Die erste Graugansbrut in Stuttgart wurde 1996 dokumentiert. Mittlerweile sammeln sich ab Juni bis zu 100 Graugänse unterschiedlicher Herkunft im Stuttgarter Stadtgarten. Um herauszufinden, welche Tiere von wo kommen, ob sie sich in distinkte Teilpopulationen gliedern und wie ihr Bruterfolg ist, begannen wir im Jahr 2002 mit der Beringung (blaue Plastikfußringe mit Buchstabencodes SBA, SBB etc.). Bei der Erfassung der Wiedersichtdaten sind wir auf die Hilfe ehrenamtlicher Mitarbeiter angewiesen. Wiedersichtdaten mit Beobachtungsdatum, -ort, -uhrzeit, dem Ringcode und der Gruppengröße können Sie bei graugaense web.de oder schriftlich melden.
Detaillierte Erfassung der Ichthyozoenosen ausgewaehlter Fliessgewaesser Mittelhessens unter Beruecksichtigung der gesamtoekologischen Lokalsituation. Kontrolle von flukturierend auftretenden, belastungsbedingten Erkrankungen einzelner Fischarten (z.B. Aal). Vergleich der aktuellen Gewaesserverhaeltnisse und derzeitiger Ichthyofauna mit urspruenglichem (natuerlichem) Zustand und frueheren Fischbestaenden. Ergaenzende Untersuchungen auch zur relikthaften Krebsfauna. Ziele: Beurteilung der Fischartenverarmung auf der Grundlage gewaesseroekologischer Daten ; praxisorientierte Konzepte zur Restitution urspruenglicher Fischbestaende nach Gewaesserrenaturierung. Methoden: Elektro-Fischfang (Narkose); keine Tierentnahme (nur im Falle von Erkrankung); Markierung von Fischen (Taetowierung) zur Untersuchung der Wanderungsphaenomene; gewaesseroekologische Datenerfassung; EDV: Fischarten, Bestaende/Messergebnisse.
To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understandthe interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (greater than 13 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- will be carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-, NO2-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration will be quantified. Microbial analyses will include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). Stable Isotope Probing (SIP) and mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations.
Dissolved organic matter (DOM) is one major source of subsoil organic matter (OM). P5 aims at quantifying the impact of DOM input, transport, and transformation to the OC storage in the subsoil environment. The central hypotheses of this proposal are that in matric soil the increasing 14C age of organic carbon (OC) with soil depth is due to a cascade effect, thus, leading to old OC in young subsoil, whereas within preferential flowpaths sorptive stabilization is weak, and young and bioa-vailable DOM is translocated to the subsoil at high quantities. These hypotheses will be tested by a combination of DOC flux measurements with the comparative analysis of the composition and the turnover of DOM and mineral-associated OM. The work programme utilizes a DOM monitoring at the Grinderwald subsoil observatory, supplemented by defined experiments under field and labora-tory conditions, and laboratory DOM leaching experiments on soils of regional variability. A central aspect of the experiments is the link of a 13C-leaf litter labelling experiment to the 14C age of DOM and OM. With that P5 contributes to the grand goal of the research unit and addresses the general hypotheses that subsoil OM largely consists of displaced and old OM from overlying horizons, the sorption capacity of DOM and the pool size of mineral-associated OM are controlled by interaction with minerals, and that preferential flowpaths represent 'hot spots' of high substrate availability.
In forest ecosystems ectomycorrhizal fungi are responsible for the mobilization of mineral nutrients from soil organic matter (SOM) resulting in a marked increase in productivity of their symbiotic host plants. In return the fungi obtain a significant amount of photosynthetic products from these plants, allowing the formation of an extensive hyphal system. These hyphae constitute a major part of soil biomass and, ultimately, a major source for SOM formation. While plant-fungal nutrient exchange has been analyzed extensively, this proposal is focused on the fungal contribution to SOM formation and on the processes leading to the acquisition of nutrients by the fungi. These two processes will be studied separately and in a quantitative way using isotopic labeling in soil bioreactors. Analysis of the fate of 13C labeled fungal material (Laccaria bicolor) in soil bioreactors will tell how fast and to what extent the various fractions of hyphal biomass are transformed into non-living SOM. As potential molecular or structural markers for SOM formation from fungal hyphae we will analyze characteristic remnants of fungal hyphae in SOM using scanning electron microscopy, DNAfragments using a PCR approach for the fungal rRNA internal transcribed spacerregions and biochemical markers like fatty acids and ergosterol. The impact of ectomycorrhizal mycelia supported by Pinus sylvestris plantlets on 13C- and 15N-labeled SOM and on microbial biomass will be analyzed in separate soil bioreactor experiments.
Hier finden Sie alle relevanten Informationen zu chemischen Stoffen in über 700 verschiedenen Stoffmerkmalen, darunter mehr als 220.000 rechtlichen Regelungen. ChemInfo intern ist ein Online-Rechercheprodukt und hat Fachberater sowie Chemikerinnen und Chemiker zur Zielgruppe. Der Interne Bereich bildet den Gesamtdatenbestand von ChemInfo ab.
Ob Bauprodukte gesundheitsgefährdende Stoffe in den Innenraum emittieren, ist für die am Bau Beteiligten eine wichtige Information vor der Entscheidung für bestimmte Produkte. Im EUBinnenmarkt sollte diese Information über die CE-Kennzeichnung und mit der ihr verbundenen Leistungserklärung verfügbar sein. Die harmonisierte Prüfnorm DIN EN 16516 (Bauprodukte -Bewertung der Freisetzung von gefährlichen Stoffen -Bestimmung von Emissionen in die Innenraumluft) ermöglicht vergleichbare Angaben zu VOC-Emissionen überall in Europa. Bisher sind jedoch keine Leistungserklärungen zu VOC-Emissionen möglich, da sie nicht von harmonisierten, im Amtsblatt der EU veröffentlichten Normen erfasst sind. Zudem können nicht Angaben über Emissionen in der Form einheitlicher europäischer Leistungsklassen gemacht werden, da die Beratungen zu einem Klassifizierungssystem zu keinem einvernehmlichen Ergebnis geführt haben. Das UBA hat daher in einem Rechtsgutachten prüfen lassen, wie den deutschen Anforderungen entsprechende Angaben auch ohne Leistungsklassen möglich sind. Das vorliegende Gutachten erläutert die rechtlichen Voraussetzungen für Herstellerangaben, die hinsichtlich des Gesundheitsschutzes adäquat sind. Quelle: Forschungsbericht
Plant-soil interactions drive the input, cycling and losses of C and N in soil. This subproject aims at elucidating the input and fate of C in the soil-plant systems and its effect of N retention in soil under different paddy management (continuous vs. alternating with maize cropping). In particular we will investigate (i) how much of the assimilate C is released by the plants into the rhizosphere soil, and how this rhizodeposition is affected by N supply, soil density and crop variety during plant development, (ii) how the exudation of C and N responds to land use change, (iii) how C released into the rhizosphere affects the turnover of soil C and utilization of fertilizer N, and (iv) to what degree leaching contributes to the loss of C and N from the rooted surface soil. To answer these questions, we will combine the use of isotopic 13C and 15N labeling in laboratory and field experiments with a sophisticated characterization of root exudates, root border cells, and compound-specific isotope tracing in the residues of bacteria and fungi in rhizosphere, bulk soil as well as within different dissolved organic and inorganic carbon species in soil leachates. In this way and in collaboration with SP 2, 5, 6, and 7 of this research unit, our project links the cycling of C and N in paddy soils to one of its most prominent drivers, the release of organic compounds by roots.
<p>Wozu dient Einstufung und Kennzeichnung von Chemikalien? Was genau bedeutet Einstufung und Kennzeichnung? Welche Vorschriften gibt es zu beachten und wo sind diese zu finden?</p><p>Chemikalien spielen in unserem Alltag eine wichtige Rolle, sowohl im privaten als auch im beruflichen Umfeld. Der mit der Verwendung von Chemikalien und chemischen Produkten verbundene Nutzen geht jedoch oft mit schädlichen Wirkungen auf Mensch und Umwelt einher. Indem gefährliche Eigenschaften erkannt und durch Gefahrensymbole gekennzeichnet werden, sollen Mensch und Umwelt beim Umgang mit Chemikalien vor nachteiligen Auswirkungen geschützt werden.</p><p>Zweck der Einstufung ist es festzustellen, welche Gefahren von Chemikalien ausgehen. Zur Gefahrenermittlung müssen daher Kriterien und Grenzwerte festgelegt werden. Mit ihnen können die gefährlichen physikalisch-chemischen Eigenschaften sowie Gesundheits- und Umweltgefahren bestimmt werden.</p><p>Die Kennzeichnung visualisiert die festgestellten Gefahren. So können Anwenderinnen und Anwender die Gefahren beim Umgang mit Chemikalien schneller erfassen und beachten. Die Kennzeichnung ergibt sich in erster Linie aus der Einstufung. Für jede festgestellte Gefahr sind bestimmte, standardisierte Kennzeichnungselemente (z.B. Gefahrenpiktogramme, Sicherheitshinweise) festgelegt.</p>
| Origin | Count |
|---|---|
| Bund | 21 |
| Land | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 17 |
| Text | 2 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 3 |
| offen | 17 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 10 |
| Englisch | 13 |
| Resource type | Count |
|---|---|
| Keine | 14 |
| Webseite | 7 |
| Topic | Count |
|---|---|
| Boden | 15 |
| Lebewesen und Lebensräume | 20 |
| Luft | 12 |
| Mensch und Umwelt | 21 |
| Wasser | 11 |
| Weitere | 21 |