaßnahmen vorausgegangen waren bodenchemische Analysen durch das Landesamt für Umwelt und Arbeitsschutz (LUA), um zuverlässige Aussagen über den Bodenzustand zu erhalten. Im Anschluss an die Kompensationskalkung wird es weitere Untersuchungen im Sinne einer Wirkungskontrolle geben. Von der Kalkung ausgeschlossen werden einerseits aus Naturschutzgründen sensible Flächen (z.B. Naturschutzgebiete, Naturwaldzellen u.ä.). Anderseits werden Verkehrsflächen und siedlungsnahe Flächen ausgeschlossen. Die Kompensationskalkung erfolgt ausschließlich in der vegetationsarmen Zeit, da nur dann sichergestellt ist, dass eine möglichst große Kalkmenge den Boden auch erreicht. Ausgebracht wird der Magnesiumkalk per Hubschrauber. Bei einer Menge von etwa 3 Tonnen pro Hektar können so pro Tag zwischen 60 und 75 Hektar Wald behandelt werden.

Nitratauswaschung unter aufgeforsteten Flächen und Untersuchungen zum Zustand der Versauerung in der Tiefe im Wasserschutzgebiet Thülsfeld

Die Aufforstung von ehemals ackerbaulich genutzten Flächen in den Grundwasser-Einzugsgebieten des Oldenburgisch-Ostfriesischen Wasserverbandes (OOWV) wird als eine Maßnahme gesehen, die Emissionen aus der ackerbaulichen Bodennutzung dauerhaft zu vermindern. Dies betrifft vor allem Stickstoff in der Form von Nitrat aber auch die Hauptnährstoffe Phosphor und Kalium und die Begleitionen Chlorid und Sulfat. Bei der Anpflanzung von jungen Baumbeständen besteht anfangs nur eine geringer Stickstoffbedarf. Die Stickstoffvorräte des Bodens würden somit noch mehrere Jahre mit ihrem mobilisierten Nitratmengen das Grundwasser belasten. Deshalb muß gleichzeitig, neben der Anpflanzung der Baumbestände, ein Unterwuchs angepflanzt werden, der den überschüssigen Stickstoff des ehemaligen Ackerbodens verwertet. Zu dieser Vorgehensweise hatte sich der OOWV vor einigen Jahren bei der Umwandlung von Ackerflächen entschlossen. Ziel des Projektes ist es, in Sinne einer Erfolgskontrolle, die Entwicklung der Qualität des Sickerwassers unter den aufgeforsteten Flächen zu untersuchen. Dabei soll der Zustand der ungesättigten Zone bis in den Bereich des Kapillarsaumes berücksichtigt werden. Verschiedene Maßnahmen zur Vermeidung von negativen Entwicklungen, wie z.B. Aushagerung vor der Aufforstung oder Kalkung, werden diskutiert.

Kalkung/Düngung

a) Bodenschutzkalkung: Wiederholte flächige Ausbringung (Flug-, Blasegeräte, manuell) magnesiumreicher Karbonatkalke auf den Waldboden zum Schutz des Bodens (Kompensation eingetragener und gespeicherter Säure), seiner Bestockung (Ernährung, Benadlung, Vitalität) und waldbürtiger Gewässer (Transfer von Schwermetallen und Säure) - Einzelflächenplanung, Flächen-, Mengen-, Qualitätskontrolle durch Forstbezirke - Fachberatung, Gesamtflächenplanung, Ausschreibung, Zuschlagserteilung durch Geschäftsleitung des SBS b) Meliorationskalkung: Einmalige partielle Ausbringung (Pflanzplatz, Pflanzstreifen) und Einarbeitung (Lochbohrer, Fräse, manuell) magnesiumreicher Karbonatkalke in saure, basenarme Waldböden bei Begründung einer neuen Waldgeneration aus edaphisch anspruchsvollen Baumarten (Laubhölzer, Weißtanne), um deren Aufwachsen sowie den Anflug von Sukzessions-Baumarten zu sichern bzw. zu fördern. - Flächenplanung, Flächen-, Mengen-, Qualitätskontrolle durch Forstbezirke - Fachberatung durch Geschäftsleitung des SBS c) Düngung: Ausbringung von Mineraldüngern (Mengen- und/oder Spurenelemente) zur Behebung von diagnostizierten Ernährungsdefiziten und/oder -disharmonien - Flächenplanung, Flächen-, Mengen-, Qualitätskontrolle durch Forstbezirke - Fachberatung durch Geschäftsleitung des SBS Es werden Versuche bzw. Untersuchungen zur Wirkung von Bodenschutz- und Meliorationskalkungen auf Humus, Boden, Bodenwasser, Bodenvegetation, Kronen- und Ernährungszustand von Waldökosystemen durchgeführt (Meliorationskalkungen im Rahmen von Waldumbauversuchen, Bodenschutzkalkungen unter Praxisbedingungen).

Bodenrestauration beim Umbau von Fichte in Buche

Um eine nachhaltige forstwirtschaftliche Nutzung bei gleichzeitiger Sicherung der Schutz- und Erholungsfunktionen des Waldes zu gewaehrleisten, muessen die Reglerfunktionen des Waldbodens erhalten bzw. wiederhergestellt werden (Waldbodenrestauration). Das Spektrum der moeglichen Waldbodenrestaurationsmassnahmen laesst sich idealtypisch den drei Gruppen 'chemisch-technische Waldbodenrestauration', 'chemische Waldbodenrestauration' und 'biologische Waldbodenrestauration' zuordnen. Es wird ein Restaurationskonzept untersucht, das auf biologischen Prozessen aufbaut (Foerderung grosskroniger, vitaler Baeume mit leicht zersetzlicher Streu und intensiver Tiefendurchwurzelung, Erziehung strukturreicher Bestaende, Umbau von Nadelholzreinbestaenden in laubbaumreiche Bestockungen, Verbesserung des Humuszustandes und Verteilung von Basen ueber die Wurzel- und Blattstreu eingebrachter Laubbaeume) und diese, soweit erforderlich, baumarten- und standortabhaengig mit technischen (Pflanzloch/Pflanzstreifen-/Saatbettmeliorationen) und chemischen Mitteln (wiederholte Bodenschutzkalkungen auf versauerungsgefaehrdeten Standorten, ggf. ergaenzt durch die kleinflaechige, am Einzelbestand orientierte Ausbringung von Mangelnaehrelementen) unterstuetzt. Besonderer Untersuchungsbedarf besteht insbesondere im Hinblick auf die Frage, unter welchen Bedingungen plaetzeweise Bodenmeliorationen (z.B. in Pflanzloechern, Saatplaetzen oder Pflanzstreifen) in Ergaenzung der Oberflaechenkalkungen notwendig sind. Zu ueberpruefen ist, in welchem Umfang kleinflaechige Meliorationen (Pflanzloch, Pflanzstreifen, Saatbett) die Biomasseproduktion der eingebrachten Laubbaeume (und damit den gewuenschten Effekt) erhoehen und die Wurzelbiomasse und vor allem deren Tiefenverteilung beeinflussen. Untersuchungsbedarf besteht weiterhin im Hinblick auf die Frage, ob es so gelingt, eine ausreichende Phosphor-, Kalium- oder Spurenelementversorgung von anspruchsvolleren (Laub-)Baeumen dauerhaft zu erreichen. Desgleichen muessen die oekosystemaren Auswirkungen der Einbringungstechniken untersucht werden.

Carbon, water and nutrient dynamics in vascular plant- vs. Sphagnum-dominated bog ecosystems in southern Patagonia

In bog ecosystems, vegetation controls key processes such as the retention of carbon, water and nutrients. In northern hemispherical bogs, a shift from Sphagnum- to vascular plant-dominated vegetation is often traced back to Climate Change and increased anthropogenic nitrogen deposition and coincides with substantially reduced capacities in carbon, water and nutrient retention. In southern Patagonia, bogs dominated by Sphagnum and vascular plants coexist since millennia under similar environmental settings. Thus, South Patagonian bogs may serve as ideal examples for the long-term effect of vascular plant invasion on carbon, water and nutrient balances of bog ecosystems. The contemporary balances of carbon and water of both a bog dominated by Sphagnum and vascular plants are determined by CO2- H2O and CH4 flux measurements and an estimation of lateral water losses as well as losses via dissolved organic and inorganic carbon compounds. The high time resolution of simultaneous eddy covariance measurements of CO2 and H2O in both bog types and the strong interaction between climatic variables and the physiology of bog plants allow for direct comparisons of carbon and water fluxes during cold, warm, dry, wet, cloudy or sunny periods. By the combination with leaf-scale measurements of gas exchange and fluorescence, plant-physiological controls of photosynthesis and transpiration can be identified. Long-term peat accumulation rates will be determined by carbon density and age-depth profiles including a characterization of peat humification characteristics. A reciprocal transplantation experiment with incorporated shading, liming and labeled N addition treatments is conducted to explore driving factors affecting competition between Sphagnum and vascular plants as well as the interactions between CO2-, CH4-, and water fluxes and decisive plant functional traits affecting key processes for carbon sequestration and nutrient cycling. Decomposition rates and driving below ground processes are analyzed with a litter bag field experiment and an incubation experiment in the laboratory.

1 2 3 4 535 36 37