Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des S-Wertes, die den S-Wert regional differenzierter darstellt.
Die Gesamtfilterwirkung ist ein Kennwert zur Bewertung des Bodens als Filter für sorbierbare Stoffe und wird über das mechanische und physiko-chemische Filtervermögen bewertet. Unter sorbierbare Stoffe fallen insbesondere Stoffgruppen wie die Kationen der Nährstoffe, Schwermetalle und Organika, die entweder im Bodenwasser gelöst sind oder an kleinen Partikeln haften bzw. selbst in Partikelform vorliegen. In gelöster Form werden die genannten Stoffe an den Austauschern (Bodenmaterial) gebunden und so der Bodenlösung entzogen. In Partikelform werden sie im Boden gefiltert, wenn sie aufgrund mechanischer Hindernisse, wie z. B. am Ende von Wurmröhren, mit dem Sickerwasser nicht mehr weiter transportiert werden können. Die Gesamtfilterwirkung kann in Abhängigkeit von der Kationenaustauschkapazität und der Luftkapazität geschätzt werden. Das Schätzergebnis besteht aus insgesamt 11 Stufen, von denen in Schleswig-Holstein nur 8 relevant sind. Je höher die Stufe ist, desto höher ist die Gesamtfilterwirkung. Sie ist in feinkörnigem Bodenmaterial mit geringer Luftkapazität am größten, wie z. B. in der Marsch und im Östlichen Hügelland, und in grobkörnigem Bodenmaterial mit hoher Luftkapazität am geringsten, wie z. B. in der Vorgeest. Mit der Gesamtfilterwirkung wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.c) als Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen auf Grund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers. Das hierfür gewählte Kriterium ist das mechanische und physiko-chemische Filtervermögen des Bodens mit dem Kennwert Gesamtfilterwirkung. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung.
Das Projekt "Entwicklung und Erprobung einer radiochemischen Methode zur Bestimmung starker Saeuren in Luft und Niederschlagswasser" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Freiburg, Lehrstuhl für Analytische Chemie.Zielsetzung: Bestimmung starker Mineralsaeuren (speziell Schwefelsaeure) in Luft und Niederschlaegen. Kenntnis ueber 'Background'-Konzentrationen saurer atmosphaerischer Komponenten. Vorgehen: Untersuchung des Partikel- und Gasphasenanteils der Atmosphaere sowie von Regenproben. Bei Regenwasser 'voll'-Analysen und anschliessende Korrelation von Anionen und Kationen.
Das Projekt "Chemische Erscheinungsform von Kationen in waessrigen Loesungen und natuerlichen Gewaessern" wird/wurde gefördert durch: GKSS-Forschungszentrum Geesthacht GmbH. Es wird/wurde ausgeführt durch: Universität Kiel, Institut für Physikalische Chemie.Im Rahmen des Vorhabens wird untersucht, wie die Permeation von geloesten Kationen durch Membranen beeinflusst wird durch die chemische Erscheinungsform, in der die betrachteten Ionen vorliegen. Insbesondere wird der Einfluss von in natuerlichen Gewaessern auftretenden, moeglichen Komplexbildnern auf die Ionenpermeation gemessen. Ziel des Vorhabens ist eine Aussage ueber den Zustand, in dem bestimmte Ionen in waessriger Loesung vorliegen, wobei auch natuerliche Gewaesser beruecksichtigt werden.
Das Projekt "Biokohle" wird/wurde ausgeführt durch: Universität Gießen, Institut für Pflanzenernährung.Zurzeit ist die 'Biokohle' in aller Munde, und diese wird als Wunderstoff zur Steigerung und Stabilisierung der Bodenqualität angesehen. Eigene Modellversuche mit drei verschiedenen Böden ergaben, dass die Kohlen, bis auf eine Hydro-Thermal-Kohle (HTC) aus Eichenästen, recht stabil im Boden sind und dass diese dazu beitragen können, den Kohlenstoff im Boden zu sequenzieren. Die vielfach geäußerte Vorstellung, dass eine Biokohleapplikation die spezifische Adsorption von Phosphat reduziert, konnten wir in unseren Untersuchungen nicht bestätigen. Auf drei Standorten wird die Wirkung von Biokohle aus Holzhackschnitzel-Siebresten auf einer Löss-Parabraunerde in Rauischholzhausen, einem Sandboden in Groß-Gerau und einem Alluvium in Gießen in Feldversuchen geprüft. Die Versuche begannen im Frühjahr 2012 bzw. im Herbst 2012. Es hat den Anschein, dass die Biokohle die N-Effizienz zu Silomais aus der Löss-Parabraunerde zu fördern scheint, da die Erträge in den Varianten mit Biokohle über denen ohne Biokohle lagen. Auf dem Sandboden und auch auf dem Alluvium förderet die Biokohleapplikation weder von 15 noch von 30 t/ha den Ertrag von Körnermais, Winterweizen oder Sommergerste. Die Wassernutzung wurde auf dem Sandboden nicht durch Biokohle gefördert. Verbessert wurde aber die Nitratretention durch Biokohle. Um diese Mechanismen von Biokohle besser zu verstehen, untersucht Christian Koch in seiner von der Deutschen Bundesstiftung-Umwelt (DBU) geförderten Promotion, inwieweit durch verschiedene Herstellungstemperaturen die Eigenschaften von Biokohlen aus Fichtenrestholz, Landschaftspflegeheu und Nusshäutchen von Haselnuss beeinflusst werden. Erste Ergebnisse zeigen, dass die Karbonisierungstemperatur die Sorption von Huminsäuren beeinflusst. Dagegen haben die Karbonisierungstemperaturen keinen Einfluss auf die von uns durchgeführten Versuche zur Nitratretention und Kationenaustauschkapazität (= Bariumsorption).
Das Projekt "Verbesserung der Performance geothermischer Anlagen durch Entwicklung einder innovativen Filtertechnologie, Teilvorhaben: Bau und Betrieb einer Miniplant zur selektiven Ad- und Desorption von Kationen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG.Gelöste Schwermetalle in Geothermalwässern wie z.B. Blei, Kupfer oder Barium neigen dazu, bei betriebsbedingten Veränderungen des chemischen Gleichgewichtes zu übersättigen und als schwerlösliche Verbindungen auszufallen. Die damit einher gehenden Probleme reichen von Verstopfung und Beschädigung von Installationen bis zu nachlassender Produktivität und Injektivität des Reservoirs und führen zu erhöhtem Wartungsaufwand oder gar Ausfall des Standortes. Um Partikelanreicherungen (Clogging) und Ausfällungen (Scaling) zu verringern wurden im Projekt PERFORM unterschiedliche Filtrationsmethoden entwickelt, die auf der Entfernung von scale-bildenden Schwermetallionen aus den Geothermalwässern basieren. Dabei wurden vielversprechende Ergebnisse mit Zeolith und Chitosanfasern als Filtrationsmittel im Labormaßstab erzielt. Hauptziel der geplanten Arbeiten in PERFORM II ist nun die Translation dieser Filter-Technologien in die industrielle Anwendung und deren Evaluierung unter geothermischen Bedingungen. Durch das IEG soll in diesem Zusammenhang eine Miniplant gebaut, in Betrieb genommen, und an verschiedenen Geothermiestandorten eingesetzt. Die Minianlage soll an den Standorten mit realen geothermalen Fluiden sowohl die Adsorptionsphase, als auch die Desorptionsphase durchlaufen. Hierbei sollen Kationen selektiv dem Eduktstrom entnommen und aus dem Filter abgeschieden werden. Die Anlage soll somit einen TRL von 6 bis 7 erreichen.
Das Projekt "Membranelektrolytisches Regenerierungsverfahren fuer galvanische Verchromungselektrolyte" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Jatzke, Galvanik-Hartchrom.Das Verfahren erlaubt die nahezu abfallfreie Regeneration des Chromsaeurebades. Die Verunreinigungen koennen in Form wiederverwertbarer Metalle aus dem laufenden Verchromungsprozess ausgeschleust werden. Die Regeneration der Chrombaeder basiert auf der kathodischen Abscheidung der Stoerionen (Eisen) bei gleichzeitiger Reoxidation der Chrom(III)- Ionen. Die Regenerationsanlage ist als Zweikammerelektrolysezelle ausgelegt. Anoden- und Kathodenraum werden durch eine Membran auf Teflonbasis getrennt, die nur Kationen passieren laesst. Das zu reinigende Chrombad wird in die Anodenkammer eingebracht. Im elektrischen Feld wandern die verunreinigenden Metallionen durch die Membran und werden an der Kathode als wiederverwertbares Metall abgeschieden. Gleichzeitig werden die Chrom(III)- Ionen im Anodenraum zur Chromsaeure reoxidiert.
Das Projekt "Kationen - Anionen RedOx Aktivmaterialien für Feststoffbatterien, KAROFEST - Kationen - Anionen RedOx Aktivmaterialien für Feststoffbatterien" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie.
Das Projekt "MEO-TBCs - Multikomponentige äquiatomare Oxide als Hochleistungsmaterialien für zukünftige Wärmedämmschichten" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts.
Das Projekt "Quantification of small-scale physicochemical properties of intact macropore surfaces in structured soils" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Bodenlandschaftsforschung.In structured soils, the interaction of percolating water and reactive solutes with the soil matrix is mostly restricted to the surfaces of preferential flow paths. Flow paths, i.e., macropores, are formed by worm burrows, decayed root channels, cracks, and inter-aggregate spaces. While biopores are covered by earthworm casts and mucilage or by root residues, aggregates and cracks are often coated by soil organic matter (SOM), oxides, and clay minerals especially in the clay illuviation horizons of Luvisols. The SOM as well as the clay mineral composition and concentration strongly determine the wettability and sorption capacity of the coatings and thus control water and solute movement as well as the mass exchange between the preferential flow paths and the soil matrix. The objective of this proposal is the quantitative description of the small-scale distribution of physicochemical properties of intact structural surfaces and flow path surfaces and of their distribution in the soil volume. Samples of Bt horizons of Luvisols from Loess will be compared with those from glacial till. At intact structural surfaces prepared from soil clods, the spatial distribution (mm-scale) of SOM and clay mineral composition will be characterized with DRIFT (Diffuse reflectance infrared Fourier transform) spectroscopy using a self-developed mapping technique. For samples manually separated from coated surfaces and biopore walls, the contents of organic carbon (Corg) and the cation exchange capacity (CEC) will be analyzed and related to the intensities of specific signals in DRIFT spectra using Partial Least Square Regression (PLSR) analysis. The signal intensities of the DRIFT mapping spectra will be used to quantify the spatial distribution of Corg and CEC at these structural surfaces. The DRIFT mapping data will also be used for qualitatively characterizing the small scale distribution of the recalcitrance, humification, and microbial activity of the SOM from structural surfaces. The clay mineral composition of defined surface regions will be characterized by combining DRIFT spectroscopic with X-ray diffractometric analysis of manually separated samples. Subsequently, the spatial distribution of the clay mineral composition at structural surfaces will be determined from the intensities of clay mineral-specific signals in the DRIFT mapping spectra and exemplarily compared to scanning electron microscopic and infrared microscopic analysis of thin sections and thin polished micro-sections. The three-dimensional spatial distribution of the total structural surfaces in the volume of the Bt horizons will be quantified using X-ray computed tomography (CT) analysis of soil cores. The active preferential flow paths will be visualized and quantified by field tracer experiments. These CT and tracer data will be used to transfer the properties of the structural surfaces characterized by DRIFT mapping onto the active preferential flow paths in the Bt horizons.
Origin | Count |
---|---|
Bund | 318 |
Land | 55 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Förderprogramm | 307 |
Kartendienst | 1 |
Text | 29 |
unbekannt | 35 |
License | Count |
---|---|
geschlossen | 35 |
offen | 334 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 342 |
Englisch | 61 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 1 |
Dokument | 6 |
Keine | 280 |
Unbekannt | 5 |
Webdienst | 8 |
Webseite | 83 |
Topic | Count |
---|---|
Boden | 285 |
Lebewesen & Lebensräume | 279 |
Luft | 209 |
Mensch & Umwelt | 370 |
Wasser | 235 |
Weitere | 373 |