Das Projekt "WIR! - rECOmine - ResuS, TP5: Verwendung von Recyclingprodukten subhydrischer Sedimente in der keramischen Industrie" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: KI Keramik-Institut GmbH.
Das Projekt "MINT-Cluster TRIDELTA Sensor Space - Sensor_Space" wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Chemisch-geowissenschaftliche Fakultät, Arbeitsgruppe Chemiedidaktik.
Das Projekt "RUBIN: SAPHIR-Elektrokeramik, TP 2.2: Werkstoffentwicklung für neue bleifreie Keramikheizer" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Eberspächer catem Hermsdorf GmbH & Co. KG.
Das Projekt "Entwicklung druckloser Wärmespeicher für die effiziente Nutzung industrieller Abwärme, TP2: Konstruktion - Fertigung - Test" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: KMI Kraftwerke- und Maschinenanlagen Instandhaltung Gesellschaft mbH.
Das Projekt "Technologien und Ökodesign für nachhaltige Elektronik, Technologien und Ökodesign für nachhaltige Elektronik - EECONE" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Silicatforschung.
Das Projekt "Entwicklung druckloser Wärmespeicher für die effiziente Nutzung industrieller Abwärme, TP1: Grundlagen - Auslegung - Test" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Hochschule Zittau/Görlitz, Fachgebiet Energiesystemtechnik, Fachgruppe Energietechnik.
Das Projekt "DDI: Einführung einer CO2-freien Hochtemperatur-Sintertechnologie für Oxidkeramik" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: QSIL Ceramics GmbH.
Das Projekt "Hybrid-Ofenverfahren für CO2-ärmere bzw. für CO2-freie Hochtemperaturtechnologien zur thermischen Behandlung" wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Keramik, Feuerfest und Verbundwerkstoffe.Hauptziel des beantragten Projektes Hybrid-Fire ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln die es ermöglich CO2-arm bzw. CO2-frei zu Arbeiten. Die Grundlagen hierfür soll umweltfreundlich erzeugter H2 sowie Elektroenergie darstellen. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch H2 ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegel, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark CO2-lastige Verfahren CO2-arm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (keram. Werkstoff sowie Stahl) umfangreiche Forschungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid-beheizten Demonstrator zu konzipieren und für umfangreiche Versuche mit den genannten Produktgruppen zu bauen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an H2O-dampf bzw. H2-gehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sinter- bzw. Schmelztechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die Erkenntnisse auch auf weitere Ofenanlagen zu übertragen bzw. auch auf andere Industriezweige mit ähnlichen temperaturintensiven Technologien zu adaptieren.
Das Projekt "Alkalische Wasserelektrolyse mit Keramik der nächsten Generation, Teilvorhaben: Poröse Elektroden für alkalische, anspruchsvolle Bedingungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Paul GmbH & Co. KG.Ziele Die Zielstellung des Projekts im Rahmen der Technologieoffensive Wasserstoff ist es, die bestehende alkalische Elektrolyse (AEL) in die nächste Generation zu überführen. Die nächste Generation der AEL - AWEC++ - lässt sich durch 4 Punkte definieren. I. Stabilität bei erhöhten Temperatur- und Druckbedingungen (180 Grad C, 35 bar), um höhere Stromdichten zu erreichen ( größer als 1000 mA cm 2). Dies führt zur Halbierung des CAPEX durch Steigerung der H2-Produktion bei konstanten Installationskosten. II. Ein Modernes Stack-Design, welches für hohe Leistungsklassen ( größer als 500 kW) skalierbar ist. Dessen Herzstück ist ein keramisches, plasmagespritztes MEA, sowie laminierte 3D-Gewebe-Elektroden und Laser- oder ECM-prozessierte Bipolarplatten. III. Dynamik in der Wasserstoff-Produktionsleistung, um den volatilen Erneuerbaren Energien ohne kostspielige Zwischenspeicher gerecht zu werden (500 ms). IV. Nachhaltige, automatisierungsfähige und skalierbare Herstellungs- und Prozessschritte, um größer als 150 GW an installierter Leistung langfristig umsetzen zu können. Stand der Wissenschaft und Technik In der alkalischen Elektrolyse wird Wasserstoff H2 an der Kathode und Sauerstoff O2 an der Anode aus Wasser erzeugt. Hydroxid-Ionen OH- wandern zwischen beiden durch ein Diaphragma in wässrigem Elektrolyt (35 % KOH). In der ursprünglichen Variante der alkalischen Elektrolyse (AEL) wurden an Metallplatten als Elektroden genutzt. In moderneren Verfahren sind sogenannte Zero-Gap-Anordnungen üblich, welche durch einen geringeren Elektrodenabstand ohmische Verluste verringern. Als Elektrodenmaterial werden aktuell überwiegend Nickellegierungen verwendet. Langjährige Erfahrung besitzt PACO im Bereich von Hoch- und Niedrigtemperatur-Brennstoffzellen. So entstanden abgestimmte Gewebe auf Nickel-Basis oder kostenoptimierte Spezialgewebe bei gleichbleibenden Eigenschaften in der Anwendung als 3D-Elektroden.
Das Projekt "Alkalische Wasserelektrolyse mit Keramik der nächsten Generation" wird/wurde ausgeführt durch: SITEC Industrietechnologie GmbH.Das Projekt AWECplusplus ist im Themengebiet 1 der Technologieoffensive unter 'Erzeugung von grünem Wasserstoff' angesiedelt. Im Projekt soll die bestehende alkalische Elektrolyse (AEL) in die nächste Generation überführt werden. Die nächste Generation der AEL AWEC++ kennzeichnet sich durch vier wesentliche Komponenten: 1. Stabilität bei erhöhten Temperatur- und Druckbedingungen (180 Grad C, 35 bar), um höhere Stromdichten zu erreichen ( größer als 1000 mA cm 2). Dies führt zur Halbierung des CAPEX durch Steigerung der H2-Produktion bei konstanten Installationskosten. 2. Ein Modernes Stack-Design, welches für hohe Leistungsklassen ( größer als 500 kW) skalier-bar ist. Dessen Herzstück ist ein keramisches, plasmagespritztes MEA, sowie laminierte 3D-Gewebe-Elektroden und Laser- oder ECM-prozessierte Bipolarplatten, 3. Dynamik in der Wasserstoff-Produktionsleistung, um den volatilen Erneuerbaren Energien ohne kostspielige Zwischenspeicher gerecht zu werden (500 ms). 4. Nachhaltige, automatisierungsfähige und skalierbare Herstellungs- und Prozessschritte, um größer als 150 GW an installierter Leistung langfristig umsetzen zu können. Grundlage des Projektes sind hier die Arbeiten von Allebrod et al. für AEL bei erhöhten Temperaturen auf Laborskala. Das Funktionsprinzip bedarf neben der Skalierung einer Material-, Komponenten, Stack und Anlagenanpassung, da es aktuell keine Möglichkeit gibt, den aggressiven Bedingungen standzuhalten. Im Projekt wird die gesamte Wertschöpfungskette für die Installation von alkalischen Elektrolyseuren der nächsten Generation abgebildet. Durch die Fortentwicklung von alkalischer Elektrolyse wird auf ressourcenschonende Materialien (kein Pt, Rh oder Sc) und eine günstige Umweltbilanz (einfach recyclebar) gesetzt. Das Konzept von AWECplusplus führt zu höheren Leistungen bei gleichem Materialeinsatz - also einer höheren Menge Wasserstoff pro Modul.
Origin | Count |
---|---|
Bund | 1076 |
Land | 28 |
Type | Count |
---|---|
Förderprogramm | 1051 |
Messwerte | 1 |
Text | 33 |
Umweltprüfung | 3 |
unbekannt | 16 |
License | Count |
---|---|
geschlossen | 65 |
offen | 1038 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 1038 |
Englisch | 124 |
Resource type | Count |
---|---|
Archiv | 5 |
Bild | 2 |
Datei | 4 |
Dokument | 32 |
Keine | 594 |
Unbekannt | 1 |
Webdienst | 4 |
Webseite | 488 |
Topic | Count |
---|---|
Boden | 676 |
Lebewesen & Lebensräume | 594 |
Luft | 608 |
Mensch & Umwelt | 1104 |
Wasser | 501 |
Weitere | 1071 |